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Abstract 

Pressurized bladder style in-line hydraulic noise suppressors are commonly used in industry for broadband pressure 
ripple reduction, but predictive models for these suppressors are not available in the literature. To address this short-
coming, a linear acoustic model is developed for a commercially available suppressor, in which the acoustic field is 
analyzed through expansion into multiple radial modes. Bladder mass, perforate layer impedance, and inlet/outlet exten-
sions are included in the model, and transmission loss predictions are validated against experimental data. The present-
ed theoretical model has been shown to correspond well to experimental data at frequencies below about 1300 to 2300 
Hz, depending on system and precharge pressures. In addition, simulations show that small variations in bladder pre-
charge temperature or rubber bladder mass do not significantly affect transmission loss. While inclusion of the perforate 
layer significantly affects modeling results, it is observed that better perforate layer models or experimental data are 
needed for accurate system modeling. 
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1 Introduction 

Pressurized bladder devices have been used in hy-
draulic equipment for many years for energy storage 
and fluid noise mitigation. Such devices usually em-
ploy nitrogen as the gas of choice, filling a bladder-
backed cavity to a specified precharge pressure before 
the hydraulic system is brought to working pressure. 
For example, side branch accumulators contain a gas 
pressurized bladder, and are commonly used to store 
energy, compensate for fluid volume changes, or re-
duce shock loads. These devices act as low-pass filters 
of acoustic noise as well. A few studies examine noise 
mitigation from accumulators, including water hammer 
suppression (Rabie, 2007) and an active accumulator to 
attenuate specific frequencies of excitation (Yokota et 
al., 1996). While some device sizing and precharge 
recommendations are available from general hand-
books and literature from the manufacturer or distribu-
tor, and the use of accumulators is quite common in 
industry to relieve fluid noise, no published noise con-
trol models have been found. In contrast, in-line blad-
der devices are developed for the explicit purpose of 
noise control (Dexter, 1985; Jenski and Shiery, 1998;   
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Shiery, 1998), usually broad-band. At least one type 
(Arendt, 1988) is commercially available, but the mod-
eling situation is much the same. Limited test data 
(Wilkes, 1995) have been presented for the commercial 
device, but frequency domain noise control characteris-
tics have been difficult to find, and no modeling data 
have been uncovered in this respect. 

Due to the wide range of applications and operating 
conditions found in hydraulic equipment, both linear and 
nonlinear behavior could potentially be expected from a 
silencing device. For this study, only linear response will 
be considered, corresponding to lower amplitude noise 
excitation. In this case, a number of models are available 
which characterize silencers of similar geometry for air 
ducting applications. Some finite element and boundary 
element models of these silencers have been developed 
(Bilawchuk and Fyfe, 2003; Denia et al., 2007; Lee et 
al., 2006; Selamet and Ji, 1999), often in conjunction 
with modal expansion solutions, which are also preva-
lent. These latter models provide the basis for the present 
model of a bladder style silencer. Among the less com-
plex models, Peat (1991) finds a transfer matrix for a 
liner element, and other researchers produce transmis-
sion loss predictions for a simple lined expansion cham-
ber configuration (Kirby, 2001; Xu et al., 2003). More 
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complex geometry can be considered by explicitly ex-
amining the effects of a perforated annulus (Selamet et 
al., 2004). The perforated annulus is modeled as an 
impedance layer in this type of analysis; and although 
theoretical models have been developed, such as in 
chapter 9 of Bies and Hansen (2009), the published 
silencer models have instead relied on experimental 
impedance studies (Sullivan and Crocker, 1978), some 
of which include the effects of grazing flow (Dickey et 
al., 2001) or resistive backing materials (Kirby and 
Cummings, 1998; Lee et al., 2006). Several studies have 
examined silencers with both perforate layers and in-
let/outlet extensions as well (Denia et al., 2007; Selamet 
and Ji, 1999; Selamet et al., 2005). Additional studies 
have included mean flow in the liner (Cummings and 
Chang, 1988; Kirby and Denia, 2007; Nennig et al., 
2010), which is only applicable to fibrous or porous 
liners. Panigrahi and Munjal (2005) give a brief over-
view of some of the varying levels of model complexity. 

