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This paper introduces a new robust fault detection and identification (FDI) structure applied to an electro-hydrostatic
actuator (EHA) experimental setup. This FDI structure consists of the dynamic second-order smooth variable structure filter
(Dynamic second-SVSF) and the interacting multiple model (IMM) strategy. The dynamic second-order smooth variable
structure filter (SVSF) is a new robust-state estimation method that benefits from the robustness and chattering suppression
properties of second-order sliding mode systems. It produces robust-state estimation by preserving the first and second-
order sliding conditions such that the measurement error and its first difference are pushed towards zero. Moreover, the
EHA prototype works under two different operational regimes that are the normal EHA mode and the faulty EHA mode.
The faulty EHA setup contains two types of faults, namely friction and internal leakage. The FDI structure contains a bank
of dynamic second-order SVSFs estimating state variables based on these models. The IMM strategy combines these filters
in parallel and determines the particular operating regime based on the system models and the input-output data.
Experimental results demonstrate superior performance in terms of accuracy, robustness, and smoothness of state estimates.

Keywords: Smooth variable structure filter; dynamic sliding mode systems; interacting multiple model; fault detection
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1. Introduction

Due to the need for continuously improved operating
performance, as well as improved safety and reliability,
fault diagnosis systems are growing in popularity. Fault
detection and identification (FDI) may be considered a
subfield of control systems engineering, and concerns
itself with monitoring a system’s health condition, identi-
fying the time of fault occurrence, and pinpointing the
type of fault and its location. A fault is an abnormal con-
dition or defect at the component, equipment, or sub-sys-
tem level which leads to deviation of the system from its
normal mode of operation.

FDI tasks can be performed using both hardware
redundancy and/or analytical redundancy methods. In
hardware redundancy, hardware instrumentations are rep-
licated and repeated such as computers, sensors, actuators
and other instruments, and their outputs compared for
consistency. Analytical redundancy is performed using
analytical or functional information of the process being
monitored. Analytical or functional models are obtained
and various measured signals are used to estimate unmea-
sured quantities (Isermann 2006). Two main approaches
are commonly used in analytical redundancy-based FDI,
namely signal-based and model-based approaches. Both
approaches require a priori knowledge of the dynamic
process. In signal-based approaches, the a priori knowl-
edge includes a large quantity of historical process data,
observations, and measurements (Isermann 2006).

Signal-based techniques usually require signal-
processing tools (e.g., fast Fourier transform (FFT) and
wavelet analysis), statistical techniques (e.g., statistical
classifiers, partial least squares (PLS), and principle com-
ponent analysis (PCA), and intelligent decision-making
techniques (e.g., artificial neural networks). In the
model-based approaches, the a priori knowledge is in
the form of a model of the system that describes its
dynamic behavior. Model-based FDI approaches usually
involve the use of observer, state estimation, and system
identification techniques.

State estimation is one of the most popular tech-
niques for an analytical redundancy FDI task. State esti-
mation is referred to as the task of extracting numeric
values of state variables form inaccurate, uncertain and
noisy measurement data (Habibi 2007). The main
objectives of this task are minimizing the state estima-
tion error (residual) as well as preserving robustness
against modeling uncertainties and external noise. The
state estimation-based FDI approach is based on evalu-
ating the residual or innovation that is the difference
between measurements and estimated outputs at each
sample time. In order to estimate the system states or
outputs, it is necessary to select an estimation filter
such as the KF, EKF, PF, etc., in conjunction with a
mathematical model. It involves two main stages as
follows (Isermann 2006):
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(1) Residual generation stage in which the system
inputs and outputs are used to produce a mathe-
matical model of the process, when the differ-
ence between the model process output and the
measurement is referred to as the estimation
residual or innovation.

(2) Decision-making stage in which the generated
residuals are checked for the likelihood of faults,
and a decision rule is then made to recognize if
any fault has occurred. The knowledge of pro-
cess normal operation is required in this stage.

It is important to note that the residual is just a quantity
that represents the inconsistency between the actual pro-
cess measurement and the mathematical model output
and thus it may include both system noise as well as the
fault signature. Hence, in order to perform a more accu-
rate FDI task, it is necessary to filter out the noise from
the residual signal. Figure 1 presents a block-diagram of
the FDI task based on state estimation. As presented,
there might be noise as well as faults in the system that
consists of the process, actuator, and sensors. The esti-
mation filter is designed based on the system’s model
and the residual that is the difference between the filter
output and the real output. The decision on the fault con-
dition is then made by comparing statistical properties of
the system’s residual with the one pertaining to the
normal condition.

2. An overview of state estimation

In order to estimate state variables of stochastic dynamic
systems, the posterior probability density function of the
state variables should be calculated using all available
information. For the case with a linear state and mea-
surement model that is subjected to Gaussian additive
noise and uncertainties, it is possible to obtain an analyt-
ical solution of the a posteriori PDF. In such a case
(e.g., Kalman filter [1960]), the a posteriori PDF can be
expressed by only the state means and covariances. The
Kalman filter (KF) has the capability to predict and
update the a posteriori mean and covariance. For general
nonlinear and non-Gaussian systems, obtaining an exact
solution to this problem is impossible. However, to
approximately solve nonlinear estimation problems,
several techniques such as linearization and PDF
approximation are required.

The extended Kalman filter (EKF) technique is the
most common method for solving recursive nonlinear
estimation problems based on linearization (Grewal et al.
2001, Bar-Shalom et al. 2004). The unscented Kalman
filter (UKF) is an extension of the Kalman filter which
utilizes an unscented transform to approximate the pos-
terior distribution by capturing its mean and covariance
accurately to the second-order. The corresponding
approximation error will be in the third or higher orders
(Grewal et al. 2001, Bar-Shalom et al. 2004, Ristic et al.
2004). It is important to note that both the EKF and the
UKF are recursive minimum-mean-square-error (MMSE)
estimators that approximate the posterior distribution as a
Gaussian distribution. Moreover, particle filtering (PF)
(Ristic et al. 2004) has attracted interest as a powerful
tool for approximating the state a posteriori PDF. The
PF technique uses a set of weighted particles to provide
the state a posteriori PDF (Ristic et al. 2004).

