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This paper proposes a novel method for dimensioning pneumatic cylinders for motion tasks. Considered are standard
pneumatic cylinders with common directional control valves and exhaust flow throttles. The focus thereby is on the
dimensioning of the cylinders for point-to-point motions regarding energy efficiency. The proposed strategy is based on
the eigenfrequency and considers similarity transformations. The dimensioning of the cylinder diameter and the valve
conductance bases upon a few algebraic equations leading to optimally sized pneumatic cylinders. Furthermore, the
equations are used for classification purposes of the pneumatic cylinders regarding energy efficiency.
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1. Introduction

Pneumatic cylinders are widely used as actuators for
point-to-point (PTP) motions in industrial automation
processes. They provide a high power density, low
weight and low acquisition costs. Concerning energy
efficiency, pneumatic cylinders are considered to be less
efficient than electric drives. This shows that energy effi-
ciency considerations of pneumatic cylinders are very
important. The higher energy consumption of pneumatic
drives is often caused by using oversized systems. Due
to being open loop controlled, the consumption of com-
pressed air depends on the pressure level and on the vol-
ume of the cylinder, indicating that the appropriate
sizing plays an important role. Therefore, one main point
regarding energy efficiency is the correct dimensioning
of the cylinder.

For force-based applications, simple physical equa-
tions are used to dimension the cylinder (Bimba 2011).
For motion-based applications, a simple way for deter-
mining the appropriate cylinder size is an outstanding
topic which is addressed in this paper.

The state of the art of sizing pneumatic cylinders for
motion tasks is very limited. Some publications are
focused on the sizing of the tubing (Harvey 2003), filter
and fittings (Kreher 2009) or valves (Foy 2003). The
main approach is to reduce the pressure drops. The siz-
ing of pneumatic drives is mainly focused on a damped
system behaviour at stroke end with the aim to reduce
the impact energy. All these considerations are indeed
very important for dimensioning pneumatic cylinders.
But the main aspect of sizing pneumatic cylinders con-
cerning to a given PTP motion is not addressed yet. One
main point regarding these missing dimensioning rules is
the huge amount of possible applications, orientations

but also the huge amount of mechanical restrictions and
criteria, such that the aspect of energy efficiency is sec-
ondary. Furthermore, there are a lot of criteria concern-
ing the dimensioning of drives (Malloy 2000, Danks
2008). Some criteria are:

� Fulfilment of the application (transition time, force
at stroke end, etc.)

� velocity/energy at stroke end
� forces/workload of the guidance, lateral forces, etc.
� air consumption, energy demand.

These criteria restrict the range for determining an
energy-efficient solution for pneumatic cylinders. A pre-
cise calculation formula for dimensioning the drives is
missing. State of the art is a process of using the experi-
ence of engineers in combination with simulation tools
(Hildebrandt 2009). Other approaches suggest computer-
based expert systems (Dikici 2004) for a proper selection
of the system components. The process of dimensioning
is governed by gut instinct and rules of thumb, such as
the workload (Asco 2005) of pneumatic cylinders. In a
subsequent process, the determined components are vali-
dated by using simulation software.

This paper refers to the dimensioning process from a
pneumatic point of view. Thus, additional restrictions
such as the workload of the guidance are neglected.

1.1. Air consumption vs. dimensioning

Neglecting temperature effects, the air consumption of a
pneumatic cylinder is determined by its volume Vc, the
dead volume Vd of the tubing and the connections within
the cylinder head, the supply pressure level ps and the
ambient pressure level p0 to:
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V0 ¼ Vc
ps
p0

þ Vd
ps � p0

p0
� Vc þ Vdð Þ ps

p0
: (1)

It depends solely on the component parameters, such
as the volume and the pressure level. The load or the
speed and transition time, respectively, have no influence
on the amount of compressed air needed by the cylinder.
This is a main difference to feedback-controlled drives,
which only need as much energy as they need for the
specified motion task.

Therefore, a motion task can be realised with several
drives. This is shown in Figure 1 for two drives (with
the following diameters: 25 and 50 mm). Both drives ful-
fil the same boundary condition concerning the transition
time and transport the same mass. It shows that the char-
acteristic of the dynamic behaviour depends on the cylin-
der size (see velocity). Besides this dynamical
characteristic, the influence of system design concerning
energy efficiency becomes evident. By means of the
pneumatic force, it is visible that the force at stroke end
is much higher than needed for the motion.

On the viewpoint of energy efficiency, mistakes are
done very easily when dimensioning drives for motion
tasks, thus the force at stroke end can be much higher
than the force needed during motion. Besides a missing
dimensioning formula, an objective criterion for evaluat-
ing existing systems is missing too. Without this evalua-
tion criterion, energy efficiency strategies of different
systems are hardly comparable. A method for classifying
systems is proposed in this paper too.

The paper is structured as follows. In Section 2, the
basic physical equations of the cylinder dynamics are
presented. Section 3 treats a relative dimensioning
approach. Thereby relative changes of some parameters
are considered by using similarity considerations. These

formulas are validated analytically in Section 4 using the
differential equations of Section 2. The influence of all
parameters is analysed. Section 5 then presents the
dimensioning approach for pneumatic cylinders with
pneumatic cushioning systems and suggests the approach
for optimally sized cylinders. Furthermore, a possible
classification scheme of pneumatic drives is proposed.
Section 6 concludes this paper.

2. Modelling

The dynamics of a pneumatic cylinder is state of the
art and refers to the modellation in Ohligschläger
(1990). The main parts of the model are the mass flow
equations, the pressure dynamics and the motion
dynamics.