Many aspects of these models are applicable to a 
bladder style hydraulic suppressor, but important differ-
ences exist. First, the hydraulic suppressor is under sig-
nificant pressure, and the system pressure affects the 
response of the compressed gas. Second, while the air 
silencers have a porous or fibrous liner which primarily 
adds damping to the system, the compressed gas behind 
the suppressor bladder is expected to add significant 
compliance but not necessarily damping. Both types of 
devices may have a perforated annulus which adds some 
acoustic or structural value, but additionally the hydrau-
lic suppressor contains the physical bladder layer which 
separates the compressed gas from the hydraulic fluid. 
The rubber bladder and perforate layer may add damp-
ing to the system. Finally, although many air silencer 
models include the mean flow speed as a Mach flow 
number, the flow speed in a hydraulic suppressor is 
generally much lower than the speed of sound in hydrau-
lic fluid, and can be ignored. The model developed in 
this study is similar to Selamet et al. (2005). The notable 
differences are a different mode matching scheme as 
discussed in the derivation, the addition of a mass model 
to estimate the rubber bladder influence, and the exami-
nation of a theoretical perforate impedance model since 
experimental impedance data are not available. The 
effects of temperature, bladder density, and perforate 
impedance are studied, and results are experimentally 
validated. 

2 Model Geometry 

The various components of the suppressor under 
consideration are shown in Fig. 1. There is an inner 
cylindrical flow path; a coarse perforation layer (hydrau-
lic fluid travels through this layer to reach an outer 
chamber); a spacer in the form of a compression spring; 
and a thin, finely perforated layer. Outside the perforated 
section, a rubber bladder separates the hydraulic fluid 
from the pressurized nitrogen gas in the outermost sec-
tion of the chamber. The thin perforate layer and rubber 
bladder are shown removed from the main assembly in 
part (a) of the Fig. 1; the spring separator is omitted in 
part (b). Dimension labels are shown in Fig. 2. The inlet 

and outlet pipe radius is r0. The length of the suppressor 
is L plus inlet and outlet extension lengths L1 and L2. 
When the bladder is precharged to pressure Pc but the 
hydraulic system is unpressurized, the gas expands so 
that the bladder reaches the thin perforate layer at r1; 
when the hydraulic system is pressurized to Ps, the gas 
compresses further and is constrained between the rigid 
outer shell at r2 and the rubber bladder at r3. 

 

 

Fig. 1: Suppressor features. (a) Photograph of device 
cross section with thin perforate layer and rubber 
bladder removed from main body; (b) Modeling di-
agram showing thin perforate layer and bladder in 
place 

 

 

Fig. 2: Suppressor geometry with dimensions for (a) un-
pressurized system, (b) pressurized system. When 
the system is not pressurized, the bladder is pushed 
against the thin perforate layer at r1; when system 
pressure is applied, the bladder moves to equilibri-
um at r3 

Bladder radius r3 is determined by the suppressor 
geometry, as well as charge and system pressures Pc 
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and Ps. When the bladder is precharged with nitrogen, 
the gas volume is known to be 

 
 2 2

0 T 2 1V L r r 
, (1) 

where 

 T 1 2L L L L   . (2) 

The mass of the nitrogen is found using the ideal 
gas law: 

 N c 0

0

M PV
m

RT
 , (3) 

for molar mass MN, temperature T0 in Kelvins, and 
universal gas constant R. At full system pressure Ps and 
working temperature T, the nitrogen mass remains 
constant, and the bladder radius is found by solving 

  2 2
T 2 3

N s

mRT
V L r r

M P
   , (4) 

from which r3, the bladder radius, may be found. For 
this analysis to be valid, Ps must be greater than Pc. 