Kalman-type filtering methods are primarily designed
based on an exact knowledge of the system’s model with
known parameters. In real applications, there may be
considerable uncertainties about the model structure, the
physical parameters, the level of the noise, and the initial
conditions. In some situations, the system dynamic is too
complex to be modeled exactly, or there is no a priori
knowledge about several parameters such as noise levels
or distributions. In other situations, the system structure
or parameters may change by time unpredictably. Hence,
Kalman-type filtering methods may diverge or present an
unacceptable performance. To overcome such potential
difficulties, a robust-state estimation approach is
required. The goal of a robust estimation is to construct
a fixed filter that presents an acceptable performance for
a wide range of modeling uncertainties.

Common robust state estimation methods found in the
literature include the robust Kalman filter (the H2 filter)
(Xie et al. 1994, Sayed 2001, Wang and Balakrishnan
2002], the H∞ filter (Zames 1981, Simon 2000), and the
smooth variable structure filter (SVSF) (Isermann 2006,
Gadsden 2011, Gadsden et al. 2013]. The robust Kalman

Figure 1. A block-diagram scheme of the state
estimation-based FDI task.
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filter is designed for systems with bounded modeling
uncertainties such that an upper bound of the mean square
estimation error is minimized at each step (Xie et al.
1994). Sayed (2001) presented a general framework for
robust-state estimation of dynamic systems with modeling
uncertainties. Moreover, Zames (1981) introduced the
main concept of the H∞ method in the control community
in 1980. This concept is later extended for the signal pro-
cessing and robust-state estimation applications. The H∞

theory is designed based on tracking the energy of a sig-
nal for the worst possible values of modeling uncertainties
and measurement noise (Simon 2000). It removes the
necessity of a perfect model or complete knowledge of
the input statistics.

Habibi designed and implemented the new SVSF for
robust-state estimation in 2007 (Habibi 2007). SVSF is a
robust model-based state estimation method and formu-
lated in a predictor-corrector form based on the sliding
mode theory. Its formulation relies on a stability theorem
that can result in an algorithm with an inherent switching
action that guarantees convergence of state estimation to
within a neighborhood of the actual states. The biggest
issue with the SVSF method is chattering that is referred
to as unpredictable high frequency oscillations in the
state and control trajectories. It is due to the discontinu-
ous action of the SVSF’s corrective gain in a close vicin-
ity of the real-state trajectory. However, chattering is
undesirable and needs to be filtered out or at least sup-
pressed from the state estimation trajectories. Habibi
used the smoothing boundary layer in order to alleviate
chattering (Habibi 2007). Note that by approximating the
switching function through the smoothing boundary
layer; however, the accuracy and robustness of the slid-
ing mode system would be partially lost. Satisfying the
higher order sliding conditions may be considered as an
alternative to the smoothing layer that keeps the accu-
racy, robustness and smoothness of state estimates along
with alleviating the unwanted chattering effects.

More recently, Afshari and Habibi (2013) introduced
the novel second-order SVSF method as an extension to
the former first-order SVSF. The second-order SVSF
method applies to systems with nonlinear state model
and linear measurement model. It preserves the first and
second-order sliding mode conditions during state esti-
mation. Note that satisfaction of the first and second-
order sliding conditions that not only results in higher
degrees of accuracy and robustness, but also decreases
the amplitude of chattering and any other high frequency
dynamics. The main issue with the second-order SVSF
method is that it is not optimal in the mean square error
sense and hence, it may be too conservative in the case
with small amounts of noise and uncertainties.

The dynamic second-order SVSF (Afshari and Habibi
2014) is an advanced version of the second-order SVSF
in which the second-order sliding mode condition is sat-
isfies by defining a dynamic sliding mode manifold. This
manifold is a linear combination of the sliding variable
and its first time difference where the sliding variable is

defined as the measurement error. It has been shown that
the slope of this linear manifold represents a cut-off fre-
quency coefficient that filters out undesirable chattering
effects and is dynamically updated at each time step.
The Lyapunov’s second law of stability is used to prove
stability of the dynamic second-order SVSF in discrete
time. The Lyapunov stability criterion is defined such
that it ensures reaching the dynamic sliding manifold
and satisfying the first and second-order sliding condi-
tions in finite time. Note that by proper selection of the
cut-off frequency matrix, it is possible to adjust the
dynamic second-order SVSF and filter out the amount of
chattering that is required.

In this paper, the dynamic second-order SVSF state
estimation method is initially reviewed. A novel FDI
structure, which is based on the combination of the IMM
strategy with the dynamic second-order SVSF, is pre-
sented and discussed in detail. This FDI structure bene-
fits from the robustness and chattering suppression
properties of the dynamic second-order SVSF; where the
IMM filter is used to identify the source and type of the
fault condition. The FDI structure applies to an experi-
mental EHA setup in order to determine the current
operating condition including the normal and faulty situ-
ations. The IMM strategy also determines the mode
probability indicator, which represents the current operat-
ing mode of the EHA. A bank of nonlinear state models
is stored in this structure and each model describes a
particular operating regime. Gadsden and Song obtained
these models through a series of system identification
experiments (Gadsden et al. 2013). In order to verify the
accuracy and robustness of the dynamic second-order
SVSF, it is compared with other estimation methods such
as the extended Kalman filter and the first-order SVSF.

