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Abstract

The thermophysical properties of hydraulic oil, density, viscosity, thermal
expansion, and compressibility, are pivotal factors influencing the functioning
of hydraulic systems. With the multitude of hydraulic oils available for use,
conducting numerous experiments to determine their specifications under
different temperatures and pressures, or devising new empirical correlations,
becomes a costly and time-consuming endeavour. Therefore, it becomes
imperative to establish an efficient and comprehensive model based on mini-
mal experimental data. This study adopts Physics Informed Neural Networks
(PINNs) to design new correlation model to predict variations in hydraulic
oil specifications using only 30 empirical data sets as a best-case scenario,
enabling the prediction of 10,000 points spanning temperatures (20–100)◦C
and pressures (0–300) bar. The results derived from the PINN model exhibit
favourable high accuracy, reaching up to 99.96% when compared to empirical
correlations results.
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1 Introduction

The majority of currently used hydraulic oils are derived from mineral oil,
chosen primarily for their cost-effective performance [1]. Hydraulic oil serves
the crucial function of facilitating power transmission in hydraulic systems,
ensuring the efficient operation and durability of components like pumps and
actuators that experience relative movement at high speeds, pressures, and
temperatures. When selecting mineral oil for a hydraulic system, it is essential
to consider specific system requirements and operating conditions, including
temperature, pressure, load, speed, and equipment type. The density and
viscosity of hydraulic oil play a pivotal role in pump efficiency, contami-
nation control, pressure loss, leakage prevention, lubrication, and addressing
challenges like oil cavitation [2–5]. Additionally, hydraulic oil specifications,
including isobaric thermal expansion and isothermal compressibility, are
vital for maintaining overall system performance efficiency and temperature
management.

Since decades, several empirical correlation equations have been devel-
oped by researchers for the purpose of determining thermophysical properties
of hydraulic oils with temperature-pressure relationship. However, these
correlations need for extensive laboratory experiments spanning the entire
specific range of temperature and pressure. Therefore, these correlations fail
to predict properties at wider range of operating conditions but work well
in the limited circumstances and types where the data used to develop them
came from.

Therefore, to avoid the costs of experiments and time, soft computing
methods have been used to predict the thermophysical properties of mineral
oil. Among these methods, we can point to the classical artificial neural net-
work (ANN) as the most widely alternative methods. In this regard, numerous
studies have been performed on specification of various fluids by employing
neural networks. Some of the studies worth mentioning are summarized in
Table 1. It can be classified the oils that have been studied into three groups.
Lubricant oils, heavy oils, and crude oils.

For lubricant oils, Afrand et al. [6], Haldar et al. [7], and Loh et al. [8] pro-
posed neural networks for the purpose of improving viscosity prediction of
lubricating oils and compared them with experimental results or with empiri-
cal correlations. For example Afrand et al. propos an optimal artificial neural
network (ANN) to predict the relative viscosity of MWCNTs-SiO2/AE40
nano-lubricant using experimental data. The ANN model is found to be more
accurate compared to the empirical correlation, with a deviation margin of
1.5% compared to 4% in the correlation.
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Regarding to heavy oil, Pan et al. [9], and Alade et al. [10] studied the
feasibility of using neural networks to predict the viscosity of heavy oils. For
instance, Pan et al. present a method based on the Process Neural Network
(PNN) to predict the viscosity of heavy oil in high water cut stage. Their
method takes into account input parameters such as temperature, water cut,
and API to accurately measure the viscosity of heavy oil. They concluded
that the reliability and accuracy of the PNN model for predicting oil vis-
cosities is better compared to traditional methods, with small computation
errors.

Concerning crude oils, Omole et al. [11], Torabi et al. [12], Makinde
et al. [13], Lashkenari et al. [14], Ghorbani et al. [15], Hadavimoghaddam
et al. [16], Gao et al. [17] implemented machine learning for crude oils.
Hadavimoghaddam et al. implemented six machine learning models to pre-
dict dead oil viscosity with 2247 pressure-volume-temperature (PVT) data
were used for developing and testing these models, covering a wide range of
viscosity data from light intermediate to heavy oil and found that the Super
Learner model outperformed other machine learning algorithms and common
correlations based on metric analysis. It can potentially replace empirical
models for viscosity predictions on a wide range of viscosities. While Gao et
al. proposed a method for predicting the viscosity of heavy crude oil diluted
with lighter oils using machine learning techniques. It collects 156 viscosity
datasets from openly published literature and compares the performance and
accuracy of the proposed model with existing empirical correlations and
experimental values. The new viscosity model outperforms existing empirical
correlations and shows higher accuracy in predicting the viscosity of diluted
heavy crude oil.