2.1. System set-up

The system considered in this paper is a standard con-
trolled cylinder as shown in Figure 2. There are two
types distinguished: rodless cylinders and cylinders with
a rod. The control structure for both types is the same
containing a 4/2-directional control valve and exhaust
flow restrictors for an adjustment of the speed. The flow
restrictors are only active for the exhaust flow.

2.2. Mass flow equations

The mass flows _mi; i 2 a; bf g for both chambers ‘a’ and
‘b’ through the valve and the flow restrictors is described
via the C-b-method (Bala 1985):

_mi ¼ Ciq0w pds=pus; bð Þpus: (2)

Figure 1. Comparison of the system dynamics and air consumption of two different cylinder sizes (gray: dc = 50 mm, black:
dc = 25 mm) for the same application: load m = 15 kg, transition time Tf = 0.5 s, stroke length lc = 0.4 m.
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With Ci being the resulting sonic conductance, ρ0 the
density of air at standard conditions (ISO8778 2003), pus
the upstream pressure and pds the downstream pressure.
The flow function w �ð Þ is modelled as (Sanville 1971):

w
pds
pus

; b

� �
¼

1; q ¼ pds
pus

\b;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

pds
pus

�b

1�b

� �2
s

; q ¼ pds
pus

� b;

8><
>: (3)

distinguishing between choked (q < b) and unchoked
(q ≥ b) flow conditions. The exhaust flow throttles are
considered as throttling factors ki 2 0; 1½ � which reduce
the sonic conductance of the valve Cv:

Ci ¼ Cvki; if _mi\0; i 2 a; bf g: (4)

Thus indicating that every flow path has its own
value of the sonic conductance. For a general consider-
ation, the mass flows for each flow path ij with
i 2 a; bf g expressing the chamber and j 2 1; 2f g
expressing the flow direction (1: venting, 2: exhausting)
are expressed in dependency on uij which enables the
corresponding flow paths:

_mi ¼ uijCijq0w pds=pus; bð Þpus: (5)

Thereby, the signals uij depend on the valve position
u 2 0; 1f g of the switching valve:

ua1 ¼ 1� u; Ca1 ¼ Cv; venting
ua2 ¼ u; Ca2 ¼ Cvka; exhausting
ub1 ¼ u; Cb1 ¼ Cv; venting
ub2 ¼ 1� u; Cb2 ¼ Cvkb; exhausting

: (6)

Thus, the mass flows in the chamber i depend on the
valve position u: _mi ¼ _mi uð Þ.

2.3. Pressure dynamics

Considering the air as an ideal gas in combination with
the assumption of a polytropic change of condition

(pvn = const.), the pressure dynamics of the chambers ‘a’
and ‘b’ is modelled as (Ohligschläger 1990):

_pi ¼ n

Vi xð Þ þ Vdi
RT0 _mi � pi _Vi _xð Þ� �

; i 2 a; bf g: (7)

Being pi the pressure of chamber i, x the position of
the piston, _x the velocity of the piston, n the polytropic
index, R the gas constant of air, T0 the temperature of air
at standard conditions, Vi xð Þ the volume and _Vi _xð Þ its
gradient and Vdi the dead volume of chamber i.

2.4. Motion dynamics

The equations of the motion dynamics are derived by
applying Newton’s law:

m€x ¼ Fp � Fg � Ffr _xð Þ; (8)

being m the load. The right-hand side consists out of
three forces: the pneumatic force Fp, the gravity force Fg

and the friction force Ffr. The pneumatic force is calcu-
lated by the pressures and the corresponding piston
areas:

Fp ¼ Aapa � Abpb � Arp0: (9)

Being Aa the piston area for chamber ‘a’, Ab the pis-
ton area for chamber ‘b’, Ar the area of the rod and p0
the ambient pressure. For dimensioning purposes, the
areas Ab and Ar are assumed to be functions of the area
Aa (Hildebrandt 2009). For cylinders with a rod, the fol-
lowing relation concerning the effective areas is deter-
mined:

n ¼ Ab

Aa
� 0:88; nr ¼ 1� n; (10)

which is considered to be constant for different cylinder
sizes and leads to the pneumatic force as:

Figure 2. Pneumatic drive systems in standard configuration with exhaust flow throttles and a 4/2 directional control valve. Left:
rodless cylinder, right: cylinder with a rod.
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Fp ¼ Aa pa � n pb � nrp0ð Þ: (11)

For cylinders without a rod yields: ξ = 1 and ξr = 0,
such that Ak = Aa = Ab. The gravity force is calculated in
dependence on the mass m and the angle α:

Fg ¼ mg sin a: (12)

Finally, the friction force is assumed to be a combi-
nation of Coulomb and viscous friction:

Ffr _xð Þ ¼ fcf sign _xð Þ þ fvf _x; (13)

being fcf, the Coulomb friction coefficient and fvf, the
coefficient for viscous friction.

2.5. Complete system

Using the definitions x1 = x, x2 ¼ _x, x3 = pa, x4 = pb of
the states, the system is stated as:

_x1 ¼ x2; (14a)

_x2 ¼ 1

m
Aa x3 � nx4 � nrp0ð Þ � mg sin a� Ffr x2ð Þ� �

;

(14b)

_x3 ¼ n

Va x1ð Þ þ Vda
RT0 _ma uð Þ � x3Aax2ð Þ; (14c)

_x4 ¼ n

Vb x1ð Þ þ Vdb
RT0 _mb uð Þ þ x4Abx2ð Þ: (14d)

Using the state vector x ¼ x1; x2x3; x4½ � and the input
u, the system equations are stated as follows:

R : _x tð Þ ¼ f x tð Þ; u tð Þð Þ: (15)