3. The dynamic second-order SVSF for state
estimation

The dynamic second-order SVSF (Afshari and Habibi
2014) is a model-based state estimation process that is
constructed in a predictor-corrector form (similar to the
well-known Kalman filter). It has two main steps includ-
ing the prediction, and update steps. In the prediction
step, the a priori state estimate x̂kþ1jk and the a priori
state error covariance matrix Pkþ1jk are predicted using
knowledge of the system prior to step k. In the update
step, the predicted a priori state and covariance estimates
are refined into the a posteriori state estimate x̂kþ1jkþ1

and covariance estimate Pkþ1jkþ1, respectively. The
dynamic second-order SVSF applies to systems with a
linear state and measurement models. In order to apply
this filter to systems with nonlinear state models, the
state’s a posteriori PDF needs to be predicted using
techniques involving linearization or approximation
(similarly to the extended Kalman filter or the unscented
Kalman filter) (Afshari and Habibi 2014).

The corrective gain of the dynamic second-order
SVSF is obtained using a dynamic sliding manifold that
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is defined as a linear function of the measurement error
and its difference. Stability and convergence of the
dynamic second-order SVSF under this manifold is pro-
ven using the Lyapunov’s second law of stability. Reach-
ing this manifold alternatively results in cancelling the
measurement error and its first difference under an ideal
sliding mode regime. However, due to modeling uncer-
tainties, switching imperfections, discretization error,
etc.; a real sliding regime occurs. Under the real sliding
mode regime, the dynamic second-order SVSF only
decreases the measurement error and its difference until
reaching the existence subspace. Thereafter, it is guaran-
teed that they remain norm-bounded given bounded
noise and modeling uncertainties.

In order to formulate the dynamic second-order
SVSF, assume a stochastic dynamic system defined by a
linear state and measurement models in discrete time as
follows (Afshari and Habibi 2014):

xk ¼ F̂ xk�1 þ Ĝuk�1 þ wk�1; (1)

zk ¼ Ĥ xk þ vk ; (2)

where xk 2 R
n�1 is the state vector, uk 2 R

p�1 is the
control vector, and zk 2 R

m�1 is the measurement vector.
Furthermore, F̂ 2 R

n�n is the estimated state matrix,
k̂ 2 R

n�p is the estimated control matrix, Ĥ 2 R
m�n is

the estimated measurement matrix, wk 2 R
n�1and

vk 2 R
m�1 are the process uncertainties and measurement

noise, respectively. It is also assumed that the vectors wk

and vk are mutually independent white stochastic pro-
cesses that are respectively bounded by wmax and vmax as
their upper limits such that (Afshari and Habibi 2014):

jwi;k j �wmax; i ¼ 1; . . .; n;
jvi;k j � vmax; i ¼ 1; . . .;m:

�
(3)

It is also assumed that they are statistically independent
with respect to the state vector x 2 R

n�1. Note that in
the SVSF-type filtering, the vector of sliding variables
s 2 R

m�1 is defined as follows:

sk ¼ ezkjk ¼ 0 (4)

The main advantage of the dynamic second-order SVSF
over other state estimation approaches is the use of a
dynamic switching hyperplane that alternatively intro-
duces an internal filtering strategy with its own cut-off
frequency coefficient. In this regard, a cut-off frequency
coefficient is assigned to each measurement that filters
out the unwanted chattering and any other high fre-
quency dynamics. This coefficient is formulated into the
filter by defining a dynamic sliding mode formulated as
follows (Afshari and Habibi 2014):

rk ¼ DSk þ CSk ; (5)

where rk : Rm�1 ! R
m�1 is the new sliding manifold,

Sk 2 R
m�1 is the vector of sliding variables, and Δ is the

backward difference operator applies on the vector of
sliding variables such that: DSk : R

m�1 ! R
m�1. Matrix

C ¼ DiagðCitÞ 2 R
m�m is a diagonal matrix with entries

cii representing the cut-off frequency associated to a
particular measurement error ezi;kjk (Afshari and Habibi
2014).

As a geometrical point of view, the cut-off frequency
coefficient C represents the slope of the sliding manifold
in a phase plane coordinated by S and ΔS. Its value
affects the amount of chattering that needs to be filtered
out from the state estimates. Elements of the cut-off fre-
quency matrix C, presented in the corrective gain formu-
lation, may be chosen by trial and error. Note that since
the sliding variable and its difference are equal to the
measurement error Sk ¼ ezkjk and its difference
DSk ¼ ezkjk � ezk�1jk�1

respectively, hence by defining the
sliding manifold as rk ¼ DSk þ CSk and proving the sta-
bility of state estimates about it, it is ensured that the
estimation error and its difference are decreasing in finite
time. After reaching the existence subspace, it is ensured
that they remain norm bounded while sliding about the
linear sliding manifold. Figure 2 presents the main con-
cept of the dynamic second-order SVSF for state estima-
tion based on the dynamic sliding manifold.

The dynamic second-order SVSF is recursively per-
formed as follows (Afshari and Habibi 2014):

1- Prediction step [15]:

� Calculation of the a priori state and measurement
estimates based on the system’s state and measure-
ment models as follows (Afshari and Habibi
2014):

x̂kjk�1 ¼ F̂ x̂k�1jk�1 þ Ĝuk�1; (6)

ẑkjk�1 ¼ Ĥ x̂kjk�1: (7)

Figure 2. The dynamic second-order SVSF concept based on
the dynamic sliding manifold.
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� Prediction of the a priori state error covariance
matrix as (Afshari and Habibi 2014):

Pkjk�1 ¼ F̂ Pk�1jk�1F̂
T þ Qk�1: (8)

� Calculation of the a priori and a posteriori
measurement error vectors, ezkjk�1

2 R
m�1 and

ezkjk 2 R
m�1 respectively such that (Afshari and

Habibi 2014):

ezkjk�1
¼ zk � Ĥ x̂kjk�1; (9)

ezkjk ¼ zk � Ĥ x̂kjk : (10)

2-Update step [15]:

� Calculation of the innovation covariance matrix as
(Afshari and Habibi 2014):