The primary findings from all these research studies indicate that they
are exclusively founded on data-driven methodologies which mean there
is no physic help training their neural networks. Conversely, a review
of the literature unveils the absence of any documented endeavours to
model the thermophysical properties of hydraulic oils used within hydraulic
systems, such as HLP and HM (ISO Grade 32, 46 and 68), using tech-
niques like physics-informed neural networks or even traditional neural
networks.

Therefore, the main purpose of this study is to fill this research gap and
design a new correlation model based on Physics Informed Neural Networks
employing a few amounts of empirical data to estimate thermophysical
properties of hydraulic oils, making it easily applicable in hydraulic oils
fields.
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Table 1 The summary of the fluids data set and its ranges of temperature and pressure used
in neural networks
Authors Fluid Data Set Temperature◦C Pressure Bar
Omole et al. (2009) Crude Oil 32 67.7 – 112.2 98 – 334
Torabi et al. (2011) Crude Oil 5 groups 52.2 – 131.11 220 – 367.5
Makinde et al. (2012) Crude Oil 105 52 – 142.7 25.8 – 429
Lashkenari et al. (2013) Crude Oil 720 – –
Afrand et al. (2016) lubricants 48 25 – 60 –
Ghorbani et al. (2016) Crude Oil Over 600 37.77 – 121.11 110 – 4790
Pan et al. (2018) heavy oil 17 19 – 77 –
Alade et al. (2019) heavy oil 2 groups 70 – 150 0 – 70
Loh et al. (2020) lubricants 3 groups 10 – 100 0
Haldar et al. (2020) lubricants 2 groups 10 – 80 –
Hadavimoghaddam et al. (2021) Crude Oil 2247 40 – 233.6 –
Gao et al. (2022) Crude Oil 156 20 – 60 –

2 Hydraulic Oil Density and Viscosity as a Function of
Temperature and Pressure

2.1 Oil Density

Witt has proposed a complex and nonlinear relationship that accurately
relates the density of the oil to both pressure and temperature. This relation-
ship provides a reliable method for determining the density of hydraulic oil
under varying pressure and temperature conditions [18–20]. If density curve
is concave or straight, the relationship is Equation (1) or, if the curve is convex
or straight, the relationship is Equation (2):
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Nevertheless, for a sufficiently restricted range of pressure, the densi-
ties of most liquids vary more with temperature than with pressure such
that pressure can be omitted from the analysis [21]. For this reason, the
density of liquids often is assumed to be constant with respect to pressure.
A good approximation for the temperature dependence of the density at
ambient pressure or restricted range of pressure, is the linear expression,
Equation (3), [22].

ρo = ρre (1− αp(Tre − To)) (3)

Furthermore, despite being an approximation, Equation (4) can be derived
as a straightforward formula for density concerning temperature and pres-
sure when assuming isobaric coefficients of thermal expansion and thermal
compression as constants of 7 × 10-4 1/K and 6.0606 × 10−10 1/pa
respectively [23]. This derivation is based on fundamental principles of
thermodynamics [21].

ρ = ρo e
−αp(T−To)+KT (p−po) (4)

2.2 Oil Viscosity

The dynamic viscosity of an oil undergoes substantial changes in response
to temperature variations. Typically, as temperature rises, the viscosity of
an oil decreases. This is attributed to the increased thermal agitation of oil
particles, allowing them to move more easily past one another. However, the
rate of viscosity decrease can vary based on the unique properties of the oil.
Researchers have developed various equations to estimate the temperature
dependence of viscosity. These equations encompass both empirical relation-
ships derived from experimental data and theoretical models. Table 2 presents

Table 2 Viscosity-temperature equations [24–27]
Author or Standard Equation
ASTM-D341-03 log logM = a+ blog Ta

M = vo + 0.7 + e(−1.47−1.84 vo−0.51v2
o)

vo = M − 0.7

−e(−0.7487−3.295[M−0.7]+0.6119[M−0.7]2−0.3193[M−0.7]3)

Reynolds µo = be−aTa

Slotte µo = a
(b+Ta)

c

Vogel µo = ae
b

(Ta+c)

Walther vo + a = bd
1

Tc
a
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the most frequently employed equations for calculating viscosity temperature
dependence.

