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Abstract

This paper proposes a stability analysis procedure of fluid power components
according to some early design parameters. It is based on the numerical
determination of the existence of a Lyapunov function, which guarantees the
required performance. This is formulated as an optimization problem under
Linear Matrix Inequalities constraints (LMIs). The model-based procedure is
illustrated with an application to a pneumatic two-stage pressure regulation
valve. The results show the method capability to provide a better under-
standing of the possible causes of the valve’s instability and how it can be
avoided at an early design stage by tuning the physical parameters in order to
guarantee a desired dynamical behavior and improve system robustness.
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1 Introduction

The air bleed system is a highly important component of an airplane’s air
conditioning system that, among other key functions, guarantees the pressur-
ization of the cabin, the defrosting of the wings and the cooling of electronic
components. The valves that control the pressure output of the air bleed
system are mounted at a location with severe requirements in terms of tem-
perature and pressure variations. On the technical side, the comprehension of
how each physical parameter should be tuned to guarantee a stable behavior
for severe environmental conditions is highly important. Therefore, this paper
proposes a methodology based on stability analysis techniques with the aim
of providing sizing guide at the product design stage.

A better understanding of how physical parameters can affect the dynam-
ical behavior of this system is of great importance from the early design
stage. Since design is a multi-objective problem, engineers need models
and methods that enable the critical physical parameters to be identified
and the admissible range of these to be determined according to the desired
specifications. The design requirements in terms of system dynamic behavior
of systems and its sensitivity to uncertainties or parameter variations have
been extensively explored in control theory, and explicitly in robust control
design and analysis. In this context, the approaches using Linear Matrix
Inequalities (LMIs) provide an efficient framework, based on the formulation
of an optimization problem, for investigating robust controller design under
dynamic performance constraints [1]. Among this very rich literature, we can
cite Chilali et al. [2], who have investigated robust pole placement with the
use of LMIs and proposed a tractable LMI-based approach to the synthesis
of output-feedback controllers. Their approach enables the decay rate α of
a closed-loop system to be maximized using quadratic Lyapunov function.
These results were extended by Henrion et al. [6]. Trofino et al. [5] verified
the asymptotic stability of rational uncertain nonlinear systems through LMI
conditions. This approach was extended to switched and hybrid systems
by [9]. Ameur et al. [3] applied it for the stability analysis of a position
tracking control, based on sliding mode control techniques, for a pneumatic
cylinder. By formulating the problem as a convex optimization problem
with piecewise-polynomial Lyapunov functions [7], they successfully prove
the stability of the closed-loop system despite the presence of dry friction
phenomena. In the hydraulic domain, for pump-controlled cylinder, Vaezi
et al [4] used LMIs to determine a force-tracking controller that reduced
trajectory-tracking errors. Some other works [8] have a focus on improving
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the efficiency of the numerical solvers, and contribute to the development of
the available software packages, such as Mosek™ [10].

The paper is organized as follows. First, Section 2 introduces the problem
formulation under LMIs contraints using quadratic form of the Lyapunov
functions in order to garantee the design requirements on the system dynamic
behavior in terms of decay rate and oscillation damping. In Section 3, a
two-stage high-pressure control valve, corresponding to the usual structure
of an air bleed system valve, is introduced and a modelling procedure using
Bond Graph representation [11] of the system is proposed in order to better
visualize and analyze the valve’s components. Then, hypotheses are consid-
ered in order to simplify the physical model and obtain an analytical model
suitable for the proposed methodology. In Section 4, the proposed approach
is applied to the two-stage high-pressure control valve and it is regarded as
the determination of the admissible range of the valve physical parameter that
will fullfill the design requirements. Finally, results are shown and analysed
in Section 5. The conclusions and further work are discussed in Section 6.

2 Lyapunov Stability Analysis Using LMIs

Modelling the dynamic behavior of components leads generally to a nonlinear
state space representation as in (1), where x ∈ ℜn is the state vector, u ∈ ℜm

the input vector and q ∈ ℜp a parameter vector. Each element qi is bound in
a given interval, qi ∈ [qimin , qimax ].