2.6. Energy consumption

The energy consumption of a pneumatic drive is calcu-
lated by the air consumption and the rating number of
compressed air (Weiß 2008). This rating number
expresses the amount of electric energy Wcp needed by
the compressor to build up the consumed compressed
air. The consumed air is calculated by the integral over
the supplied mass flow _ms ¼ _~ma þ _~mb, with
_~mi ¼ _mi � _mi [ 0ð Þ and is transformed to standard litres
via the density of air at standard conditions ρ0:

V0 ¼ 1

q0

Z t

t0

_msds: (16)

Due to the linear relationship between V0 and Wcp,
energy efficiency considerations are equivalent for both:
reducing V0 and reducing Wcp. In standard pneumatic

control mode, the chambers are always filled up to the
supply pressure level ps. Therefore, the air consumption
can be easily determined using (1). In combination with
the definition L = lc + ld and Vc + Vd = AkL yields for a
rodless cylinder:

V0 ¼ AkL
ps
p0

: (17)

3. Relative dimensioning

In this section, the system behaviour is analysed when
individual parameters are changed. The aim is to pre-
serve the system behaviour when parameter variations
are considered, such that with an appropriate dimension-
ing of the system components, the influence of the
parameter variations on the system dynamics is compen-
sated. This is done by similarity considerations.

3.1. Problem formulation

A PTP motion is described by mainly four parameters:
the moved mass m, the stroke length lc, the transition
time Tf and the pressure level ps:

A ¼ m; lc; Tf ; ps
� �

: (18)

The system is mainly described by two parameters:
the cylinder diameter dc and the sonic conductance of
the valve Cv:

S ¼ dc;Cvf g: (19)

The stroke length of the cylinder is considered to
match the required stroke length of the PTP motion lc
because motions between both end points of the cylinder
are considered. The process of system dimensioning is
described by a relation between the system parameters S
and the application parameters A, such that the specified
application is fulfilled with the selected system. Thereby
two dimensioning approaches are considered:

� relative dimensioning
� absolute dimensioning

The aim of the relative dimensioning is to find out
characteristic equations reflecting the relations between
system and application parameters. This is done by simi-
larity considerations between two systems and is the
objective of the current section. The aim of the absolute
dimensioning is to find a function which relates directly
the system parameters to the application parameters with-
out the detour of considering a reference system. This
absolute dimensioning is treated in Section 5.
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3.2. Cylinder eigenfrequency

The pneumatic cylinder is considered as a mass m,
which is connected to a spring. The system stiffness is a
result of the compressibility of air. For determining the
stiffness, the chambers are considered to be closed, such
that the mass of compressed air is kept constant in both
chambers. The stiffness c of the spring is defined by the
stiffness of the system using the pneumatic force (9):

c xð Þ ¼ @F

@x

				
				 ¼ Aap

1

xþ lda
þ n
lc � xþ ldb

� �
; (20)

being p the pressure level of the chambers and x the
piston position. Due to the system nonlinearities, the
stiffness depends on the actual position x. Figure 3
shows the stiffness for a rodless actuator (with ξ = 1) in
dependence on the initial position x and the pressure
level p. The minimum stiffness is achieved in the middle
position. The eigenfrequency ω0 of pneumatic cylinders
is formally determined by the stiffness c (20) and the
well-known relation x0 ¼

ffiffiffiffiffiffiffiffi
c=m

p
(Eschmann 1994). For

ease of calculation, the following assumptions are drawn:

� A rodless cylinder is considered: ξ = 1.
� The dead volumes are considered to be equal:

lda = ldb = ld.
� The eigenfrequency is determined in the middle

position x = lc/2 (Scholz 1990) leading to the mini-
mal eigenfrequency.

These assumptions are proved later on. The eigenfre-
quency is determined by:

x0 ¼ 2p
T 0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4A2
kp

m Vc þ Vdð Þ

s
: (21)

With T0 as the period of the oscillation at eigenfre-
quency. Both chambers are closed and contain com-
pressed air at a pressure level of p. With
Vc þ Vd ¼ Ak lc þ 2ldð Þ and lc + 2ld: = L, the eigenfre-
quency becomes:

x0 ¼ 2p
T0

¼
ffiffiffiffiffiffiffiffiffiffi
4Akp

mL

r
: (22)

It is the frequency of oscillation and thus expresses
the speed of the piston. It is a characteristic number and
is often used for servo pneumatic controller design
(Göttert 2003, Hildebrandt 2009). Because of influencing
the bandwidth of the controller, the eigenfrequency is
determined in the mid position reflecting the minimum
eigenfrequency, and thus the minimum bandwidth. In
this paper, the eigenfrequency is used for dimensioning
purposes for PTP motions. The eigenfrequency is
considered to be a characteristic number reflecting the
system dynamics. The idea for the dimensioning
approach is to keep the eigenfrequency constant – inde-
pendent on variations of the mass, the stroke length or
the pressure level. Equation (22) reflects the characteris-
tic relations between the system and application parame-
ters and thus provides answers concerning the influence
of variations of individual parameters on the piston area.
For example, when the mass is doubled, according to
(22), a doubled piston area is needed to achieve the same
eigenfrequency.

Equation (22) contains almost all parameters of the
application parameters A in (18) and the system parame-
ters S in (19). Two parameters are missing: the transition
time Tf and the sonic conductance Cv. The determination
of the characteristic equations including these parameters
is addressed in the next sections.