Ek ¼ Ĥ Pkjk�1 Ĥ
T þ Rk : (11)

� Calculation of the corrective gain for the dynamic
second-order SVSF Kk 2 R

n�1 as a function of the
a priori and the a posteriori measurement errors
as follows (Afshari and Habibi 2014):

Kk ¼ Ĥ�1 ezkjk�1
� ðcþ KkÞezk�1jk�1

h

þ cKk ezk�2jk�2

i
ezkjk�1

h iþ
;

(12)

where Kk 2 R
m�m is the cut-off frequency matrix, and

c ¼ DiagðciiÞ 2 R
m�m is a diagonal matrix with positive

entries such that 0\ccii\1 represents the convergence
rate pertaining to each entry. Moreover, ½�þ represents the
pseudo-inverse operator and Ĥ 2 R

m�n is initially
assumed to be a full matrix such that all states are measur-
able. The dynamic second-order SVSF without full state
measurement is obtained using the Luenberger observer
(similar to the first-order SVSF method [Habibi 2007]).

� Update the a priori state estimate into the a poste-
riori state estimate x̂kþ1jkþ1 as (Afshari and Habibi
2014):

x̂kjk ¼ x̂kjk�1 þ Kkezkjk�1
: (13)

� Update the a priori state error covariance such that
the a posteriori state error covariance Pkjk is
obtained by (Afshari and Habibi 2014):

Pkjk ¼ ðI � KkĤÞPkjk�1ðI � KkĤÞT þ KkRkKk
T : (14)

Following Equation (12), the corrective gain repre-
sents a second-order Markov process and updates itself

based on the measurement error values at the k and k-1
time steps. This however leads to updating the state esti-
mates based on information available from the last two
steps ago. Having access to higher amounts of informa-
tion increases the smoothness and the robustness of the
dynamic second-order SVSF in comparison to first-order
filters like the Kalman filter, or the first-order SVSF. Fur-
thermore, in spite of the first-order SVSF (Habibi 2007),
the dynamic second-order SVSF alleviates the unwanted
chattering effect without the need for a smoothing
boundary layer. Note that the smoothing layer interpo-
lates the real discontinuities about the sliding hyperplane
and hence prevents the real sliding motion that results in
decreasing accuracy as well as robustness. The corrective
gain formulation pushes the measurement error and its
first difference towards the switching hyperplane such
that the first sliding mode condition ðsk ¼ ezkjk ¼ 0Þ and
the second sliding condition ðDsk ¼ ezkjk � ezk�1jk�1

¼ 0Þ
are satisfied under an ideal sliding mode regime. Figure 3
shows a block-diagram of the dynamic second-order
SVSF for state estimation.

4. A Novel FDI structure based on the IMM filter
and the dynamic Second-order SVSF

The Interacting Multiple Model (IMM) estimator is a
suboptimal hybrid filter that can be combined with other
state estimators. The main feature of this algorithm is the
ability to estimate the state of a dynamic system with
several operating modes that can switch from one mode
to another. In this estimator, multiple-state equations are
used to describe different operational modes of the sys-
tem. A linear or nonlinear-state model is considered in
order to describe each operating mode. The combination
of models is used to describe the whole dynamics of the
nonlinear time-varying system. A Markov transition
matrix is used to calculate the probability of the system
being in one of the operational modes.

Assume a hybrid linear system represents a nonlinear
dynamic system in different operating modes using the
state and measurement equations such that (Bar-Shalom
et al. 2004):

xkþ1 ¼ Fk;mk xk þ Gk;mkuk;mk þ wk;mk ; (15)

zk ¼ Ĥk;mkXk þ Vk;mk ; (16)

The parameter mk denotes the current system mode.
Since a number of different models describes the system,
the event in which the ith model mi operates may be pre-
sented by Mk;i ¼ mk ¼ mif g. M denotes the set of all
modes considered in the multiple models framework. It
is assumed that the system model sequence is a homoge-
nous Markov chain with transition probabilities given by
(Bar-Shalom et al. 2004):

Pr mj;kþ1jmi;k

� � ¼ pij;k ; 8 i; j 2 M (17)
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where pij is the Markov transition probability from mode
i to mode j, when

Pr
j¼1 pij;k ¼ 1 Mode probabilities are

updated at each new measurement, and weighting factors
are used to calculate the state variables. One cycle of an
IMM algorithm combined with the dynamic second-order
SVSF consists of following three steps:

1- Interaction step
In this step, the mixing probability that is the probability
of the system currently in mode i, and switching to mode
j at the next step is calculated. The mixing probability,
lijj;k�1jk�1 ¼ PrfMi;k�1jMj;k ; Zk�1g, is obtained as follows
(Bar-Shalom et al. 2004):

lijj;k�1jk�1 ,
1

lj
pij li;k�1; (18)

where pij is the mode transition probability that is set by
the designer. Furthermore, �lj is the predicted mode
probability for r different modes and calculated by
(Bar-Shalom et al. 2004):

�lj, Pr Mj;k jZk�1
� � ¼

Xr

i¼1

pij li;k�1: (19)

The mixed initial condition is calculated using previous
state and covariance estimates x̂i;k�1jk�1 and Pi;k�1jk�1,
respectively. They are outputs of r different dynamic sec-
ond-order SVSF filters that are based on r different
operating modes. The mixed initial state and covariance
matrix are calculated for the filter Mj at time k by
(Bar-Shalom et al. 2004):

x̂0j;k�1jk�1 ,E xk�1jMj;k ; Z
k�1

� � ¼
Xr

i¼1

x̂i;k�1jk�1lijj; (20)

P̂0j;k�1jk�1 ¼
Xr

i¼1

lijj;k�1jk�1 P̂i;k�1jk�1 þ ðx̂i;k�1jk�1

�

� x̂0j;k�1jk�1Þðx̂i;k�1jk�1 � x̂0j;k�1jk�1ÞT �
(21)