The density f and sound speed cf in the hydraulic 
fluid are assumed to be known and not to change with 
varying pressure or temperature. Additionally, the 
bladder at r3 is treated as a limp mass sheet with sheet 
density σs calculated from the bladder mass, length, and 
diameter at Ps. For bladder mass mb distributed evenly 
over length LT, 

 b
s

3 T2

m

r L



 . (5) 

3 Acoustic Propagation Model 

For modeling purposes, the suppressor is divided 
into three axial regions, as shown in Fig. 3. Region 1 
includes the upstream (1U) and downstream (1D) 
pipes; region 2 represents the main body of the sup-
pressor section, including the main hydraulic fluid flow 
path as well as the thin perforate layer, rubber bladder, 
and compressed nitrogen gas; and region 3 contains the 
upstream (3U) and downstream (3D) extension sec-
tions, including hydraulic fluid, rubber bladder, and 
compressed nitrogen layers. In general, the regions are 
referred to by number, with the U or D added only if 
the quantity differs between the upstream and down-
stream portions. The axial references 0x   and x L  
are also shown, with the positive x direction facing 
right. As illustrated in Fig. 4, each region R has for-
ward and reverse travelling modes with unique modal 
amplitudes AR,n and BR,n for N modes, where n = 0 to 
N - 1. For waves in regions 1U, 2, and 3U, modal am-
plitudes represent their values at 0x  ; for regions 1D 
and 3D, they are found at x L . 

The elasticity of the hydraulic fluid and nitrogen 
gas (the “liner”) are represented by Lamé parameters λf 
and λL, respectively. Shear moduli μf and μL are both 
zero for these materials, thus making λf and λL equiva-
lent to the bulk moduli of the propagation media. This 

also means that only longitudinal waves will propagate 
in the suppressor. Sound speeds are defined as: 

 f
f

f

c



 , (6) 

 L
L

L

c



 . (7) 

And for angular frequency ω, wavenumbers k are 
defined as: 

 f L
f L

,k k
c c

 
  . (8) 

 

Fig. 3: Model geometry with region labels 

 

Fig. 4: Model geometry with wave pressure amplitude 
labels 

For each propagation mode n and region R, the 
wavenumbers may be decomposed into axial and radial 
components, represented by subscripts x and r. These 
relate to the wavenumbers by 

 2 2 2
f Rx,n Rrf,nk k k   (9) 

 and 2 2 2
L Rx,n RrL,nk k k  . (10) 

Notably, in the suppressor, the axial wavenumber is 
the same in the hydraulic fluid as in the nitrogen, while 
the radial wavenumber differs in general, resulting in 
an additional subscript f or L to denote the medium. 
The acoustic displacements uRr,n and uRx,n in the respec-
tive radial and axial directions, are for the forward 
travelling modes given in Eq. 11 to 20. Ji and Yi are ith 
order Bessel functions of the first and second kind, 
relative complex amplitudes of coefficients y1,n to y5,n 
and y6,n to y9,n are unique for each mode n in regions 2 

and 3, and x = x' - L. Similarly, acoustic pressures pR,n 
are given in Eq. 21 to 25. 

   1x,n-ik x iωt
1Ur,n 1rf,n 1 1rf,n 1U,nJ e eu k k r A  , (11) 

   1x,n-ik x' iωt
1Dr,n 1rf,n 1 1rf,n 1D,nJ e eu k k r A  , (12) 
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Because the flow speed in the hydraulic line is neg-
ligible compared to the speed of sound in hydraulic 
fluid, the values for the reverse travelling modes in 
Eq. 11 to 24 can be found by replacing AR,n with BR,n; 
and by replacing all instances of kRx,n with -kRx,n. To 
differentiate, the displacement and pressures will have 
a superscript plus and minus added when needed to 
indicate modes travelling in the positive and negative 
axial directions. 

Each mode n in a region R is characterized by a 
unique axial wavenumber kRx,n. To find the wave-
number, an eigenequation must be solved in each re-
gion. For region 1, the wavenumber must satisfy a zero 
radial displacement condition at the outer wall; that is, 

 0
1r,n r=r

0u    . (26) 

Because of the negligible mean flow speed, the 
eigenequation has solutions of Rx,nk , so it is sufficient 

to solve only for positive travelling modes. In region 2, 
five radial boundary or continuity conditions must be 
met, resulting in five equations that must be solved 
simultaneously to find the wavenumber k2x,n as well as 
the relative amplitudes of y1,n through y5,n. The condi-
tions and corresponding equations are: zero displace-
ment at the outer wall, 

 
2

2r,n r=r
0u    , (27) 
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continuity of displacement at the bladder, 