3.3. Pneumatic frequency ratio

In this section, a new characteristic number is introduced
which includes the transition time Tf. Hence, a relation
for the speed of the piston is needed. The speed of an
oscillation is implicitly given by the eigenfrequency:
T0 = 2π/ω0. A high eigenfrequency thus means that a
small period T0 is achieved and indicates that a small
transition time Tf can be reached. Therefore, a propor-
tional dependency between the possible transition time Tf
and the period T0 is used: Tf = Ω · T0. It indicates that if
a low velocity or a high transition time Tf is requested, a
low eigenfrequency ω0 is necessary. This leads to the
definition of the pneumatic frequency ratio (PFR):

X ¼ x0

xf
¼ Tf

T0
(23)

It describes the ratio of the eigenfrequency ω0 and
the frequency ωf = 2π/Tf which is given by the transition
time Tf. In combination with (22), a characteristic

Figure 3. Stiffness of a pneumatic, rodless actuator with
dc = 25 mm, lc = 400 mm and ld = lda = ldb = 2 cm in depen-
dence on the position and the pressure level.
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equation for the cylinder size containing all relevant
parameters including the transition time Tf is obtained:

X ¼ x0
Tf
2p

¼ Tf
p

ffiffiffiffiffiffiffiffi
Akp

mL

r
: (24)

Thereby, the parameters Tf, p, m and L are termed
characteristic quantities.

As before, a double mass is compensated by a dou-
ble piston area. But now, it’s possible to answer the
question on how to adjust the piston area if the transition
time is halved: the piston area has to be increased by a
factor of four.

3.4. Characteristic equation for the piston area

Using Equation (24), a characteristic equation for deter-
mining the cylinder size is obtained:

Ak ¼ p2X2 mL

T2
f ps

¼ KA
mL

T 2
f ps

: (25)

Thereby the PFR Ω has to be given and KA is con-
stant.

3.5. Characteristic equation for the sonic conductance

For the determination of the valve size (namely the sonic
conductance Cv), a mean value of the mass flow is used.
It is calculated by using (17):

�_m ¼ q0V0

Tf
¼ q0AkL

ps
p0

1

Tf
: (26)

In combination with the mass flow (2) of the venting
chamber, an equation for the sonic conductance Ca is
obtained:

Ca ¼ 1

p0w pa=ps; bð Þ
AkL

Tf
: (27)

Using (25) yields:

Ca ¼ p2X2

p0w pa=ps; bð Þ
mL2

T3
f ps

¼ KCa
mL2

T3
f ps

: (28)

Thereby the flow function w pa=ps; bð Þ is assumed to
be invariant because of obtaining invariant pressure tra-
jectories when using the proposed dimensioning
approach. This will be proved in Section 4. The same
approach for the exhausted chamber ‘b’ yields an equa-
tion for the sonic conductance Cb:

Cb ¼ ps
p0w p0=pb; bð Þpb

AkL

Tf
: (29)

The pressure pb is considered to be dependent on the
chosen supply pressure level: pb tð Þ ¼ K tð Þps, with K tð Þ
being an invariant scaling factor. Additionally,
w p0=pb; bð Þ is assumed to be invariant as for the venting
chamber. With (25) yields for the sonic conductance of
the exhausted chamber:

Cb ¼ p2X2

p0w p0=pb; bð ÞK tð Þ
mL2

T3
f ps

¼ KCb
mL2

T3
f ps

: (30)

It shows the same proportional relation as (28) but
with a different proportional constant KCb, leading to the
following characteristic equation of the sonic conduc-
tance:

Cv ¼ KC
mL2

T3
f ps

(31)

which is equal for both chambers ‘a’ and ‘b’. The
factor KC depends on the flow function w p=ps; bð Þ. Thus,
for the venting chamber, it is calculated as:

KCa ¼ p2X2

p0w pa=ps; bð Þ : (32)

For the exhaust chamber yields:

KCb ¼ p2X2

p0w pb=p0; bð ÞK tð Þ : (33)

Using these equations, the sonic conductance
depends on the piston area Ak (see Equations (27) and
(29)) and thus the dimensioning approach is split up into
two steps:

(1) Selecting a proper cylinder diameter by using
(25).

(2) Selecting the correct valve according to (31).

Equations (25) and (31) depend both on the PFR Ω.
Equation (31) for the sonic conductance additionally
depends on the flow function w �ð Þ. These unknown
parameters, however, are important for using the dimen-
sioning functions. The determination of these propor-
tional factors is part of Section 5.

3.6. Relative dimensioning

In this section, both Equations (25) and (31) are used for
a relative dimensioning of the system components.
Thereby relative dimensioning refers to a relative consid-
eration of two systems. The system dynamics of system
Σr with the application parameters mr, Lr, Tr

f , p
r
s and the

system parameters Ar
k , C

r
v should be transferred to system

Σ, with the application parameters m, L, Tf, ps and the
system parameters Ak, Cv. According to (25) and (31),
the system parameters have to be scaled as follows:

16 M. Doll et al.



Ak

Ar
k

¼ Tr
f

Tf

� �2 mLprs
mrLrps

¼: fA:

Cv

Cr
v

¼ m

mr

Tr
f

Tf

� �3 L

Lr

� �2prs
ps

¼: fC:

(34)

Being ζA, the scaling factor for the piston area:
Ak ¼ fAAr

k and ζC, the scaling factor for the sonic con-
ductance of the valve: Cv ¼ fCCr

v.
Remark: The scaling functions (34) are determined

on the basis of the PFR (23). As shown in Figure 3,
the eigenfrequency depends on both the position and the
pressure level. This, however, does not restrict the
approach of using the eigenfrequency which is deter-
mined in the middle position. Because of comparing two
systems, the ratio between both eigenfrequencies is the
same, independent of the position used for calculating
the eigenfrequency. This and other assumptions made in
this section concerning invariant trajectories will be
proved analytically in Section 4.