The impact of pressure on viscosity is a more intricate phenomenon
and can vary based on the specific characteristics of the oil. Generally, as
pressure increases, the viscosity of an oil tends to increase as well. This can
be attributed to the compression of oil molecules under higher pressures.
However, this effect is typically more significant at elevated pressures and
may be influenced by the compressibility of the oil. To model the combined
influence of temperature and pressure on viscosity, various equations of
state are utilized. These equations provide a framework for describing the
thermodynamic properties of oils. In Table 3, you can find some of the
commonly employed equations of state that account for the simultaneous
effects of temperature and pressure on viscosity.

Table 3 Viscosity-pressure equations [28–30]
Author or Standard Equation

API log
µ

µo
=

p

1000
[0.04042 µo

0.181 − 0.0102]

Barus µ = µoe
αp

α =
p

b1 + b2T + (b3 + b4T )p

Roelands logµ = (log µo + 1.200)
(
1 +

p

2000

)Z

− 1.200

2.3 Proposed Empirical Equation for Viscosity

Proposing to combine Vogel’s equation with the API equation, a compre-
hensive equation can be formulated, Equation (5). This equation is able to
calculate viscosity considering both temperature and pressure variations.

µ = a e
b

(Ta+c) × 10

{
P

1000
×
[
0.04042 a e

b
(Ta+c)

0.181

−0.0102

]}
(5)

As clear, this formula includes three correlation parameters a, b, and c
which are determining for each kind of oil. In Appendix A, a mathematical
producer is explained how to calculating these parameters.
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Having comprehensive empirical correlations, Equations (4) and (5), it
can be now accurately quantifying changes in both density and dynamic
viscosity as functions of temperature and pressure.

3 Training Data Generation

Using empirical correlations, a limited data set have been generated for the
purpose of developing and training the neural network that covers some
points in the range of temperature (20–100)◦C and pressure (0–300) bar.
The pressure range is divided into only 6 distinct values. For each pressure
value, 4 and 5 corresponding temperature values is selected. Consequently,
the total number of empirical data set used of calculated density and viscosity
amounted to 24 values for Case 1, and 30 values for Case 2. Although it is
possible to generate a significantly larger training dataset, it is intentionally
limited it to a maximum of 30 data points. This decision allows us to gauge
the neural network’s performance and assess its ability to learn effectively.
Figures 1 and 2 show the empirical data sets of case 1 for density and viscosity
of the hydraulic oil HLP 32 respectively.

Figure 1 The calculated density for training purposes, Case 1.



66 A. Al-Issa and J. Weber

Figure 2 The calculated viscosity for training purposes, Case 1.

4 Physics-Informed Neural Networks

The traditional neural networks are based entirely on a data-driven approach
that does not take into account the physical laws that are contained in the
data. In contrast, physics-informed neural networks [31–33] introduce a
machine learning framework that offer an approximate solution to PDEs by
incorporating physical laws or constraints as additional loss terms during the
training process. By doing so, PINNs can leverage both the available data and
the underlying physics to provide accurate and robust solutions.

However, PINNs also come with some challenges. They require a signifi-
cant amount of data for training, which can be expensive or difficult to obtain
for certain physical systems. The choice of loss function and the architecture
of the neural network can also greatly influence the accuracy and convergence
of the solution. Additionally, the training process may require careful tuning
of hyper parameters and regularization techniques to prevent overfitting or
under fitting.

4.1 Governing Physical Equations

It is important to note that the specific implementation of PINNs will depend
on the governing physics equations at hand and the data available. The effec-
tiveness of loss function, network architecture, and training strategy will vary
based on these equations being solved and the specific requirements of them.
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Depending on the thermodynamic basics, it can be derived a particularly
useful empirical equation of state that can be used to approximate the behav-
ior of many hydraulic oils. For the density of oil, it can be considered as
a function of pressure and temperature, Equation (6). Therefore, the overall
change in density can equal the summation of change in density at constant
temperature and pressure respectively, Equation (7) [21]

ρ = ρ(p, T ) (6)

dρ = dρT + dρp (7)

As terms in temperature and pressure are distinct, it is assuming that
thermal and pressure effects are decoupled. Thus, a change in temperature,
for example, does not lead to a significant change in pressure. The small
changes dρT and dρT associated with small changes in temperature dT and
pressure dp can be approximated using a Taylor expansion to get Equation (8)
without showing the necessary steps [21].

dρ

dp
=

∂ρ

∂T

∣∣∣∣
p

∂T

∂p

∣∣∣∣
ρ

+
∂ρ

∂p

∣∣∣∣
T

(8)

On the same foundation, both temperature and pressure varying can
influence the viscosity of an oil, Equation (9). Changes in temperature and
pressure can affect the oil’s molecular structure, intermolecular forces, and
flow behavior, which can result in changes in its viscosity.