ẋ = f(x, u, q) (1)

For a system under regulation, it can be considered that the inputs are
regulation references or slow dynamic perturbation and can be defined as
fixed inputs. Then, the model becomes (2):

ẋ = f(x, q) (2)

For such mechanically closed loop systems, the aim is either to assess
or improve both stability and dynamic performance involving the shape of
the transient responses by means of an adequate choice of the physical
parameters. The specified dynamic performance can be described by a decay
rate α and a damping ratio ξ. This problem can be solved by means of
linear methods based on convex LMI [1] optimization, for which a linearized
version of the dynamics of the kind depicted in (3) is needed.

ẋ = A(q).x =
(
A0 +Aq1 .q1 +Aq2 .q2 + . . .+Aqp .qp

)
.x (3)
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Equation (3) represents a Linear Parameter Varying (LPV) formulation,
as the state derivative is linear with respect to the state itself through a matrix
A(q), which is in turn linear with respect to the parameter q. In order to go
from (2) to (3), the nonlinear system needs first to be linearized around an
equilibrium point and the linearized state matrix A has to be split in a matrix
A0, which is independent from the parameters qi, and a set of matrices Aqi ,
which express the linear relation with the parameters qi.

Through convex optimization [1], with the help of numerical solvers such
as Mosek™ [10], LMIs constraints can be used to formulate the problem of
determining a Lyapunov function that satisfies design criteria such as system
stability or acceptable rapidity and damping characteristics of the poles.

The Lyapunov function (4) is here chosen as a quadratic function V (x),
with P a symmetric matrix, that is to say P = P T .

V (x) = xTPx (4)

If stability is the only requirement, solving the problem aims at finding
the components of a matrix P that satisfies the following LMI constraints:
(i) the eigenvalues of the matrix P must be positive; (ii) the time derivative
of the Lyapunov function must be negative for all x apart at x = 0.

2.1 Constraint Over Convergence Rate

Instead of a soft exponential stability, a stronger convergence rate towards the
equilibrium point can be chosen. The decay rate can be defined by a parameter
α > 0 which expresses a constraint on the convergence of the state (5).

lim
t→∞

|x(t)| eαt = 0 (5)

By considering the linearized system defined by ẋ = A(q)x as shown in
(3), from (4) and (5), a first LMI constraint can be formulated as in (6) [2].

V̇ (x) ≤ −2αV (x) ⇔ (A(q)P )T + PA(q) ≤ −2αP (6)

Since the real part of every system eigenvalue has to be equal or less than
−α, the time T50% at which the Lyapunov function reaches its half-life time
could be considered instead, and defined by (7):

T50% ≤ ln(2)

2α
(7)
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2.2 Constraint Over Oscillation Damping

Another objective that can be explored, is limiting the oscillation rate of the
system. As previously done with α, a damping parameter β can be used to
bound the eigenvalues of the system. Figure 1 shows how parameters α and β
are related to the eigenvalues of the system, where ωn is the natural frequency
of the complex conjugate poles corresponding to the lowest damping ratio ξ.
While α is equal to the real part of the slowest eigenvalue of the system, β is
the slope in the S-plane defining the desired area for the system eigenvalues
as shown in Figure 1. For the whole system, a maximum damping parameter
βmax implies a minimum damping ratio ξmin according to (8):

ξmin =
1√

1 + β2
max

(8)

From (8), it is clear that a smaller value of β means a bigger damping ratio
ξ. This requirement on the slope β comes in addition to the 1st constraint and
imposes a new constraint depicted by (9) [2].[

β(ATP + PA) PA−ATP
ATP − PA β(ATP + PA)

]
< 0 (9)

If it exists a Lyapunov function satisfying all these LMIs (P > 0, (6)
and (9)), it garantees that the system will be stable and satisfy a minimum
decay rate α and a maximum damping parameter (slope β). These contraints
can also be achieved independently. It can be verified or explored for any
operating conditions, setting points and values of physical parameters.

Figure 1 Desired S-plane region (in red) enclosed by α and β.
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In this work, the proposed methodology using the previous problem
formulation based on LMIs, is explored to provide engineers a helpful tool
that will determine the admissible ranges of the critical design parameters
that guarantee the desired dynamic behavior of the system, that is to say a
maximum decay rate and a minimun damping ratio. It corresponds to verify
that the eigenvalues of the system stay located in a specific desired area of the
S-plane for the whole parameter range, as shown in Figure 1.