4. Validation

In this section, the scaling functions (34) will be proved
analytically using the system equations (14). Thereby,
one has to keep in mind that if the stroke length is
varied: lc ¼ k � lrc, but the transition time is kept constant
Tf ¼ Tr

f , the velocity trajectory of the piston has to fulfil
the following relation:

x2ðtÞ ¼ lc
lrc
xr2ðtÞ; (35)

such that the system dynamics of system Σ is similar to
the reference system Σr. Comparable relations are
obtained when considering variations of the transition

time Tf or the pressure level ps. For a proper consider-
ation of all parameter variations, the trajectories will be
normalised in time:

s ¼ 1

Tf
t 2 0; 1½ �; ds ¼ 1

Tf
dt; (36)

being τ the normalised time. Furthermore, the state tra-
jectories are also normalised in their values:

~xðsÞ ¼ DðpÞ � xðtÞ;
DðpÞ ¼ diag 1

lc
;

Tf
lc
; 1

ps
; 1

ps

h in o
(37)

being ~x the normalised states and DðpÞ a parameter-
dependent scaling matrix with p ¼ lc; Tf ; ps


 �
. Trajecto-

ries of two systems Σ and Σr are considered to be similar
if their trajectories in normalised coordinates match:

~xðsÞ ¼ ~xrðtrÞ: (38)

This leads to the following condition on the states:

xðtÞ ¼ diag lc
lrc
;

Tr
f lc

Tf lrc
; ps

prs
; ps

prs

h in o
xrðtrÞ: (39)

Figure 4 illustrates what is meant with similarity of
trajectories. Two systems Σ and Σr with different diame-
ters dc and drc achieve different transition times Tf and
Tr
f , but due to the scaling function (39), the velocity pro-

file of system Σ is scaled and matches the velocity pro-
file of system Σr. This indicates that both systems are
similar. Using (39) in combination with (36), the follow-
ing dynamical condition on the states is achieved:

_xðtÞ ¼ Tr
f

Tf

� �
diag lc

lrc
;

Tr
f lc

Tf lrc
; ps

prs
; ps

prs

h in o
_xrðtrÞ: (40)

Figure 4. Illustration of a similar system dynamics between two systems (black: reference system Σr with dc
r = 20 mm and

Tf
r = 0.125 s, gray: system Σ with dc = 32 mm and Tf = 0.2 s). Both are parameterised equally with: m = 10 kg and lc = 0.1 m. The

scaled trajectories of system Σ (blue) are similar to the trajectories of the reference system Σr.
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For analysation purposes, the validation of the sys-
tem dynamics is split up into two parts considering the
motion dynamics and the pressure dynamics to be inde-
pendent.

4.1. Analysis of the motion dynamics

For the analysation of the motion dynamics, the scalings
(34) for the piston area and the sonic conductance are
used together with the normalisation of the states (37) in
the differential equations for the position (14a) and the
velocity (14b). Thereby the differential equation for the
position is related purely by a kinematic relationship
with the velocity, such that the error dynamics

_e1 ¼ _xr1 � Tf lrc
T r
f lc

_x1 ¼ 0 disappears. For the dynamics of the

velocity (14b) yields:

The error dynamics _e2 ¼ _xr2 � Tf
Tr
f

� 2lrc
lc
_x2 ¼ 0 between

both the systems leads to:

_e2 ¼ � Ar
a

mr
nr 1� prs

ps

� �
p0|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

� 1

mr
Fr
frðxr2Þ �

mr

m

Tf
Tr
f

 !2
lrc
lc
Ffrðx2Þ

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
II

� 1� Tf
Tr
f

 !2
lrc
lc

0
@

1
Ag sin a

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
III

;

(42)

which has to disappear, such that invariant trajecto-
ries are obtained: _e2 ¼ 0. According to (42), three condi-
tions have to be fulfilled. The first condition (I)
disappears if the supply pressure is kept constant ps ¼ prs
or if a rodless cylinder is used: ξr = 0. The second condi-
tion (II) is a condition for the friction force to gain
invariant trajectories. For a detailed analysis, the Cou-
lomb friction fcf and the viscous friction fvf have to be
considered separately resulting in the following relations:

fcf ¼ f rcf
m
mr

Tr
f

Tf

� 2
lc
lrc
¼ fA � fcf � psprs ;

fvf ¼ f rvf
m
mr

Tr
f

Tf
:

(43)

This shows that the Coulomb friction has to grow
proportionally with the piston area. But with one restric-
tion: if the supply pressure is varied, the piston area is
adjusted by (34), such that the same pneumatic force is
achieved. The friction has to be proportional to the pneu-
matic force, such that it has to be independent on the
pressure level.

The viscous friction depends on the velocity, such
that the relations for the corresponding coefficient fvf are
slightly different: it has to be independent of the stroke
length and has to grow linearly with the diameter when
the transition time is varied.

Both the viscous friction coefficient and the coulomb
friction coefficient typically grow linearly with the diam-
eter because of being dependent on the circumference of
the piston. Therefore, the necessary dependencies in (43)

on the friction typically are not fulfilled. This will be
analysed later on.

The third condition (III) of Equation (42) is a condi-
tion on the gravity force which should be varied in
dependence on the transition time or the stroke length.
But the gravity force cannot be varied, such that the
error dynamics does not disappear and the result is falsi-
fied.