 
3 3

2r,n 2r,nr=r - r=r +
u u       , (28) 

(r3- and r3+ representing the limits as r approaches r3 
from the negative and positive directions), a force 
balance at the bladder, 

 
   

3 3

3

2 2 s 2rr=r - r=r +

2
2 s 2r r=r +

p p u

p u



 

 

   


, (29) 

continuity of displacement at the perforate layer, 

 
1 1

2r,n 2r,nr=r - r=r +
u u       , (30) 

and an impedance condition at the perforate layer, 

 
1 1 1

2,n 2,n p 2r,nr=r + r=r - r=r
p p Z u            , (31) 

where Zp is the measured or calculated acoustic imped-
ance across the perforate layer. As no experimental 
studies were found, the perforate impedance was calcu-
lated using Eq. 21 and 29 of Bies and Hansen (2009). 
Omitting terms not used in the present analysis, ZP is 
calculated as 

 
 2

P P f f

f

f

1
+ i

16
tan 1 0.43

3

Z a R c
F

k a a
k w

q

 



 

 
       

 (32) 

where 

 
2

f f

P 102 2

4
+0.288log

c kd w a
R

a a h






 
  
  

, (33) 

 
f

2
d



 
 , (34) 

 and max ,
2

w
h d  

 
. (35) 

As the impedance formulation was derived with 
gaseous flow through larger orifices in mind, there is 
some uncertainty as to its applicability to the present 
case. Of particular note is the log term of RP, which is 
derived from Eq. 23 of Morse and Ingard (1968). 
Morse and Ingard specify that the perforated plate 
should be much thinner than the perforate hole radius, 
a condition which is not met in the current case. Thus, 
it is uncertain whether the impedance calculation used 
will be sufficiently accurate. 

Solving Eq. 27 to 31 simultaneously for eigenval-
ues k2x,n gives the acoustic pressure and displacement 
for each mode in region 2. Region 3 has a similar for-
mulation, but does not include the perforate layer: 

 
2

3r,n r=r
0u    , (36) 

 
3 3

3r,n 3r,nr=r - r=r +
u u       , (37) 

 or  
3 3

2
3 3 s 3rr=r - r=r +

p p u     . (38) 

Given a finite number of radial modes N, the modal 
amplitudes AR,n and BR,n can be found by simultaneous-
ly solving a number of equations which provide for 
pressure and axial displacement continuity at the re-

gion boundaries. The number of equations is reduced 
by letting all B1D,n= 0 due to an assumption of an ane-
choic termination. Additionally, it is assumed that 
incoming evanescent waves A1U,n have zero amplitude 
at x = 0, with the exception of excitation plane wave 
A1U,0, which is the reference input and is arbitrarily set 
to unity. To further simplify, the rigid region 3 wall 
boundaries at x = -L1 and x = L + L2 allow for the im-
mediate substitutions 

 3x,n 1-2ik L
3U,n 3U,neA B , (39) 

 3x,n 2-2ik L
3D,n 3D,neB A . (40) 

The other axial equations are in the form of area in-
tegrals: 

 
 

 

a,m

a,m

r N 1

1U,n 1U,nx=0 x=0
n 00

r N 1
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n 00

,

p p rdr

p p rdr


 




 



      

       




 (41) 
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n 00

,

p p rdr
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
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


 



      

       




 (42) 
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
 



      

       
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 (44) 
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
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
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
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
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
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


  

 (49) 

where m = 0 to M-1, and M = N. It may be noted here 
that in addition to the direct integration method shown 
in Eq. 41 through 49, weighted integral methods are 
also commonly found in the literature. As successful 
examples of both methods of mode matching can be 
easily found (Denia et al., 2007; Nennig et al., 2010; 
Selamet et al., 2004; Selamet et al., 2005; Xu et al., 
2003), it is simply noted that the chosen method was 
convenient for the present analysis. 