3 Case Study: Two-stage Valve

The pressure control valve under study is used to bring down the upstream
pressure, pup, to a desired downstream pressure, p. For a given reference
pressure pr and a given return pressure pv, the valve regulates the opening
of a butterfly valve through a piston-rod-crank system. The schematic of the
valve is in Figure 2 whereas the Bond Graph representation of the valve is
presented in Figure 3.

As shown in these figures, the reference pressure pr is guaranteed by a
pressure reducer whereas the return pressure pv is provided by a feedback
pipe connected to the downstream volume. The resulting force applied to the
piston regulates the opening of the butterfly valve.

The mechanical modelling of the system regarding the piston movement
is described by (10). The butterfly valve angle is written in terms of the piston
position xv, from a kinematic analysis.

M
dvv
dt

= Srpr − Svpv − Ff (xv, vv)−
1

B
Caero(xv, p, pup) (10)

Figure 2 System schematic.
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Figure 3 Bond Graph representation of the system.

where M is the equivalent mass of the moving parts, vv is the piston velocity,
Sr and Sv are, respectively, the surface area of the piston at the opening and
closing chambers, Ff is the piston and butterfly valve combined friction, B is
the rod-crank kinematic factor and Caero is the aerodynamical torque at the
butterfly valve.

Assuming a polytropic behavior (polytropic coefficient k) and negligible
temperature variations in comparison to the average temperature in each
volume, the dynamical behavior of the pressure p in the downstream volume
is represented by (11), while the dynamical behavior of the pressure pv in the
closing chamber is represented by (12).

dp

dt
=

krT

V
(qm1(xv, pup, p, Tup)− qm2(p, pv, T, Tv)− qmu(p, pu, T ))

(11)

dpv
dt

=
kSvpv
Vv

vv +
krTv

Vv
qm2(p, pv, T, Tv) (12)

where qmi are the mass flow rates flowing to or from the downstream
chamber as defined in Figure 2. The general mass flow rate through an orifice,
according to ISO 6358-1 [12], is given by (13):

qm = Cρ0

√
T0

Tup
φ(pup, pdown).pup (13)
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in which the pneumatic element is characterized by its sonic conductance,
C, and a critical pressure ratio, b. This approximation is valid when the
kinetic energy of the upstream flow is considered negligible. In this equation,
qm is the mass flow rate, pup the upstream pressure, pdown the downstream
pressure, Tup the upstream flow temperature, and ρ0 and T0 the air density
and temperature at standard reference atmosphere. The flow coefficient,
φ(pup, pdown), is determined by (14) according to the flow regime delimited
by the critical pressure ratio b.

φ(pup, pdown) =


1 if pdown

pup
≤ b (choked)√

1−
( pdown

pup
−b

1−b

)2

if pdown
pup

> b (subsonic)

(14)

In order to reduce the model complexity and make the proposed approach
clear enough without loss of generality, some additional hypotheses are then
considered:

1. The pressure reducer guarantees a constant pressure in a way that
the pressure inside the opening chamber is constant and equal to the
reference pressure pr;

2. The return conduit dynamics is fast enough to be modelled as an
equivalent restriction, characterized by its area Av;

3. The dry friction from the butterfly valve and the piston is not considered,
and the viscous friction of both components is gathered in a single term
Ffv = µ.vv where µ is the viscous friction coefficient assumed to be
constant;

4. The aerodynamic torque is not considered;
5. The return flow qm2 is minor in comparison to the main flows qm1

and qmu and can be neglected in the dynamical equation (11) of the
downstream pressure.

Let us note that the dry friction term has naturally an influence on the
system behavior, but by neglecting it in our method, it leads only to a more
constrained solution for the design. Regarding the aerodynamic torque on the
butterfly valve, its dependency on the flow through the valve and the butterfly
angle [13] can be considered with the same approach if more precise results
are required.

From these assumptions the model of the valve can be reduced to a fourth
order system, considering as state variables the piston position xv, the piston
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Figure 4 Simcenter AMESim™model of the valve.

velocity vv, the downstream pressure p and the closing chamber pressure pv.
The nonlinear model is formulated as (15):

ẋ =


ẋv
v̇v
ṗ
ṗv

 =


vv
1
M [Srpr − Svpv − µvv]

krT
V [qm1(xv, pup, p, Tup)− qmu(p, pu, T )]

kpvSv

Vv
.vv +

krTv
Vv

.qm2(p, pv, T, Tv)

 (15)

with the pressures (pup, pr, pu) and the temperatures (Tup, T, Tv) as inputs.
The dynamic behavior of the simplified model was compared to that

of a detailed model developed using the Simcenter Amesim™simulation
software (Figure 4) in order to verify that it properly represents the real
system behavior.