2- Filtering step
Mode-matched filtering is applied in this step and the
likelihood function corresponding to each filter is deter-
mined. The calculated mixed initial state and covariance
are set as inputs to the dynamic second-order SVSF
which is matched to mode MjðkÞ. The filtering step starts
by predicting the state and the error covariance matrix of
each mode are provided as follows (Bar-Shalom et al.
2004):

x̂j;kjk�1 ¼ F̂j;k�1x̂0j;k�1jk�1 þ Ĝj;k�1uj;k�1 þ ŵj;l�1; (22)

P̂j;kjk�1 ¼ F̂j;k�1P̂0j;k�1jk�1F̂j;k�1
T þ Qj;k�1: (23)

Similar to (8) and (10), the residual (measurement error
ej;k) and its covariance Ej;k for each mode are respec-
tively calculated as follows:

ej;k ¼ zk � Ĥj;k x̂j;kjk�1; (24)

Ej;k ¼ Ĥj;kP̂j;kjk�1Ĥj;k
T þ Rj;k : (25)

The dynamic second-order SVSF’s gain applies for
each mode such that:

Kj;k ¼ Ĥ
þ
j ½diagðej;kjk�1Þ � ðcþ KjÞdiagðej;kjk�1Þ

þ cKjdiagðej;k�2jk�2Þ�½diagðej;kjk�1Þ�; (26)

where Ĥþ
j is the pseudo-inverse of the measurement

matrix Ĥj, and Kj is the constant cut-off frequency
matrix. State and covariance updates are calculated
respectively as follows:

x̂j;kjk ¼ x̂j;kjk�1 þ Kj;kej;k ; (27)

P̂j;kjk ¼ P̂j;kjk�1 � Kj;k Ej;k Kj;k
T : (28)

Based on the innovation matrix (residual covariance)
Srcj;k , and the a priori measurement error ej;kjk�1, a corre-
sponding likelihood function Kj;k may be calculated as
follows (Bar-Shalom et al. 2004):

Figure 3. A block-diagram scheme of the dynamic second-order SVSF estimation process.
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Kj;k ,N ½ej; 0;Ej� ¼ e�
1
2ej;k

TEj;k
�1t ej;kffiffiffiffiffiffiffiffiffiffiffiffi

2pEj;k
p ; (29)

and the likelihood function is then used to determine the
mode probability update given by (Bar-Shalom et al.
2004):

lj;k ¼
�ljKj;kPr

i¼1
�liKi;k

: (30)

3- Combination step
The a posteriori state and covariance matrix are esti-
mated by combining the mode conditioned estimates and
covariances as (Bar-Shalom et al. 2004):

x̂kjk ,E xk jZk
� � ¼ Xr

i¼1

x̂i;kjklj; (31)

P̂kjk ,E ½xk � x̂kjk �½xk � x̂kjk �T jZk
h i

¼
Xr

j¼1

Pj;kjklj þ
Xr

i;j¼1

Xij;
(32)

where the weighted square difference is given by
(Bar-Shalom et al. 2004):

Xij;k , xi;kjk � x̂j;kjk
� �

x̂i;k � x̂j;kjk
� �T

lilj: (33)

Figure 4 presents a block-diagram scheme of the pro-
posed FDI structure based on the IMM filter and the
dynamic second-order SVSF method.

5. Experimental electro-hydrostatic actuator (EHA)
setup

The experimental setup of the electro-hydrostatic actuator
(EHA) has been designed and manufactured in the

Centre for Mechatronics and Hybrid Technology
(CMHT) at McMaster University. This experimental
setup is used to study control strategies, state and
parameter estimation, and fault detection and diagnosis
applications. Figure 5 presents a photo of the EHA
experimental setup. The EHA uses pumping action to
create pressure and move a hydraulic piston. The EHA
concept is currently being used in aerospace applications
and therefore its reliability and performance are highly
important. Hence, health monitoring is an important ele-
ment in designing EHA systems. The EHA set up
includes a secondary circuit that allows a physical simu-
lation of friction faults.

The EHA is a self-contained hydraulic system and is
composed of several components including a symmetric
linear actuator, a variable-speed servomotor, a bi-direc-
tional gear pump, a pressure relief valve, an accumulator,
connecting tubes, and safety circuits for fault simula-
tions. A variable-speed brushless DC electric motor,
which is SIEMENS 1FK7080-5AF71-1AG2, drives the
bi-directional gear pump and forces oil into the cylinder.
Thereby, the gear pump can adjust the actuation perfor-
mance by changing the fluid flow rate. An accumulator
is used to avoid cavitation and to collect the case drain
leakage from the gear pump. The pressure relief valve is
used to limit the maximum system pressure to 500 psi in
this case study (McCullough 2011).

The hydraulic circuit of the EHA setup has two main
parts. The first part is the inner low-pressure circuit that
filters the oil and preserves the minimum system pressure
at 40 psi, by using an accumulator as well as filters and
check valves. The inner circuit prevents cavitation and
supplies fluid for compensating leakage. The second part
of the hydraulic circuit is the outer high-pressure circuit
that performs actuation. The control variable of the EHA
setup is the input voltage to the motor that regulates the

Figure 4. Block-diagram of the FDI structure as a combination of the IMM filter with the dynamic second-order SVSF.
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direction and the speed of the pump. This results in
controlling the value of the fluid flow rate in the outer
circuit and correspondingly adjusts the piston’s position,
velocity, and acceleration (McCullough 2011, Gadsden
et al. 2013).

The circuit diagram of the EHA experimental setup
is shown in Figure 6. An optical linear encoder attached
to Axis A is used to obtain position measurements. Two
types of fault conditions can be physically induced: inter-
nal leakage and friction. To cause or simulate a friction
fault in the system, axis A in Figure 6 was used as the
driving mechanism while axis B acted as a load. To
implement internal leakage across the circuit, the axis A
throttling valve is used (where the axis A throttle block-
ing valve is open). The axis A throttling valve incurs

cross-port leakage between both chambers of its corre-
sponding cylinder. Based on this fault condition, the out-
put response of the cylinder is affected.