The solution of Eq. 41 to 49 gives all the unknown 
complex modal amplitudes. Using the known excitation 
amplitude and the calculated transmitted wave ampli-
tude A1D,0, acoustic transmission loss (TL) can be found 
as 

  2

10 A10logTL T  , (50) 

where 

 1D,0
A

1U,0

A
T

A
 . (51) 

4 Experiment 

To validate the analytical model predictions, a 
commercially available suppressor, Wilkes & McLean 
model WM-5081 was purchased and tested. A model 
WM-3081 was purchased and deconstructed to deter-
mine internal dimensions; it is rated for a lower pres-
sure than the WM-5081 and therefore has a different 
casing, but the two models have the same internal 

structure as far as could be determined. The WM-5081 
device was non-destructively disassembled, and all 
measurable dimensions were consistent with the WM-
3081 device. Specifically, the bladder mass and internal 
shell radius could not be measured without potentially 
damaging the device, but there is no obvious cause to 
believe that they differ between devices. The relevant 
dimensions and measurements for the suppressor are 
found in Table 1, including bladder measurements for 
finding σs. Additional dimensions were measured for 
the thin perforated sheet, shown in Table 2, in order to 
estimate Zp. The hydraulic fluid used in these tests has 
density f = 866 kg m-3 and sound speed cf = 1400 m s-1. 
The kinematic viscosity of the fluid is published to be 
46.0 cSt at 40°C and 6.8 cSt at 100°C and a linear fit is 
taken for experimentally measured temperatures. The 
frequencies of interest for model validation are from 0 
to 2000 Hz but data are collected up to 5400 Hz for 
further validation and to observe possible trends at 
higher frequencies. The test setup and methodology are 
detailed in the following: 

Table 1: Suppressor dimensions 
Inlet Pipe Radius r0 (m) 0.0103 

Uncompressed Inner Radius r1 (m) 0.0173 

Outer Radius r2 (m) 0.0262 

Length L (m) 0.0450 

Inlet extension L1 (m) 0.0185 

Outlet extension L2 (m) 0.0185 

Bladder total mass (kg) 0.038 

Bladder total length (m) 0.112 

Table 2: Perforate layer dimensions and features 
Perforate layer thickness w (m) 0.0006 

Perforate hole radius a (m) 0.0005 

Perforate hole separation q (m) 0.0020 

Perforate hole area fraction F 0.227 
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Fig. 5: Schematic of test setup for measurement of fluid acoustic properties of a suppressor under test 

 

4.1 Test Setup 

The test rig at the Georgia Institute of Technology is 
built in accordance with the ISO-15086-2 (2000) stand-
ard. A schematic of the test rig can be seen in Fig. 5. 
Flow is provided to the system at 40 liters per minute 
from a 9 piston axial piston pump driven by a variable 
frequency drive (VFD). Upstream of the test section, a 
partially closed needle valve provides broadband noise 
to the test section. The test section includes two rigid 
pipe sections of 0.0191 m (0.75 in) inner diameter with 
the test device between them. The system has six piezoe-
lectric pressure sensors, labeled in Fig. 5 as x1 to x6. 
Each piezoelectric sensor is mounted flush with the 
inside of the test section. The data from each sensor are 
collected by a data acquisition card (DAQ) mounted 
inside of a PC. Data are captured at 10800 sam-
ples/second and each sample record is 5120 samples 
long. Every test run is a vector average of 100 sample 
records. Two static pressure sensors are mounted in the 
system, one immediately upstream of the test suppressor 
and the other immediately downstream of the test sup-
pressor. The difference between the sensors is the pres-
sure loss across the device, which is found to be within 
the sensor resolution of 70 kPa (10 psi). A termination 
suppressor is connected downstream of the test section, 
and isolates the test section from downstream noise, 
ensuring high coherence in the transfer functions be-
tween the piezoelectric sensors. A second needle valve is 
located downstream of the termination suppressor. This 
needle valve is used to load the system to a given static 
pressure. A thermocouple measures the temperature of 
the hydraulic fluid for each test; the temperature of the 
compressed gas in the test suppressor is estimated to be 
approximately the temperature of the hydraulic fluid 
when the gas is added. 

4.2 Test Method 

The upstream and downstream wave fields must be 
known to calculate the transmission loss across the test 
suppressor. Figure 5 shows the wave fields in the test 
section but for testing purposes, only the plane wave 
modes in the upstream and downstream pipes are needed 
 

 

To avoid the half-wavelength indeterminacy that is 
present with two sensors, the multi-point method with 
three sensors is used (Johnston et al., 1994). Transfer 
functions are used to compare the pressure between 
each sensors, eliminating the need for absolute calibra-
tion. 