4 Application

In order to study the system’s stability according to the design parameter, the
first step is the linearization of the non-linear model (15) for small variations
around the equilibrium point for given inputs values:

xv = xve + δxv
vv = vve + δvv
p = pe + δp
pv = pve + δpv

(16)



154 G. de Carvalho et al.

For given inputs pupe , pre , pue , Tupe , Te, Tve and considering ẋe = 0, the
equilibrium point is defined by (17).

vve = 0

Srpre − Svpve = 0

qm1(xve , pupe , pe, Tupe)− qmu(pe, pue , Te) = 0

qm2(pe, pve , Te, Tve) = 0 ⇔ pe = pve

(17)

Once the matrix A is formulated, the elements of the matrix that linearly
depend on the analyzed parameters are separated from the other elements of
the matrix as in (3).

The proposed method can be applied considering different forms of the
Lyapunov function. In our case, a certain level of conservatism was added to
the computational method such as a quadratic function form for the Lyapunov
function and a certain type of dynamic behavior. Let us now discuss the
conservatism degree related to the matrix P .

One possibility is to consider that the Lyapunov function is built from
a matrix P = P0 constant and independent of the parameters q. Another
option, less conservative, would be to consider that the matrix P = P (q) is a
function of q as in (18):

P (q) = P0 + Pq1 .q1 + Pq2 .q2 + . . . (18)

where P0 is the constant part of the matrix P whereas the matrices Pqi are the
terms of P that depends on qi. In this case, one or more degrees of freedom
are added to the optimization problem (6) and (9).

In this paper, two parameters are analyzed using this method: the viscous
friction coefficient q1 = µ, and the flow area of the return orifice q2 = Av,
defined by its diameter DAv. Since the linearized state matrix obtained from
(15) is linearly dependent of both parameters, from (3), the corresponding
matrices can be expressed by (19), (20) and (21).

A0 =


0 1 0 0

a21 0 a23 a24

a31 0 a33 0

0 a42 a43 a44

 (19)
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Aq1 =
1

µref


0 0 0 0
0 a22 0 0
0 0 0 0
0 0 0 0

 (20)

Aq2 =
1

Avref


0 0 0 0
0 0 0 0
0 0 0 0
0 0 a43 a44

 (21)

where µref is the reference value of the viscous friction and Avref is the
reference value of the orifice flow area.

5 Results

In order to determine the widest range of the parameter values in which
the system is stable, an exhaustive study could consist in determining the
eigenvalues of the matrix A according to the parameter values. This step is
not required in the proposed approach but it gives a reference (column 3 in
Table 1) for the results that will be obtained from the proposed approach.

In the following, our approach is split into two sections. Section 5.1 deals
with the stability analysis only, by determining the largest parameter range for
which a Lyapunov function can be found to guarantee the stability constraint.
Section 5.2 aims at defining more precisely the design parameter range, which
satisfies stability and an additional constraint on the dynamical behavior, that
is a minimum decay rate α = 20 s−1 or a maximum damping parameter
β = 10.

The study was implemented for each parameter at a time, it means that if
q1 is studied, q2 is considered equal to its reference value and vice versa.

5.1 Stability Analysis

In this first case, an iterative procedure is used to determine a valid range
for the studied parameter. From an initial value for α, each iteration tries to
find a Lyapunov function for the proposed parameter range. If no Lyapunov
function is found, α is reduced. Furthermore, if no function is found for any
value of α in this range, the parameter variation range is reduced and the
procedure is restarted.
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Table 1 Stability analysis results without constraints on α and β

Flow From
Condition Eigenvalues w/o Dependence w/ Dependence

Parameters on qm1 Analysis in q (P0) in q (P (q))
µ [N.s/m] µ [N.s/m] α [s−1] µ [N.s/m] α [s−1]

µ [N.s/m]
Sonic ≥ 294 ≥ 404 ≥ 0.1 ≥ 295 ≥ 0.29

Subsonic ≥ 243 ≥ 338 ≥ 0.03 ≥ 245 ≥ 0.51

Table 2 Minimum values of µ and DAv for the imposed dynamic requirements on α or β
Flow From