µ = µ(p, T ) (9)

Skripov and Faizullin [34, 35] conducted an extensive study comparing
liquid-vapor and liquid-solid phase transitions, wherein they examined the
relationship between viscosity and temperature as well as pressure across
various categories of liquids.

They focused their analysis on scenarios where the liquid’s thermal
expansion coefficient is positive. Combining literature findings with their own
results, those authors concluded that the following relations must be satisfied
∂µ
∂T |p < 0 and ∂µ

∂p |T > 0 [36]. These relations suggest that viscosity should
decrease with rising temperature under isobaric processes, and conversely,
increase with increasing pressure under isothermal conditions. Furthermore,
by regarding viscosity as a function of pressure and temperature according to
Equation (9), they formulated the subsequent identity:

∂µ

∂T

∣∣∣∣
p

∂T

∂p

∣∣∣∣
µ

∂p

∂µ

∣∣∣∣
T

= −1 (10)
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Considering the viscosity dependencies outlined by ∂µ
∂T |p < 0 and ∂µ

∂p |T >

0, they deduced that the inequality ∂p
∂T |µ > 0 must be satisfied. To maintain

viscosity constant, it is necessary to ensure that the total volume of the system
remains unchanged when both pressure and temperature are varied slightly
by ∂T and ∂p, respectively. Then, from Equation (8), the following result is
obtained:

∂T

∂p

∣∣∣∣
µ

∼=
∂T

∂p

∣∣∣∣
ρ

=

dρ
dp − ∂ρ

∂p

∣∣∣
T

∂ρ
∂T

∣∣∣
p

(11)

With Equation (10), we finally obtain

∂µ

∂p

∣∣∣∣
T

= − ∂µ

∂T

∣∣∣∣
p

dρ
dp − ∂ρ

∂p
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T

∂ρ
∂T
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p

(12)

Simultaneously, it can be extracted additional properties of hydraulic oil;
thermal expansion (αT ), and compressibility (KT ) from Equations (8) and
(12) during implementation of the current PINN model as explained in the
following:

αp = −1

ρ

∂ρ

∂T
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p

(13)

KT =
1

ρ

∂ρ

∂p
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T

(14)

Basically, these equations are the gateway to understanding how easily oil
can be compressed and how it responds when it either contracts or expands
due to temperature and pressure changes.

4.2 Loss Function

In physics-informed models, the loss function is defined as the mean squared
residuals of the data along with the mean squared errors of the associated
governing PDEs [37] as it is illustrated in Equations (15), (16), (17), (18), and
(19). It is designed to minimize the discrepancy between the predictions out-
put of the neural network and the reference data, by satisfying the constraints
imposed by the PDEs [31–33].

L = LD + LPDE (15)
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LDen
D =

1

ND

ND∑
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(19)

LD and LPDE are the loss-function components corresponding to the data
and the governing partial equations, respectively. Here, NPDE represents the
number of points for which the residual of the PDEs equations is calculated
(the so-called collocation points) and ND is the number of training samples
on the domain [38]. The reference or training data could be the exact ana-
lytical solutions of PDEs if applicable, solutions obtained using high-fidelity
numerical solvers, or reliable experiments in labs.

4.3 PINN Model Structure and Implementation

This section aims to emphasize the effectiveness of the PINN model of
this study in solving partial differential equations pertaining to hydraulic oil
properties. In order to illustrate this methodology, mineral hydraulic oil with
the classification type HLP 32 is utilized as a case study, while noting that the
same approach can be applied to other types of hydraulic oils.

The algorithm displayed in Figure3 explained the customized design for
predicting density and viscosity, solely relying on two input parameters:
temperature and pressure. A typical architecture of Physics-Informed Neural
Networks consists of six essential elements: input layer, hidden layer, output
layer, secondary output, automatic differentiation, and loss function. These
components within the neural network are responsible for approximating the
solution to the partial differential equations, enabling the accurate prediction
of density and viscosity values.