4.2. Analysis of the pressure dynamics

The analysis of the pressure dynamics is performed ana-
logue to the analysis of the motion dynamics. Without
loss of generality (w.l.o.g.), chamber ‘a’ is assumed to
be vented and chamber ‘b’ is assumed to be exhausted.
A further assumption refers to the length of the dead vol-
ume: ld, which is assumed to be proportional to the
stroke length ld ¼ lc=lrc � lrd . Using the abbreviation:
x1a = x1 + lda, for chamber ‘a’ yields:

_x3 ¼ n

Aax1a
RT0Caq0w

x3
ps
; b

� �
ps � Aax3x2

� �
¼ Tr

f

Tf

ps
prs

n

Ar
ax

r
1a

RT0C
r
aq0w

xr3
ps
; b

� �
prs � Ar

ax
r
3x

r
2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ _xr3

¼ Tr
f

Tf

ps
prs

_xr3 (44)

_x2 ¼ 1

m
ðAa�ðx3 � nx4 � nrp0Þ � Ffrðx2ÞÞ � g sin a ¼ 1

m

Tr
f

Tf

� �2 m

mr

lc
lrc

prs
ps
Ar
a �

ps
prs

xr3 � n
ps
prs

xr4 � nrp0

� �
� Ffrðx2Þ

" #
� g sin a

¼ Tr
f

Tf

� �2lc
lrc

1

mr
Ar
a � xr3 � nxr4 � nr

prs
ps
p0

� �
� mr

m

Tf
Tr
f

 !2
lrc
lc
Ffrðx2Þ

2
4

3
5� g sin a:

(41)
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an unrestricted, invariant system dynamics because
of the disappearance of the error dynamics _e3 ¼
_xr3 � Tf

Tr
f

prs
ps
_x3 ¼ 0. Using the abbreviation for chamber ‘b’:

x1b = lc − x1 + ldb yields:

_x4 ¼ n

Abx1b
RT0Cbq0w

p0
x4

; b

� �
x4 þ Abx4x2

� �
¼ Tr

f

Tf

ps
prs

n

Ar
bx

r
1b

RT0C
r
bq0w

p0
xr4

prs
ps
; b

� �
xr4 þ Ar

bx
r
4x

r
2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼! _xr4

;

(45)

with the error dynamics _e4 ¼ _xr4 �
Tf
Tr
f

prs
ps

_x4 ¼ 0:

_e4 ¼ nRT0Cr
v

Ar
bx

r
1b

w
p0
xr4

; b

� �
� w

p0
xr4

prs
ps
; b

� �� �
xr4; (46)

which disappears with the following condition on the
flow function:

w
p0
xr4

prs
ps
; b

� �
¼ w

p0
xr4

; b

� �
: (47)

This condition is fulfilled if the supply pressure is
kept constant: ps ¼ prs, such that an invariant system
dynamics is obtained. If a variation of the supply pres-
sure is considered, condition (47) holds only for
choked flow conditions with ψ = 1 (see Equation (3))
and leads to a condition on the pressures (the b value
is considered to be constant): p0=x4\b and
p0prs= xr4ps

� �
\b.

All necessary conditions for an invariant system
dynamics are listed in Table 1. Most restrictions exist for
the variation of the supply pressure. All other parameter
variations are influenced by a mismatching friction force.
Therefore, an exact, transferability of the system dynam-
ics is not reached. In the light of being much lower than
the cylinder force, the influence of the mismatching fric-
tion force however is inferior.

5. Dimensioning of pneumatic systems

In Section 4, it has been illustrated that the scaling func-
tions (34) indeed lead to invariant system dynamics
(under certain conditions given in Table 1). Thereby, the
scaling functions (34) are derived using (25) and (31)
and keeping Ω constant. This leads to the absolute
dimensioning function, which is directly used for dimen-
sioning cylinders and valves in dependence on the given
application A and Ω, such that Ω is considered as a
design factor and has to be well chosen. This is part of
the following section.

5.1. Determination of optimal PFR

One main quantity in the dimensioning process is the
impact energy at stroke end. A too high kinetic energy
reduces the lifetime of the cylinder. Therefore, the
kinetic energy at stroke end has to be reduced. This can
be done by hydraulic shock absorbers, but is typically
done by pneumatic cushioning systems. These cushion-
ing systems are adjusted by a variable throttle. This
throttle influences the dynamic behaviour at stroke end
and thus has to be adjusted well, such that it absorbs the
whole kinetic energy.

A pneumatic system which fulfils the restriction of
the maximum impact energy at stroke end is considered
to be a realisable system. Such a realisable system is
called an optimal system if there exists no smaller cylin-
der which is realisable. Thus, an optimal system needs
the minimum of compressed air. In this section, the PFR
is determined for optimal systems.

This is done by simulations using CACOS1 (Com-
puter Aided Cylinder Optimisation System) – a simula-
tion tool of Festo AG & Co. KG. CACOS is based upon
the equations shown in Section 2. The simulation results
match quite well the real pneumatic behaviour.

For a given system, CACOS varies both: the exhaust
flow throttle and the cushioning throttle. It delivers the
minimum transition time which is possible under
the restriction of a damped system behaviour taking the

Table 1. Necessary conditions on the motion and pressure dynamics for an invariant system dynamics using the scaling functions (34).

Motion dynamics Pressure dynamics

Parameter
variation Friction Order

Rodless
needed?

Compensation of gravity
force?

Vented
chamber Exhausted chamber

m fcf ¼ f rcf dc=drc
� �2

2 No Yes – –
fvf ¼ f rvf dc=drc

� �2
2

Tf fcf ¼ f rcf dc=drc
� �2

2 No No – –
fvf ¼ f rvf dc=drc

� �
1

L fcf ¼ f rcf dc=drc
� �2

2 No No – –
fvf ¼ f rvf 0

ps fcf ¼ f rcf 0 Yes Yes – q ¼ p0=x4\b Choked flow
conditionsfvf ¼ f rvf 0
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kinetic energy into account. Simulative studies were
done for more than 750 systems with a huge range of
parameters:

dc ¼ 16mm. . .63mm, lc ¼ 50mm. . .1000mm,
m ¼ 1 kg. . .38 kg. The resulting transition times are in
the range Tf ¼ 50ms. . .2000ms. Figure 5 shows the dis-
tribution of the simulations over the PFR for a stroke
length of lc ¼ 250mm.

