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Abstract

Valve characteristics are an essential part of digital hydraulics. The on/off
solenoid valves utilized on many of these systems can significantly affect
the performance. Various factors can affect the speed of the valves causing
them to experience various delays, which impact the overall performance of
hydraulic systems. This work presents the development of an adaptive statisti-
cal based thresholding real-time valve delay model for digital Pump/Motors.
The proposed method actively measures the valve delays in real-time and
adapts the threshold of the system with the goal of improving the overall
efficiency and performance of the system. This work builds on previous work
by evaluating an alternative method used to detect valve delays in real-time.
The method used here is a shift detection method for the pressure signals that
utilizes domain knowledge and the system’s historical statistical behavior.
This allows the model to be used over a large range of operating conditions,
since the model can learn patterns and adapt to various operating conditions
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using domain knowledge and statistical behavior. A hydraulic circuit was
built to measure the delay time experienced from the time the signal is sent
to the valve to the time that the valve opens. Experiments were conducted on
a three piston in-line digital pump/motor with 2 valves per cylinder, at low
and high pressure ports, for a total of six valves. Two high frequency pressure
transducers were used in this circuit to measure and analyze the differential
pressure on the low and high pressure side of the on/off valves, as well as
three in-cylinder pressure transducers. Data over 60 cycles was acquired to
analyze the model against real time valve delays. The results show that the
algorithm was successful in adapting the threshold for real time valve delays
and accurately measuring the valve delays.

Keywords: Fluid power, digital hydraulics, digital pump motor, hydraulics,
valve delay.

Introduction

Fluid Power is a technology which uses pressurized fluids to transmit and
control power. These pressurized fluids store energy, which can be used
to move and rotate components in mechanical systems. Fluid power sys-
tems are used in a variety of applications including automotive, mining,
manufacturing, and aerospace.

In most applications, fluid power is used because of its ability to flexibly
transfer energy and power over long distances. Another quality of fluid power
systems is the relatively low maintenance required to upkeep the system. This
is due to the lack of moving components used in the system, compared to
mechanical and electrical systems.

Although fluid power is a relatively old technology, there are still new
advancements and innovative methods being developed to enhance and mod-
ernize the field. Each advancement and modernization provides opportunity
to advance how fluid power systems are and can be used. Fluid power has
multiple areas that can be improved, with a main focus being on efficiency,
compactness, and effectiveness (Stelson and Li, 2013). One specific area
of study being closely analyzed is efficiency. Many existing fluid power
systems use multiple components in series; all with various efficiencies.
The individual efficiency of each of these components can largely effect the
overall efficiency of fluid power systems.

At the heart of fluid power systems is the pump/motor, used to create
flow for the hydraulic system. Under ideal conditions, pumps/motors can
reach overall efficiencies higher than 90%, but can drop below 75% based
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on the running conditions of the pump (Love, 2014). Current state-of-the-art
variable displacement pumps/motors can drop as low as 30% at low displace-
ments, due to losses throughout the system which are not linearly dependent
on displacement.

Another key component of many fluid power systems is valves used to
control the system. The efficiency of the valves can depend on the type
of valves and the amount used. Love (2009) reports that valves used in
industry excavating equipment, can consume up to 43% of the energy of the
system. This can substantially decrease the overall efficiency of the system.
Thus there is motivation to replace certain valves of low efficiencies with
alternative ones.

Recently, digital hydraulics has become more prominent in fluid power
research. There has been an expanded focus on digital fluid power in the last
decade due to the improved switching times and the use of robust compo-
nents, increasing the desire for this new technology (Linjama, 2011). Digital
hydraulics introduces the control of fluid power systems using multiple on/off
solenoid valves to control pressure, flow and direction. It aims at offering
efficiency improvements by reducing the amount of losses currently found in
conventional units (Holland, 2012).

Background

Digital hydraulics is an emerging field which incorporates advanced controls,
machine learning, and digital electronics in fluid power systems with the goal
of improving performance, efficiency, energy savings, and overall productiv-
ity. Such improvements can be obtained by improving power management
at a system level, like introducing hybrid configurations or displacement
control, or at a component level like pumps, motors, or valves. With the emer-
gence of digital fluid power technologies, unique pump/motor configurations
could be attained by utilizing high flow and speed on/off valves. These digital
pump/motor systems aim at improving the overall efficiency by discretizing
the flow levels or pressures through the use of digital valves, maintaining a
relatively high efficiency or a lower loss in input power over a wider range of
displacement (Breidi et al., 2017).

A digital pump/motor unit utilizes on/off valves to vary the displacement
of the unit, replacing the valve plate that was commonly used to port the
hydraulic fluid. An in-line three-piston digital pump/motor configuration has
been selected for this work, shown in Figure 1.

In-line piston units are commonly used for high pressure applica-
tions, with working pressures going up to 500 bar at a high efficiency
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Figure 1 In-line digital pump/ motor assembly (Breidi et al., 2017).
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Figure 2 Digital pump/motor single piston valve configuration.