The EHA system is described by four state variables
including the actuator position x1 ¼ x, velocity x2 ¼ _x,
acceleration x3 ¼ €x, and the differential pressure across
the actuator x4 ¼ P1 � P2. Gadsden (Afshari and Habibi
2013) used the physical modeling approach in order to
obtain the nonlinear state-space equations in discrete-
time that is described as follows (Afshari and Habibi
2013):

x1;kþ1 ¼ x1;k þ T x2;k ; (34)

x2;kþ1 ¼ x2;k þ T x3;k ; (35)

Figure 5. Experimental setup of the EHA prototype.

Figure 6. The circuit diagram of the EHA experimental setup (as per [Afshari and Habibi 2014]).
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x3;kþ1 ¼ 1� T
a2V0 þMbeL

MV0

� 	
x3;k

� T
AE

2 þ a2L

 �

be
MV0

x2;k þ T
AEbe
MV0

� T
2a1V0x2;kx3;k þ beL a1x2;k2 þ a3


 �
MV0

sgnðx2;kÞ;
(36)

x4;kþ1 ¼ a2
AE

x2;k þ ða1x2;k2 þ a3Þ
AE

sgnðx2;kÞ þ M

AE
x3;k ;

(37)

where is T is the sample time, AE is the piston cross-sec-
tional area, be is effective bulk modulus, L is the leakage
coefficient, M is the load mass, and V0 is the initial cyl-
inder volume. In addition, a1, a2, and a3 represent the
friction coefficients. Numeric values of these parameters
are presented in Table 1. The input to the EHA system
is also given by (Afshari and Habibi 2013):

u ¼ Dpxp � sgnðP1 � P2ÞQL0; (38)

Note that DP is the pump displacement, Q1 is the leak-
age flow rate, and Ql0 is the parameter used to adjust
offsets. It is important to notice that there are two types
of parameters that are affected by the fault condition: the
leakage coefficient L and the friction coefficients a1, a2,

Table 1. Numeric values of the EHA parameters (Afshari and
Habibi 2013).

Parameter Physical Meaning Parameter Values

AE Piston Area 1.52×10–3 m2

Dp Pump Displacement 5.57×10–7 m3/rad
L Leakage Coefficient 4.78×10–12 m3/(s×Pa)
M Load Mass 7.376 kg
QL0 Flow Rate Offset 2.41×10–6 m3/s
V0 Initial Cylinder Volume 1.08×10–3 m3

βe Effective Bulk Modulus 2.07×108 Pa

Table 2. Numeric values of the friction coefficients (Afshari
and Habibi 2013).

Condition a1 a2 a3

Normal 6.589×104 2.144×103 436
Major Friction 1.162×106 −7.440×103 500
Minor Friction 4.462×106 1.863×104 551

Table 3. Numeric values of the leakage coefficients and flow rate offsets (Afshari and Habibi 2013).

Condition Leakage (L) Flow Rate Offset (QL0)

Normal 4.78×10−12 m3/(s×Pa) 2.41×10−6 m3/s
Major Leakage 2.52×10−11 m3/(s×Pa) 1.38×10−5 m3/s
Minor Leakage 6.01×10−11 m3/(s×Pa) 1.47×10−5 m3/s

Figure 7. The input (motor’s angular velocity) to the EHA experimental setup.
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and a3. Hence, for accurately modeling the EHA system,
numeric values of these parameters are required under
different operating conditions. Table 2 lists numerical
values of the friction coefficients for different operating
conditions measured by experimentation as reported on
(Afshari and Habibi 2013). Table 3 also presents numeri-
cal values of the leakage coefficients and flow rate off-
sets for these conditions (Afshari and Habibi 2013).

6. Experimental results and discussion

In this section, the FDI task is performed by combining
some of the extended Kalman filter, as well as the first-
order SVSF and the dynamic second-order SVSF, within
an IMM structure. The EHA experimental setup is used
to study and compare the IMM strategies. The software
used to communicate with the EHA setup is MATLAB’s
Real-Time Windows Target environment. Two types of
faults were physically induced to the EHA setup: internal
leakage and friction. Hence, there are three main scenar-
ios for experimentations including the normal EHA
setup, the EHA with friction and the EHA with internal
leakage. Each scenario applies within 2 sec separately.
The sample time T for discretization is set to 0.1 ms.
The cut-off frequency matrix for the dynamic second-
order SVSF is set to an identity matrix. For all strategies,
the initial state estimate and state error covariance matrix
are defined as follows:

x̂0j0 ¼ 0 0 0½ �T ; (39)

P0j0 ¼
1 0 0
0 10 0
0 0 50

2
4

3
5: (40)

In order to check the dynamic second-order SVSF in
terms of accuracy, and robustness of state estimates, it is
compared with the extended Kalman filter (EKF), and
the first-order SVSF. All of the estimation strategies are
combined with the IMM filter. Several experimentations
were performed with varying the pump speed to calcu-
late the friction coefficients. Table 2 presents friction
coefficients for the normal, minor leakage, and major
leakage cases. Following (38), the input u to the EHA
setup is a function of the motor’s angular velocityxp.
The scenario that was studied involved the EHA operat-
ing normally for two seconds, a leakage fault for two
seconds, followed by a friction fault for the last two sec-
onds. The input to the EHA system is a square wave sig-
nal fluctuates between +5 and -5 rad/sec. The profile of
the input is presented in Figure 7. There are four state
variables including the actuator position, velocity, accel-
eration, and the differential pressure. The actuator posi-
tion and the differential pressure are measurable, and the

measurement matrix is equal to: Ĥ ¼ 1 0 0 0
0 0 0 1

� 	
.