Condition Eigenvalues
Parameters on qm1 Analysis w/o Dependence in q : P (q)

α > 0 s−1 α ≥ 20 s−1 β ≤ 10

µ [N.s/m]
Sonic ≥ 294 ≥ 413 ≥ 393

Subsonic ≥ 243 ≥ 358 ≥ 324

DAv [mm]
Sonic ≥ 0.2 ≥ 0.4 ≥ 0.6

Subsonic ≥ 0.2 ≥ 0.2 ≥ 0.6

In this first example, the aim is to determine the admissible range of
the viscous friction coefficient. The results are presented for sonic and sub-
sonic flows in the butterfly valve and the minimum α is afterwards deduced
(Table 1).

Table 1 shows that the second formulation of the Lyapunov function,
in which the parameter dependencyP (q) is taken into account (column 5),
enables to find a minimum value for the parameter µ that is smaller than the
one obtain with a formulation with a constant matrix P = P0 (column 4). The
admissible parameter range is very close to the results obtained directly from
the exhaustive eigenvalues analysis (column 3). This result is reasonable since
the Lyapunov function with a polynomial form according to the parameter qi
is less conservative, i.e., it offers additional degree of freedom compared to
the simplest formulation with P = P0.

5.2 Using Design Specifications

Let us now impose a minimum α ≥ 20 s−1 or a maximum β ≤ 10 to
determine the µ and Av minimum values that guarantee the desired dynamical
behavior. In this case, the same kind of iterative procedure is used. Starting
with the initial parameter range obtained from the eigenvalues analysis (col-
umn 3 in Table 2), the parameter range is iteratively reduced until a Lyapunov
function that guarantees the desired value of α or β, is found.
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Figure 5 Downstream pressure responses (subsonic conditions) for the different minimum
values of µ obtained according to the imposed constraint, and comparison between the
analytical and simulation models.

As expected since the dynamical constraints are more severe, the admissi-
ble range for each parameter (column 4 in Table 2) is reduced in comparison
with the initial range (column 3). Figure 5 shows the dynamic response of the
pressure p in the downstream volume when excited by a pulse in the subsonic
case according to the minimum value of the viscous friction coefficient µ
determined in each case and compared to the initial one.

As it can be observed (Figure 5), the dynamic behavior satisfies the
specified constraint imposed by α or β. By considering both α and β, we
can determine design rules that guarantee a much faster and less oscillatory
response for the system. Figure 5 also shows a comparison of the pressure
response obtained with the analytical model and the simulation model. It can
be noticed that the dynamic behaviors of both models are very close for a
given value of µ.

Once a Lyapunov function has been found for a parameter range, the
asymptotic stability is proven and the minimum α or maximum β found is
guaranteed for the whole parameter range. It is also possible to determine the
variation of α and β in this parameter range by calculating the eigenvalues of
the system. These results are shown in Figure 6 for the subsonic case.

This kind of results can illustrate how each physical parameter influences
the dynamic response of the system. As it can be observed for the studied
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Figure 6 Evolution of α and β in parameter range in the subsonic case.

case, the dynamic response time gradually varies with the viscous friction
coefficient, while the influence of the diameter of the orifice flow area
stagnates passed a certain value.

6 Conclusion

This work proposed an LMI based analysis and design method that uses the
decay rate α and the damping parameter β to find the physical parameters
range that guarantees a desired dynamic behavior of a pressure regulation
valve. The theory behind the method is firstly explained. An analytical
nonlinear model of the two stage valve is then developed followed by its
simplification and linearization. Then, the state matrix A(q) that depends on
the physical parameters, is determined so the convex optimization approach
can be implemented. The simulation results show that the method is capable
of correlating physical parameters values to the dynamic response of the
system with respect to a minimum decay rate α and a maximum damping
parameter β.

Further work will aim at implementing the method for other physical
parameters, for example, the dry friction and the length of the return pipe
between the downstream volume and the closing chamber. This last case
could require a 5th order state space model. The approach can also be
implemented to the whole air bleed system, taking into consideration the
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interactions between several valves and analyzing how physical parameters
variations can influence the stability of the system as a whole. Experimental
tests will also be planned to validate the approach and to verify the obtained
design conditions.
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