By leveraging this architecture, the proposed algorithm demonstrates
the ability to accurately diagnose complex behaviors of hydraulic oil
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Figure 3 The schematic diagram of the current PINN model.

specifications for the complete temperature and pressure fields even with
limited experimental observations are available. The developed PINN model
was employed to predict 10,000 data points that span the same specific pres-
sure and temperature range of generated empirical data set. We selected 250
pressure points and 40 corresponding temperature points for each pressure
value to ensure that the network’s outputs adhere to Equations (8) and (12).

In this study, two activation functions are used for investigating their
performance during the training, Tanh and Sigmoid [39]. The Tanh activation
function and its derivative can be expressed as follows:

tanh(z) =
ez − e−z

ez + e−z
(20)

d

dz
tanh(z) = 1− (ez − e−z)

2

(ez + e−z)2
= 1− tanh2(Z) (21)

While the sigmoid activation function and its derivative are computed as:

σ(z) =
1

1 + e−z
(22)

d

dz
σ(z) = σ(z)(1− σ(z)) (23)

Knowing the ideal configuration of a deep neural network, which encom-
passes parameters like number of layers, number of neurons per layer,
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weight decay, and learning rates, is a challenging endeavor, often requiring
exploration through trial and error. For instance, weight decay, used for regu-
larization in neural networks, may be initially set at a low value (e.g., 0.001)
and iteratively increased until network performance begins to deteriorate. The
value at which performance degradation initiates signifies the optimal weight
decay value for the network.

Therefore, a fully connected neural network starting with 1 hidden layer
and 300 neurons per layer as initial number is employed. A mini batch size
for network training of 50 samples is used for both data and residual points.
To train the network, only 1000 epochs with learning rates of 0.01 is used.

Generally, the ADAM optimizer [40], an adaptive algorithm for gradient-
based first-order optimization is used to optimize the model parameters
(Weights and Basis). Automatic differentiation (AD) [31, 41, 42] is applied
to differentiate outputs with respect to the inputs to construct density and vis-
cosity Equations (8) and (12). The PINN model uses automatic differentiation
to represent all the differential operators and hence there is no explicit need
for a mesh generation.

The proposed algorithm to find the optimal neural network is illustrated in
Figure 4. Table 4 shows the related optimum training settings parameters of

Figure 4 Proposed algorithm to find the optimal PINN model.
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Table 4 Optimum parameters for the PINN model
Setting Parameter Value
No of hidden layer 2
No of neurons per layer 400 or 420
No of epoch 1000
Learning rate 0.01
Decay rate 0.008
Empirical training data 30
Predicted data 10,000
Mini batch 50
Activation Function Sigmoid
Optimizer ADAM

the existing PINN model on which the neural network is run based on them.
These optimal settings have been reached after hundreds attempts.

5 Results and Discussion

For each of two cases of data set, Sigmoid and Tanh activation function are
used. Tables 5 and 6 illustrates the impact of the number of neurons on the
loss, training time and simulation time for all number of neurons used for
each case.

In Case 1, employing the Sigmoid function, the minimum loss was reg-
istered at 2.45E-06, while for Case 2, it stood at 2.53E-06 with 400 neurons
utilized in both scenarios. Conversely, for Case 1, utilizing the Tanh function,
the minimum loss was noted as 1.00E-05, while for Case 2, it amounted
to 1.62E-05 with 320 neurons employed in both cases. Despite the lower
minimum loss recorded in Case 1 when using the Sigmoid function, the
accuracy remains inferior compared to Case 2, attributed to insufficient data
availability.

Therefore, it can be seen that the value of the loss function of Case 2
using Sigmoid function with (400 or 420) neurons reached a smaller value
in the end and represented the best scenario in terms of data quantity, time-
consuming and the achieved accuracy. The lower loss values indicate these
number of neurons can better fit the training pressure traces.

Figures 5 and 6 show the convergences history of the total train-
ing loss function of the PINN model for Sigmoid and Tanh respectively.
Through investigating the activation functions performance and comparing
their results, it was found that the best activation function is the sigmoid
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function in the case of the presence of 420 neurons or less. While when using
the Tanh function, the stochastic gradient descent in the losses caused clear
oscillations, which allows a better Sigmoid function generalization for the
current PINN model.