A least-squares regression of the sensor data ap-
proximates the wave amplitudes of both the upstream 
and downstream test sections. This method is further 
discussed by Earnhart and Cunefare (2012). Acoustic 
pressure p1 and volume velocity Q1 at the upstream 
port are related to p2 and Q2 at the downstream ports by 
a transfer matrix with elements tij: 

 1 11 12 2

1 21 22 2

p t t p

Q t t Q

     
    

     
. (52) 

Pressure and velocity can be calculated from the 
wave amplitudes using the equations 

 
1 1U,0 1U,0 2 1D,0 1D,0

1U,0 1U,0 1D,0 1D,0
1 2

0 0

p A B p A B

A B A B
Q Q

Z Z

   
 

 
, (53) 

where AR,0 and BR,0 are the forward-and reverse-
traveling wave amplitudes as defined in the theoretical 
model, and where 

 f f
0 2

0

c
Z

r




  (54) 

is the acoustic impedance, ρf is the density of the fluid, 
cf is the speed of sound in the fluid, and r0 is the inner 
radius of the pipe. 

Using Eq. 52 to 54, the elements of the transfer ma-
trix can be calculated and placed into the transmission 
loss equation: 

 12
10 11 0 21 22

0

1
20log

2

t
TL t Z t t

Z
     (55) 

Equation 55 can be simplified by assuming that the 
test suppressor is geometrically symmetric end to end, 
and that the system is assumed to be reciprocal, result-
ing in 

Component
Under Test

A1U,0
B1U,0

A1D,0
B1D,0

Termination
Suppressor

x1x2x3

DAQ
PC

VFD

Signal Conditioners

x4 x5 x6
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2
11

11 22 21
12

1
,

t
t t t

t


  . (56) 

Applying Eq. 56 to Eq. 52 to 55 yields the new TL 
equation 

 
2 2

1U,0 1D,0
10

1U,0 1D,0 1U,0 1D,0

=20log
A B

TL
A A B B




. (57) 

5 Results 

5.1 Modeling Results 

As several new features have been added to existing 
methods to create the present model, it is of interest to 
determine their effect on transmission loss performance. 
First, the mass of the rubber bladder is considered. The 
total mass contained in the expansion area is uncertain; 
the expansion length LT is 0.73 times the total bladder 
length, but the effective mass of the bladder will be less 
than this fraction because the bladder thickens into rings 
at each end, resulting in a nonuniform mass distribution 
per length. It is estimated that using 0.5 times the meas-
ured bladder mass, 0.019 kg, in Eq. 5 will approximately 
account for the bladder sheet density. To test the sensi-
tivity of this estimate to errors, simulations have been 
run for mb equal to 0.019, 0.027, and 0.038 kg, as shown 
in Fig. 6. Although differences of around 4 dB are ob-
served above 3000 Hz, the differences are kept below 
about 1.5 dB below 2000 Hz. The results are therefore 
relatively insensitive to changes in bladder mass, espe-
cially at low frequencies; and any error in the bladder 
estimation should not cause significant error in the 
transmission loss predictions. 

 

Fig. 6: Study of bladder mass, Ps = 10.3 MPa, Pc = 5.2 
MPa, no perforate layer. ▬ mb = 0.019 kg; ▬ ▬ 
mb = 0.027 kg; ▬ ▪ mb = 0.038 kg 

In addition, temperature affects the compressibility 
of the nitrogen and may have important effects on 
transmission loss. Although the system temperature 
during testing is measured, there is some uncertainty in 
the temperature when the bladder is initially pressur-
ized up to Pc, which affects the calculated mass of the 
nitrogen and bladder radius r3. For a system running at 
36°C, precharge temperatures of 20°C and 40°C are 
simulated in Fig. 7 to determine the sensitivity to pre-

charge temperature. As can be observed, the differ-
ences are minimal over the whole range of 0 to 5000 
Hz, and it is thus concluded that uncertainty or reason-
able variation in bladder precharge temperature will 
not significantly affect transmission loss predictions. 