It is visible that an optimal PFR is achieved in the
range of X 2 1; 2½ �. Figure 5 shows also an accumulation
of the simulations at Ω = 1. According to (24), this
implies that the eigenfrequency ω0 matches the fre-
quency ωf, which is given by the transition time Tf and
shows that an optimal cylinder selection is given when
the system is operated in eigenfrequency mode.

For each parameter combination, the PFR is com-
puted according to (24) and plotted against the diameter
and the stroke length in Figure 6.

The size of the circles reflects the number of simula-
tions according to Figure 5. Again a range of X 2 1; 2½ �
with an accumulation at Ω = 1 is visible.

Thereby the simulative approach of finding the mini-
mum transition time (for a given system) for which a
damped system behaviour is achieved is equivalent to an
energy optimal cylinder selection. When an energy opti-
mal cylinder is searched for a required transition time Tf,
the cylinder has to be the minimal one (according to
(1)), which fulfils the specified application. In turn, the
selected cylinder reaches the minimum transition time
and thus shows that the given approach above delivers
an energy-efficient selection of the cylinder.

Figure 6 shows a dependency of the PFR on the
stroke length, where low PFRs are achieved only for
strokes between 100 and 500 mm. For long strokes
>500 mm, the PFR increases, too. This is a result of the
pneumatic cushioning system whose damping length
ldamp does not depend on the stroke length, but only on
the diameter of the cylinder. The relative damping length
lreldamp ¼ ldamp=lc therefore decreases with the stroke length
expressing that the kinetic energy has to be absorbed on
a shorter length. This is an unbalance for similarity con-
siderations and thus an increased PFR is needed to
achieve damped system behaviour.

The variations of Ω in Figure 6 are mainly a result
of a mismatching friction force according to Table 1. But
also the assumption of a proportional dead volume
length ldi ∝ lc has an influence on the residual errors.

The resulting system dynamics by means of the
velocity are shown in Figure 7 for several systems with
Ω = 0.98. It illustrates that the resulting velocity profiles
are similar to each other. Furthermore, it shows that the
velocity profiles possess one sole oscillation/wave and
shows that the eigenfrequency ω0 of the system is
matched.

5.2. Determination of the minimal sonic conductance

Besides the cylinder, the sonic conductance Cv of the
valve is determined by using (31). The mean value of
the flow function w pa=ps; bð Þ for one stroke is measured
on basis of the simulation data for the venting chamber.
It is determined to: w pa=ps; bð Þ � 0:4. With it, a factor
KC is calculated according to (32): KCa = 0.25 · 103.
With those constants, the sonic conductance of the valve
is dimensioned.

The exhaust flow throttles are considered as throttling
factors reducing the sonic conductance of the valve.
Therefore, their influence on the system dynamics is
stronger than the sonic conductance of the valve, such
that larger valves with greater C values can be used for
the same application.

5.3. Classification of pneumatic drive systems

As shown in the preceding section, the achieved system
dynamics is specified by the PFR. This shows that the
PFR is a characteristic factor of the system dynamics.
The system dynamics for several different PFRs is
shown in Figure 8 by means of the profile of normalised
velocity and normalised pressure. Thereby the pneumatic
cushioning system is neglected, resulting in slightly
different velocity profiles for Ω = 1 in comparison to
Figure 7.

Figure 8 shows that the count of oscillations in the
velocity profile is directly related to the PFR. Therefore,
the PFR can be read out of the velocity profile and is
useful for the evaluation of systems. It shows that the
PFR is a characteristic factor of the system dynamics
and thus is used for a classification of systems. A possi-
ble classification including safety factors is shown in
Table 2.

The dimensioning approach is useful also for other
objectives than energy efficiency. E.g. for applications
where a constant velocity is needed, a PFR of Ω > 2
instead of Ω = 1 should be selected. Concerning energy
efficiency, the PFR expresses the factor with which the
cylinder diameter dc can be reduced:

d�c ¼ dc
X
; (48)Figure 5. Histogram of PFR distribution of the simulation

results for lc = 250 mm.
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where d�c is the optimal cylinder diameter leading to
the optimal PFR of Ω* = 1. Thus, the PFR expresses the
possibility to reduce the cylinder size.

According to (25), the PFR expresses also the possi-
bility to reduce the transition time Tf:

T�
f ¼ Tf

X
; (49)

where again the optimal transition time is denoted by
T�
f , leading to the optimal PFR of Ω* = 1.

5.4. Air consumption

Using (17) in combination with (25), a characteristic
equation for the air consumption is derived:

Vn ¼ AkL
ps
p0

¼ p2X2

p0

mL2

T2
f

¼ KV
mL2

T2
f

: (50)

It shows two interesting relations when the cylinder
is dimensioned according to (25):

� The air consumption does not depend on the sup-
ply pressure level.

� The air consumption depends quadratically on the
transition time.

These statements are valid for a constant PFR. Thus,
a reduced supply pressure is compensated by a larger
cylinder, such that the air consumption remains the same.
A similar result is shown in (Krichel et al. 2014), where
the efficiency of low-pressure networks is treated.

The second statement shows that if the transition
time is required to be halved, the air consumption is qua-
drupled. This indicates that if the output of a machine
shall be increased by a reduction of the cycle times, the
resulting energy consumption increases disproportion-
ately.