We present the history of different losses over the total 1000 epochs in
Figure 7. Although the PDEs residual has the largest loss, each term has a
value lower than 3E-06, indicating a convergence at the final epoch. Figure 8
shows the difference of the total training losses using the two activation
functions Sigmoid and Tanh. Where the differences are clear in the minimum
value that was reached and smoothness of convergences history.

Following the completion of training, the predicted results of density and
viscosity are evaluated by comparison with empirical findings from Equa-
tions (4) and (5) during the normalization of errors and accuracy function
which are computed as:

Errornorm =
(VPred − VTrue)norm

(VTrue)norm
(24)

Accurcy = [1− Errornorm ]× 100 (25)

Table 5 Total, data, and PDEs loss for the last training epoch with the elapsed time for
different sizes of PINN model and for two data sets using Sigmoid function

Loss Training Simulation
No Neurons Total Data PDEs mm:ss ss.sss

Case 1: Data 24
300 2.75E-06 2.03E-07 2.54E-06 40:27 01.265
320 2.68E-06 2.09E-07 2.47E-06 44:35 00.235
340 2.97E-06 2.17E-07 2.75E-06 52:55 00.443
360 2.89E-05 1.69E-06 2.72E-05 47:34 00.336
380 2.56E-06 1.52E-07 2.41E-06 51:57 00.488
400 2.45E-06 2.70E-07 2.18E-06 48:12 00.272
420 3.36E-06 1.24E-07 3.24E-06 51:51 00.221

Case 2: Data 30
300 3.13E-06 4.17E-07 2.71E-06 38:41 01.503
320 3.03E-06 2.24E-07 2.80E-06 45:49 00.522
340 3.21E-06 3.21E-07 2.89E-06 53:54 00.487
360 1.73E-05 1.23E-07 1.71E-05 51:28 00.462
380 4.70E-06 1.62E-07 4.54E-06 52:27 00.360
400 2.53E-06 1.92E-07 2.34E-06 49:51 00.438
420 2.55E-06 1.35E-07 2.41E-06 35:26 01.131
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Table 6 Total, data, and PDEs loss for the last training epoch with the elapsed time for
different sizes of PINN model and for two data sets using Tanh function

Loss Training Simulation
No Neurons Total Data PDEs mm:ss ss.sss

Case 1: Data 24
300 3.02E-05 1.38E-05 1.64E-05 49:39 00.433
320 1.00E-05 2.58E-06 7.46E-06 46:10 01.452
340 2.02E-05 5.02E-06 1.52E-05 46:01 00.514
360 1.48E-05 3.85E-06 1.09E-05 51:59 00.291
380 1.54E-05 5.68E-06 9.68E-06 49:00 00.445
400 1.03E-05 4.54E-06 5.80E-06 53:20 00.231
420 1.03E-05 5.91E-06 4.39E-06 53:25 00.490

Case 2: Data 30
300 1.69E-05 3.86E-06 1.30E-05 35:09 00.557
320 1.62E-05 1.09E-05 5.26E-06 45:25 00.309
340 5.29E-05 5.99E-06 4.69E-05 35:53 00.401
360 9.08E-05 2.11E-05 6.97E-05 47:57 00.404
380 2.67E-05 1.57E-05 1.10E-05 49:00 00.448
400 3.90E-05 9.48E-06 2.95E-05 42:32 00.739
420 4.16E-05 1.30E-05 2.86E-05 44:00 00.231

Figure 5 Total training loss vs. number of epochs.
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Figure 6 Total training loss vs. number of epochs.

Figure 7 Loss during the training process using Sigmoid function.
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Figure 8 Total loss during the training process verses activation functions.

Figures 9 and 10 are displayed randomly chosen examples of plotting
corresponding density and viscosity curves at each temperature point for
pressure values of (0, 90, 190, and 255) bar for density and viscosity.
However, Figures 11 and 12 depict the entire spectrum of density and vis-
cosity alterations under the influence of pressure and temperature. Notably,
the maximum error observed in the density evaluations was found to be
only 0.37%, while it was 4.42% in the viscosity evaluations, indicating a
high satisfactory level of precision in the neural network’s predictions. The
accuracy is computed over the entire investigated domain.