 

Fig. 7: Temperature study, Ps = 10.3 MPa, Pc = 5.2 MPa, 
no perforate layer, system temperature = 36°C. Ni-
trogen precharge temperature: ▬ 20°C; ▬ ▬ 
40°C 

Finally, sensitivity to the perforate layer is investi-
gated. While the validity of the current perforate im-
pedance model is called into question, the model may 
nevertheless give some indication of the importance 
and probable effects of the perforate layer. Two simu-
lations are shown in Fig. 8, where the only difference is 
inclusion of the perforate layer. The difference between 
the models is clear, reaching 5 dB at a frequency of 
about 1500 Hz, and continuing to show significant 
deviation at higher frequencies. To help determine the 
validity of the current perforate model, results are 
shown with and without the perforate layer in the ex-
perimental validation section.  

 

Fig. 8: Perforate layer impedance study, Ps = 10.3 MPa, 
Pc = 5.2 MPa. ▬ No perforate layer; ▬ ▬ In-
cludes perforate layer impedance 

5.2 Experimental Validation 

To validate the model experimentally, tests were 
run on the experimental rig at various system and blad-
der precharge pressures. Fig. 9 shows the validation for 
a system pressure of Ps = 10.3 MPa and a precharge 
pressure of Pc = 2.1 MPa. In Figs. 10 and 11, Ps is 
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maintained, but Pc is increased to 3.1 MPa, and to the 
manufacturer recommended 0.5 Ps, or 5.2 MPa, respec-
tively. In Fig. 12, the Pc ratio is maintained at 0.5 Ps, 
with Ps being increased to 20.7 MPa, and Pc at 
10.3 MPa. Dips in measured transmission loss in all 
three cases are seen around 500 and 900 Hz; these are 
artifacts of the test setup and should not be observed in 
the model predictions. 

 

Fig. 9: Ps = 10.3 MPa, Pc = 2.1 MPa. x Experimental 
data; ▬ Simulation, no perforate layer; ▬ ▬ Sim-
ulation, includes perforate layer impedance 

 

Fig. 10: Ps = 10.3 MPa, Pc = 3.1 MPa. x Experimental 
data; ▬ Simulation, no perforate layer; ▬ ▬ Sim-
ulation, includes perforate layer impedance 

 

Fig. 11: Ps = 10.3 MPa, Pc = 5.2 MPa. x Experimental 
data; ▬ Simulation, no perforate layer; ▬ ▬ Sim-
ulation, includes perforate layer impedance 

 

Fig. 12: Ps = 20.7 MPa, Pc = 10.3 MPa. x Experimental 
data; ▬ Simulation, no perforate layer; ▬ ▬ Sim-
ulation, includes perforate layer impedance 

In Fig. 9 to 12, the simulation with the perforate 
layer shows less agreement with low frequency exper-
imental data than the simulation that omits the perfo-
rate layer. Also, at low frequencies (below 2000 Hz) 
better agreement is observed with experimental data 
when the precharge pressure is lower (Fig. 9 to 11); or, 
considering the same relative precharge percentage, 
when the total pressure is higher (Fig. 11 and 12); 
though with the small number of data sets this trend 
should perhaps be treated with some caution. Notably, 
experimental agreement becomes very poor at the 
predicted transmission loss dip around 2500 Hz, and 
generally above 2000 Hz, especially as the predicted 
transmission loss increases. The lack of an experi-
mental transmission loss dip around 2500 Hz could be 
indicative of insufficiently modeled system damping; 
the large divergence between model and experiment at 
higher frequencies may indicate flanking transmission 
paths or unmodeled phenomena that become signifi-
cant at higher frequencies. This may indicate a need for 
improved perforate layer models, or for more complex 
models of the rubber bladder behavior. Nevertheless, 
the model is accurate within 5 dB up to about 1300 Hz 
for all tests with system pressures of at least 10.3 MPa 
and bladder precharge pressures up to 0.5 times system 
pressure, and up to about 2300 Hz for three of the cas-
es. This makes it useful for at least the first several 
harmonics of many axial piston pumps, which are 
commonly used in the hydraulics industry. 