Figure 8 presents profiles of the EHA outputs.

Figure 8. Profiles of the EHA outputs including the position and differential pressure.
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Since the SVSF-type filtering needs a full measure-
ment matrix, the Luenberger observer is used to estimate
the non-measurable states (see Ref. [Afshari and Habibi
2014] for detailed information). Note that this, however,
increases the amount of noise experienced by the SVSF
estimation strategies. The process noise covariance Q
and the measurement noise covariance R for the EKF,
the first-order SVSF and the dynamic second-order
SVSF methods are given by:

Q ¼ Diag 102 103 105 102
� �
 �

; (41)

R ¼ Diag 10�2 10�1
� �
 �

: (42)

The convergence rate for the first-order SVSF and the
dynamic second-order SVSF are respectively set to 0.1.
For the first-order SVSF, the smoothing boundary layers
set to w ¼ 10� DiagðQÞ. For the IMM settings, the ini-
tial mode probability and the mode transition matrix are
respectively set to:

li;0 ¼ 0:90 0:05 0:05½ �T ; (43)

pi;j ¼
0:90 0:05 0:05
0:05 0:90 0:05
0:05 0:05 0:90

2
4

3
5: (44)

It is important to note that the mode transition matrix
states, for instance, that there is a 90% probability that
the EHA will stay in mode 1 (normal operation) if it was
in mode 1 at the current time step (i.e.,p1;1 ¼ 0:90)
(Afshari and Habibi 2013). In this study, the extended
Kalman filter (EKF), the first-order SVSF and the
dynamic second-order SVSF were combined with the
IMM method and applied to the EHA setup for fault
detection and diagnosis. Table 4 presents the root-
mean-squared-error (RMSE) values of the three

estimators (EKF, first-order SVSF, and the dynamic
second-order SVSF when combined with the IMM filter)
for the EHA with major friction. It demonstrates that
under the fault condition, the IMM-based dynamic sec-
ond-order SVSF provides the most accurate state esti-
mates followed by the first-order SVSF and the EKF
methods. Furthermore, Tables 5 through 7 present the
mode probability estimate for each method that is called
the confusion matrix. The confusion matrix represents an
indication of how accurate the models are in detecting
the correct operating regime.

Following Table 5 through Table 7, it is deduced that
all of the methods successfully detected the correct oper-
ating mode (a diagonal probability of 50% or greater);
however, with varying degrees of confidence. The IMM-
based dynamic second-order SVSF strategy correctly
identified the EHA operating normally with the highest
probability level (93.33%), followed by the IMM-first
order SVSF, and the IMM-EKF. The IMM-based
dynamic second-order SVSF also detected the leakage
fault with the highest level (90.05%), followed by the
IMM-first- order SVSF, and the IMM-EKF.

Furthermore, the IMM-based EKF strategy correctly
identified the friction fault with the highest confidence

Table 4. Total RMSE values of different state estimators
applied to the EHA setup.

EKF
1st-order
SVSF

Dynamic 2nd-order
SVSF

x1 4.59×10−12 1.15×10−12 1.13×10−13

x2 4.56×10−9 3.91×10−9 3.55×10−10

x3 5.18×10−12 6.16×10−14 7.90×10−14

x4 2.18×10−9 9.64×10−11 9.44×10−11

Table 5. Confusion matrix for the IMM-EKF method (values
in %).

Actual Condition

Predicted Condition Normal Leakage Friction

Normal 59.31% 27.65% 3.18%
Leakage 40.51% 66.94% 3.53%
Friction 0.18% 5.41% 93.29%

Table 6. Confusion matrix for the IMM-first-order SVSF
method (values in %).

Actual Condition

Predicted Condition Normal Leakage Friction

Normal 91.93% 7.16% 4.07%
Leakage 7.73% 86.41% 3.66%
Friction 0.34% 6.43% 92.27%

Figure 9. Total mode probability detections by different
methods.
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level (93.29%), followed by the IMM-first-order SVSF,
and the IMM-dynamic second-order SVSF. It is interest-
ing to note that another important factor to study
includes cross-detection errors or misclassifications. For
example, when the EHA was operating normally, the
IMM-EKF strategy detected a leakage fault with 40.51%
probability. This is a high cross-detection error, as the
IMM-EKF method detected normal operation with only
59.31% probability. If these values were closer, it would
be difficult to properly diagnose the fault with a high
level of confidence.

Another interesting factor to study is the overall cor-
rect detection probability. This can be studied by refer-
ring to the confusion matrices and Figure 9. Note that
the summation of the diagonal elements in the matrices
is equal to the total mode probability. Ideally, the perfect
detection strategy would correctly identify the operating
modes and thus, the total mode probability would be 3
or 300%. Overall, the IMM-dynamic second-order SVSF
yielded the best results in terms of maximizing the cor-
rect mode detection and minimizing the misclassifica-
tions. The IMM-dynamic second-order SVSF had a total

Figure 10. Profiles of the real and estimated state trajectories using the dynamic second-order SVSF.

Figure 11. Mode probability of the IMM with the EKF state estimation.
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mode probability of 281.53%, followed by the IMM-
first-order SVSF with a total mode probability of
270.61%, followed by the IMM-EKF with a total mode
probability of 219.54%. Hence, it appears that the
IMM-dynamic second-order SVSF method provides the
best method for fault detection and diagnosis. This may
be due to its unique gain calculation, which preserves
robustness during the state estimation process.

The IMM structure with the dynamic second-order
SVSF and the first-order SVSF results in estimates with
larger probabilities that increases the chance of correct
fault identification. This demonstrates the robust perfor-
mance of the first-order and the dynamic second-order
SVSF that prepare them as a powerful tool for the FDI
task. Figure 10 presents the real and estimated state tra-
jectories using the dynamic second-order SVSF method.
Note that the differentiated and filtered data for the
velocity and acceleration are respectively obtained by
taking the first and second-order time-derivatives of the
position trajectory. These signals are later filtered out
through a Butterworth filter in order to remove the differ-
entiation noise and other spikes. As demonstrated the
estimated state trajectories follow the real trajectories.