Figure 6. Scattered plot of the PFR of the validation data. The size of the blue circles is proportional to the amount of matching
data points. Top: Dependency of Ω on the diameter, bottom: Dependency of Ω on the stroke. The red points refer to a stroke length
above 600 mm.
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5.5. Reduction of supply pressure

The preceding examples show that an energy-efficient
system dimensioning is achieved by using Ω = 1. This
causes the systems to be reduced in diameter and eventu-
ally tiny systems for large masses are calculated. Indeed,

the application can be fulfilled, but practical aspects
regarding mechanical stress of the rod or the guidance
conflict with the pure pneumatic dimensioning. Mechani-
cal aspects like the workload of the bearing have to be
considered in the dimensioning process but often lead to

Figure 8. Comparison of the system dynamics without pneumatic cushioning by means of the velocity and the pressure profiles for
integer-based PFRs: Ω = 1, 2, 3, 4. The application parameters are: m = 6 kg, lc = 0.3 m, Tf = 0.5 s, ps = 7 bar.

Figure 7. Similar velocity profiles for several cylinders with equal parameters: lc = 0,1 m, m = 10 kg, ps = 7 bar. The achieved tran-
sition times correlate to a constant PFR of Ω = 0.98.
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oversized systems from an energetic point of view.
Therefore, mechanical aspects cause additional air con-
sumption. To compensate this, a reduction of the supply
pressure level is possible. Again (23) is used for the deri-
vation of a characteristic equation for the supply pressure
level:

ps ¼ X2 p
Tf

� �2mL

Ak
¼ KP

mL

AkT 2
f

: (51)

If the cylinder size is given, the calculated pressure
level ps leads directly to energy savings according to
(17). Thus, energy efficiency is achieved, although an
oversized cylinder is used.

Regarding the results of Section 4, a variation of the
supply pressure level causes residual errors in the system
dynamics, such that the system dynamics cannot be
transferred exactly (see Table 2). Therefore, the supply
pressure shouldn’t be reduced below 3 bar (Krichel et al.
2014).

6. Conclusion

This paper shows a new approach for sizing pneumatic
cylinders. The approach comes from similarity consider-
ations of differently parameterised pneumatic systems. It
is shown that the eigenfrequency of a pneumatic cylinder
is a characteristic quantity expressing the possible speed
of the system. A new characteristic factor is introduced
with the PFR, which expresses the ratio between the
demanded speed and the possible speed. The dimension-
ing approach is validated by using the differential equa-
tions of the system dynamics. It is shown that the PFR
approach does not compensate all the nonlinearities;
especially the friction force has an influence on residual
errors. Using huge validation data, optimal values for the
PFR are achieved. The PFR expresses that an energy-
efficient dimensioning is achieved, if both the eigenfre-
quency and the frequency correlated to the transition
time match, i.e. Ω = 1. This is an interesting result
because a lot of biological systems (as humans or ani-
mals) always make use of the eigenfrequency to save
energy. With respect to pneumatic cylinders, it indicates

that the piston should oscillate between both the end
positions in one wave. An operation outside the eigenfre-
quency indicates waste of energy.

The applicability of the PFR is quite larger: It is
shown that the PFR characterises the system dynamics,
such that it can be used for classification purposes. It
can be used to dimension systems with approximately
constant speed, and it delivers interesting relations
between all the system parameters. Furthermore, it can
be used to increase energy efficiency by calculating a
reduced, correct pressure level for existing, oversized
systems.

Nomenclature

Abbreviations

CACOS Computer Aided Cylinder Optimisation
System, Simulation software of Festo AG &
Co. KG

PFR pneumatic frequency ratio Ω
PTP point to point

Symbols
A area [m²]
A application parameters
b b value [–]
c stiffness [N/m]
C sonic conductance [m³ s−1 Pa−1]
d diameter [m]
D scaling matrix
_e error dynamics
f friction coefficient
f system function
F force [N]
g acceleration of gravity [m s−2]
k throttling factor [–]
K proportional constant
l length [m]
L characteristic length [m]
m load [kg]
_m mass flow [kg s−1]
_~m positive mass flow [kg s−1]
_�m mean mass flow [kg s−1]
n polytropic exponent [–]
p pressure [Pa]
p parameter vector
q pressure ratio [–]
R gas constant [J kg−1 K−1]
S system parameters
t time [s]
T temperature [K]
T0 period at eigenfrequency [s]
Tf transition time [s]
u input, valve position
V volume [m³]
W energy/work [J]
x position [m]
x state vector

Table 2. Classification of pneumatic cylinders in horizontal
orientation by means of the PFR and a relative damping
length of lrel,damp = 0.043.

PFR Ω Characteristics of the system dynamics

<0.9 Under-dimensioned cylinder, hardly realisable
(only with hydraulic shock absorbers)

0.9…1.1 Under-dimensioned cylinder, only with
hydraulic shock absorbers

1.1…1.7 Well-dimensioned cylinder, pneumatic
cushioning possible

1.7…2.2 Slightly oversized cylinder, good motion
dynamics with almost stationary velocity

2.2…2.5 Oversized cylinder
>2.5 Strongly oversized cylinder
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~x normalised state vector
α angle of cylinder [rad]
ω frequency [rad s−1]
Ω pneumatic frequency ratio [–]
ψ flow function [–]
ρ densitiy of air [kg m−3]
Σ system
τ normalised time
ξ ratio of areas [–]
ζ scaling factor [–]

Note
1. CACOS has been used for over 10 years and in 2014 more

than 280000 simulations have been done. CACOS is
online accessible with the following link: http://www.festo.
com/cat/en-gb_gb/DKI3ProPneu.asp.
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