6 Conclusions 

The presented theoretical model has been shown to 
correspond well to experimental data at frequencies 
below about 1300 to 2300 Hz, depending on system 
and precharge pressure conditions. This frequency 
range is relevant to noise sources in many hydraulic 
power applications. In addition, simulations show that 
the impedance of the perforate layer affects transmis-
sion loss much more than small variations in bladder 
precharge temperature or variations in rubber bladder 
mass. However, since better experimental agreement is 
obtained when the model omits the perforate layer, it is 
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concluded that better perforate layer impedance models 
or experimental data are still needed. Additionally, 
changes to include the stiffness of the rubber bladder 
might improve high frequency experimental correla-
tions. 

Nomenclature 

AR,n Forward travelling modal am-
plitude coefficient for mode n in 
region R 

 

BR,n Reverse travelling modal ampli-
tude coefficient for mode n in 
region R 

 

F Perforate hole area fraction  
Ji Bessel function of the first kind, 

of order i 
 

L Length of main suppressor 
cavity 

[m] 

L1, L2 Length of inlet, outlet extensions  [m] 
LT Length of main suppressor 

cavity plus inlet and outlet 
extensions  

[m] 

M Maximum value of m  
MN Molar mass of nitrogen  [kg mol-1] 
N Maximum number of modes 

considered in simulation 
 

Pc Bladder precharge pressure  [Pa] 
Ps Hydraulic system pressure  [Pa] 
Q1, Q2 Average acoustic volume veloc-

ities at upstream, downstream 
ports  

[m3 s-1] 

R Region number, as defined in 
Fig. 3 

 

R Universal gas constant  
T Working system temperature  [C] 
T0 Precharge nitrogen temperature  [C] 
TA Acoustic transmission coefficient  
TL Acoustic transmission loss  [dB] 
UU, UD Integrals used in some mode 

matching equations 
 

V0 Original nitrogen volume  [m3] 
Yi Bessel function of the second 

kind, of order i 
 

Z0 Acoustic impedance in pipe  [kg m-4 s-1]
Zp Perforate layer impedance  [kg m-4 s-1]
a Perforate hole radius  [m] 
cf, cL Sound speed in hydraulic fluid, 

nitrogen  
[m s-1] 

d Boundary layer thickness  [m] 
h Length parameter  [h] 
kf, kL Wavenumber in hydraulic fluid, 

nitrogen  
[m-1] 

kRrf,n, 
kRrL,n 

Radial decomposition of wave-
number in hydraulic fluid or 
nitrogen, for mode n in region R  

[m-1] 

kRx,n Axial decomposition of wave-
number for mode n in region R  

[m-1] 

mb Bladder mass  [kg] 
m Total nitrogen mass  [kg] 
m Integration iterator for mode 

matching 
 

n Mode number subscript  
p1, p2 Average acoustic pressures at 

upstream, downstream ports  
[Pa] 

pR,n Acoustic pressure of mode n in 
region R  

[Pa] 

q Perforate hole separation distance  [m] 
r0 Inlet and outlet pipe radius  [m] 
r1 Perforate layer radius  [m] 
r2 Inner radius of outer shell  [m] 
r3 Radius of bladder when system 

is pressurized  
[m] 

ra, rb, rc Iterated radii in mode matching 
integrals  

[m] 

tij Transfer matrix coefficients  
uRx,n, 
uRr,n 

Axial, radial acoustic displace-
ment of mode n in region R  

[m s-1] 

w Perforate layer thickness  [m] 
x Axial coordinate [m] 
x’ Adjusted axial coordinate  [m] 
x1 - x6 Pressure transducer labels  
y1,n - 
y9,n 

Relative amplitude coefficients 
of displacement and pressure 
terms 

 

λf, μf Lamé parameters of hydraulic 
fluid  

[Pa] 

λL, μL Lamé parameters of nitrogen  [Pa] 
μ Fluid dynamic viscosity  [Pa s] 
ρf, ρL Density of hydraulic fluid, 

nitrogen  
[kg m-3] 

σs Sheet density of bladder  [kg m-2] 
ω Angular frequency of acoustic 

signal  
[s-1] 
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