Mode probability profiles of the IMM-EKF, the
IMM-first SVSF and the IMM-dynamic second-SVSF
strategies are respectively presented in Figures 11

Figure 12. Mode probability of the IMM with the first-order SVSF state estimation.

Figure 13. Mode probability of the IMM with the dynamic second-order SVSF-state estimation.

Table 7. Confusion matrix for the IMM-dynamic second-order
SVSF method (values in %).

Actual Condition

Predicted Condition Normal Leakage Friction

Normal 93.33% 4.14% 3.06%
Leakage 6.53% 90.05% 4.75%
Friction 0.14% 5.81% 92.19%
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through 13. It is observed from these figures that the
IMM-based dynamic second-order SVSF produces
the largest mode probability value, followed by the
IMM-based first-order SVSF, and the IMM-based EKF
structures. Mode probability profiles demonstrate the
superior performance of the dynamic second-order SVSF
in identifying the operating mode of the EHA under the
normal and uncertain conditions.

Table 8 presents the RMSE values of the four state
estimators (the EKF, the first-order SVSF, and the
dynamic second-order SVSF) combined with the IMM
filter for the described scenario. It is deduced from
Table 8 that the IMM-based dynamic second-order
SVSF strategy provide the more accurate state esti-
mates, followed by the IMM-based first-order SVSF.
This however confirms the superior performance of the
dynamic second-order SVSF for state estimation under
the uncertain faulty situations. Numeric values of Tables
7 and 8 present the superior performance of the
dynamic second-order SVSF over other estimation
approaches for fault detection and diagnosis applica-
tions. Note that for a proper comparison, the inputs
data as well as the initial conditions have been consid-
ered the same for all estimation methods. Furthermore,
the first-order SVSF and the dynamic second-order
SVSF are both tuned such that they present their best
performance for state estimation under faulty
conditions.

The main advantage of the dynamic second-order
SVSF over other state estimation methods is its unique
gain formulation that presents an adjustable internal fil-
tering behavior within the main filtering performance.
This prepares the dynamic second-order SVSF with a
self-tuned cut-off frequency coefficient that determines
the filter’s bandwidth at each time step. Numeric value
of the cut-off frequency matrix reflects the amount of
chattering or any high frequency dynamics that need to
be filtered out at each time step. Entries of this diago-
nal matrix may be selected by trial and error. Experi-
mentations demonstrate that the dynamic second-order
SVSF generates more accurate state estimates over the
first-order SVSF. This is because it alleviates chattering
without the need to the smoothing boundary layer that
is an approximation and prevents the real sliding
motion to occur. Satisfying the second-order sliding
condition, instead of using the smoothing boundary
layer, results in the more accurate estimates as well as
simpler gain formulations. Even though the cut-off fre-
quency coefficients need to be adjusted for each case
study, however, there it removes the need for tuning
the width of the boundary layer.

7. Conclusion

This paper presented a novel robust FDI strategy based
on the dynamic second-order SVSF and the IMM strat-
egy. The dynamic second-order SVSF is a robust model-
based state estimation method and benefits from the
robustness and chattering suppression of the second
order sliding mode systems. It is able to precisely esti-
mate state variables of the system with both nonlinear
state models and linear or piece-wise linear models. The
main advantage of the dynamic second-order SVSF over
the first-order SVSF is improved estimation accuracy as
well as its simpler structure. It removes the needs for
tuning the smoothing boundary layer by trial-and-error,
which saves time and design effort. The dynamic sec-
ond-order SVSF is actually a trade-off between optimal-
ity and robustness. During normal operating conditions,
it operates like an optimal method (e.g., Kalman filter),
but for uncertain conditions, it operates as a robust state
estimator.

This proposed FDI structure applies to an experimen-
tal EHA setup that operates under the normal and faulty
scenarios. The faulty scenarios include the EHA setup
with two major fault conditions of friction and internal
leakage. The RMSE values generated by the dynamic
second-order SVSF are smaller than the values of the
first-order SVSF and the Kalman filter. Furthermore, the
IMM-based dynamic second-order SVSF could success-
fully identify the correct operating regime with higher
values of the mode probability. These two indices show
the higher accuracy of the dynamic second-order SVSF
under an experimental test that contains both the normal
and faulty conditions.

List of Nomenclatures
A Linear state matrix
AE Piston area
BE Load friction
C Cut-off frequency coefficient
DP Pump displacement
E Measurement error covariance
F Linearized state matrix
G Linearized control matrix
H Linearized measurement matrix
K Filter’s gain
L Leakage coefficient
M Load mass
P State error covariance matrix
Q Process noise covariance matrix
Qe Leakage flow rate
QL0 Flow rate offset

Table 8. RMSE values of different state estimators combined with the IMM filter.

States EKF 1st-order SVSF Dynamic 2nd-order SVSF

x1 (m) 6.59×10−4 4.10×10−5 1.85×10−5
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R Measurement noise covariance matrix
S Vector of sliding variables
T Sample rate
V0 Initial cylinder volume
a1,a2,a3 Friction coefficients
K Mode number in the IMM filter
M Mode number in the IMM filter
pij Mode transition matrix
S Sliding mode variable
V Measurement noise
W Process noise
X State vector
Z Measurement vector
βe Effective bulk modulus
Σ Sliding mode manifold
Γ Convergence rate
μi Mixing probability of the ith mode
ωP Motor rotational velocity
Λ Likelihood function
Ψ Smoothing boundary layer
E{□} Expected value of an event
Pr{□} Probability of an event
ĥ Estimated quantity
hþ Pseudo-inverse operator
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