In Table 7, it has been presented the results obtained from the Equa-
tions (13) and (14) for calculating the thermal expansion and compressibility
of hydraulic oil HLP 32 for over a wide range of pressures (0–300) bar.
These values are the average value for a range of temperatures (20–100)◦C.
By observing these values, we can find the extent to which they correspond
to the practically measured data for thermal expansion 7 × 10−4 1/K and
compressibility 6.0606 × 10−10 1/pa.

PINN model of this study was coded using MATLAB language and the
training process was conducted on a PC equipped with an Intel Core i5
processor and 32 GB of RAM.
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Figure 9 Simulation results and the absolute accuracy for the density using PINN model in
comparison with the reference data.

Figure 10 Simulation results and the absolute accuracy for the viscosity using PINN model
in comparison with the reference data.
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Figure 11 Density of hydraulic oil HLP 32 as a function of T and p using PINN model.

Figure 12 Viscosity of hydraulic oil HLP 32 as a function of T and p using PINN model.
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Table 7 Thermal expansion and compressibility of hydraulic oil HLP 32
Pressure (bar) Thermal Expansion ×10−4 (1/K) Compressibility ×10−10 (1/pa)
0 6.982 0.47
50 6.948 5.26
100 7.017 6.11
150 6.862 5.16
200 7.026 6.12
250 6.913 5.92
300 7.046 6.09

6 Conclusion

This study presents a promising PINN model to predicting 10,000 points of
the thermophysical properties of hydraulic oil HLP 32 for range of tempera-
ture (20–100)◦C and pressure of (0–300) bar utilizing only 30 empirical data
sets. Employing the proposed PINN model, it becomes feasible to depend on
limited amount of empirical or experimental data, eliminating the necessity
to carry out numerous laboratory experiments across all temperatures and
pressures range.

Validity and accuracy of this model has been established by comparing
the obtained results of this model and the existing correlations for hydraulic
oils. It is founded that the best predictive properties in terms of the ratio
of accuracy and computational costs have a neural network with 2 hidden
layers, (400 or 420) neurons, trained employing the ADAM optimizer and
using Sigmoid activation function. For it, the average relative deviation of
the predicted and reference density values was 0.37%. For viscosity, this
indicator was 4.42%.

All this makes it possible to talk about the prospects of PINN models
for predicting the thermophysical properties of hydraulic oils in the practical
work of companies dealing with the production of hydraulic oils.

Future endeavours for researchers interested in this field of neural net-
works could entail exploring the additional oil properties such as enthalpy,
isobaric specific heat capacity, thermal conductivity, and so on.
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Appendix A: Proposed Mathematical Procedures to
Determine Empirical Parameters

This study focuses on the prevalent hydraulic oil types, HM and HLP, to
develop a mathematical model for analysis. We will elucidate the mathe-
matical procedures utilized to calculate viscosity based on temperature and
pressure. The model aims to provide a comprehensive understanding of how
viscosity varies with changes in temperature and pressure. We will employ
the commonly used equations Vogel and API in our approach, which consists
of the following steps:

1. We will acquire experimental data through measurements reported in
the literature [43–46] for the two categories of hydraulic oil (HM, and
HLP) with ISO VG 32, ISO VG 46, and ISO VG 68 grades. For each oil
type, we will obtain a single density value at 15◦C, along with kinematic
viscosity values at three distinct temperatures as depicted in Table A.1.

2. Utilizing Equation (3) and the experimental results of density from
literatures at 15 ◦C as shown in Table A.1, we can calculate the density of
the oil at atmospheric pressure and at specific temperatures, Table A.2.

3. By utilizing the known values of kinematic viscosity and density at
specific temperatures from Tables A.1 and A.2, we can determine the
dynamic viscosity using Equation (A.1), as shown in Table A.3.

µo = vo ρo (A.1)

4. By simultaneously forming and solving three equations using the Vogel
Equation (A.2), we can calculate the constants a, b, and c for the tested
hydraulic oils. The calculated values of these constants are presented in
Table A.4. The time required for calculations is 39 seconds.

µo = a e
b

(Ta+c) (A.2)
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Table A.1 Kinematic Viscosity and density of testing hydraulic oils, at atmospheric pressure
[43–46]

ISO Grade 32 ISO Grade 46 ISO Grade 68

Hydraulic Oil HM

Density @ 15 (kg/m3) 871 876 882

Kin. Viscosity, @ 20.5 ◦C (mm2/s) 80.13 146.92 217.37

Kin. Viscosity, @ 40 ◦C (mm2/s) 30.32 48.5 68.3

Kin. Viscosity, @ 100 ◦C (mm2/s) 5.24 6.89 10.8

Hydraulic Oil HLP

Density @ 15 (kg/m3) 874 879 884

Kin. Viscosity, @ 0 ◦C (mm2/s) 420 780 1400

Kin. Viscosity, @ 40 ◦C (mm2/s) 32.1 46.7 69.2

Kin. Viscosity, @ 100 ◦C (mm2/s) 5.4 6.9 8.9

Table A.2 Calculated density of testing hydraulic oils

ISO Grade 32 ISO Grade 46 ISO Grade 68

Hydraulic Oil HM

Density @ 20.5 ◦C (kg/m3) 867.65 872.63 878.61

Density @ 40 ◦C (kg/m3) 855.89 860.80 866.69

Density @ 100 ◦C (kg/m3) 820.68 825.39 831.05

Hydraulic Oil HLP

Density @ 0 ◦C (kg/m3) 883.22 888.27 893.33

Density @ 40 ◦C (kg/m3) 858.83 863.75 868.66

Density @ 100 ◦C (kg/m3) 823.51 828.22 832.93

Table A.3 Calculated dynamic viscosity of testing hydraulic oils

ISO Grade 32 ISO Grade 46 ISO Grade 68

Hydraulic Oil HM

Dyn. Viscosity, @ 20.5 ◦C (Pa.s) 0.0695 0.1282 0.1909

Dyn. Viscosity, @ 40 ◦C (Pa.s) 0.0259 0.0417 0.0591

Dyn. Viscosity, @ 100 ◦C (Pa.s) 0.0043 0.0056 0.0089

Hydraulic Oil HLP

Dyn. Viscosity, @ 0 ◦C (Pa.s) 0.3709 0.6928 1.2506

Dyn. Viscosity, @ 40 ◦C (Pa.s) 0.0275 0.0403 0.0601

Dyn. Viscosity, @ 100 ◦C (Pa.s) 0.0044 0.0057 0.0074
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Table A.4 Calculated constants from Vogel equation for testing hydraulic oils

Constants ISO Grade 32 ISO Grade 46 ISO Grade 68

Hydraulic Oil HM

a, (N/m2)/sec 7.4837×10−5 8.0509×10−5 3.1244×10−4

b, K 790.8969 801.0341 560.0949

c, K −177.9226 −185.0062 −206.3470

Hydraulic Oil HLP

a, (N/m2)/sec 9.0886×10−5 9.8880×10−5 9.4424×10−5

b, K 731.1608 748.7341 807.5559

c, K −185.2091 −188.5919 -188.0670

Appendix B: Nomenclature

Symbol Description Unit
Accurcy Accuracy –
a0, a1, a2, a3, a4, a5 Constants for Witt equation –
b1, b2, b3, b4 Constants for Barus equation –
a, b, c, d Constants for Slotte, Vogel, and Walther equations –
Errornorm Normalized error –
KT Compressibility 1/pa
L Total loss function –
LD Loss function of data –
LDen

D Loss function of data for density kg/m3

LV is
D Loss function of data for viscosity cP

LPDE Loss function of PDE –
LDen

PDE Loss function of PDE for density kg/m3

LV is
PDE Loss function of PDE for viscosity cP

ND No. of training samples of data –
NPDE No. of training points of PDE –
p Pressure Bar
po Atmosphere pressure Bar
pre Reference pressure Bar
T Temperature C
Ta Absolute temperature K
To Reference temperature at po C
Tre Reference temperature C
vo Kinematic viscosity at po mm2/s
Z Pressure-viscosity coefficient –
ρ Density kg/m3

ρo Density at po kg/m3

ρ∞ Isobaric density kg/m3
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Symbol Description Unit
ρre Reference density kg/m3

µ Dynamic viscosity cP
µo Dynamic viscosity at po cP
dT Change of temperature C
dp Change of pressure Bar
dρ Change of density kg/m3

dρT Change of density at constant T kg/m3

dρp Change of density at constant p kg/m3

dµ Change of dynamic viscosity cP
dµT Change of dynamic viscosity at constant T cP
dµp Change of dynamic viscosity at constant p cP
α pressure-viscosity coefficient 1/bar
αp Thermal expansion coefficient 1/K
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