(Ivantysyn & Ivantysynova, 1993/2003). Standard in-line units cannot vary
their displacement, but with the introduction of on/off valves per displace-
ment chamber, variable displacement could be achieved.

The unit of interest utilizes two high speed on/off valves for each
individual displacement chamber, for a total of six valves; a single digital
pump/motor piston valve configuration is shown in Figure 2. Such a config-
uration allows active and independent control of the displacement of each
chamber, and to keep the pressure in the disabled chambers low (Breidi et al.,
2015). Keeping the pressure low in the inactive pumping chambers scales
down the leakage losses to be proportional with displacement, improving the
efficiency as it eliminates the shear and leakage losses found on conventional
pump/motors between the cylinder block and the valve plate, and reducing
compressibility losses compared to conventional units (Holland, 2012).

By controlling the states of the valves at different shaft locations, pumping
or motoring could be achieved, along with the ability to vary the displacement
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with the use of unique operating strategies. Several digital pump/motor oper-
ating strategies have been proposed in literature (Nieling et al., 2005) and
four of them have been experimentally implemented, partial flow-diverting,
partial flow-limiting, sequential flow-diverting, and sequential flow-limiting
(Merrill et al., 2013). All the experiments and data presented in this paper
were conducted using the partial flow-diverting operating strategy, so the
interest of this paper, only this method will be described (others are described
in Merrill, 2012).

Partial Flow-Diverting

Partial flow-diverting refers to the operating strategy where excess flow is
diverted from the displacement chamber to the low pressure port, rather than
delivering the flow through the high pressure port. Such a strategy enables
changing the displacement from 100% to 0% by diverting any percentage of
flow through the low pressure port. This strategy can be applied whether the
unit is pumping or motoring. A 50% displacement pumping cycle is shown in
Figure 3. Starting from the top-dead-center (TDC) and as the piston is moving
down, flow would enter the chamber from the low pressure port through
valve 1, while valve 2 is kept closed, until the piston reaches the bottom-
dead-center (BDC) filling in the entire chamber with fluid, denoted by (1) on
the figure. To achieve variable displacement, as the piston is moving back up,
the same valve states would be kept (valve 1 would be kept open while valve
2 is closed). This allows part of the fluid to be diverted back through valve 1
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Figure 3 Partial flow-diverting pumping cycle, 50% displacement.
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to the low pressure port until the volume of fluid in the chamber is slightly
larger than the desired displacement (50%) to allow for pre-compression,
denoted by (2) on the figure. To achieve this, both valves are shut while the
piston is moving up to compress the chamber fluid to the desired pressure,
denoted by (3) on the figure. Once the chamber volume reaches the desired
pressure, valve 2 opens and the pressurized fluid would be delivered to the
high pressure port, denoted by (4) on the figure. Such a strategy can achieve
any displacement percentage, but would be highly dependent on the valves
opening areas and response times.

Significance of Valve Response Times

To investigate the significance of valve timing on the performance of digital
pump/motors, Merrill et al. (2013) developed a multi-domain simulation
model using MATLAB based Simscape. The simulation model was for a
three and seven piston in-line pump.

The model was used to predict losses occurring through leakages, com-
pressibility, friction, and metering. The simulation results concluded that a
small delay in the valve opening or closing would result in major noise gener-
ation and energy losses. Figure 4 represents the losses resulting from the error
in valve timing, simulated for a 7-piston in-line pump running at 3000 rpm,

7 piston pump, 3000 rpm, 300 bar, 57% disp
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Figure 4 Percentage loss from theoretical power due to a delay in valve opening (Merrill
etal., 2013).
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300 bar, and 57% displacement in a partial flow-diverting operating strategy.
Results show that if the valves were to open when expected, valve throttling
losses, shown in red, were 6%. However, when a small error in valve opening
of 2 milliseconds occurs, the losses significantly increase. This demonstrated
the importance of valve timing in the viability of digital fluid power systems.

To improve the response times of commercially available on/off valves,
industry has been utilizing a peak-and-hold and reverse current solenoid
driving strategies (Breidi et al., 2015). The peak-and-hold concept is based
on speeding up the establishment of the magnetic field by using an initial
high voltage signal for a short duration, overcoming the inductance and eddy
current lag. This peak signal is then followed by a holding current which
keeps the armature in place. Similarly, the reverse current strategy speeds up
the decaying of the lingering current and residual magnetism in the solenoid,
which opposes the closing force of the spring (Batdorff, 2010).

In order to reduce the losses due to the variation in the valve delays,
Breidi et al. (2017) developed a real-time valve correction algorithm which
uses the pressure ripples on the high and low pressure lines to actively detect
the valve delay times. The concept was based on the knowledge that valve 1
is connected to the low pressure port, while valve 2 is connected to the high
pressure port, as shown in Figure 2. So when a valve state changes, a pressure
ripple is expected to appear at the respective port, corresponding to the time
when the valve actually changed its state. Given that the sending time of
the valve signal is known, the delay time of the valve corresponds to the
difference in time between the valve signal and the peak appearance. The
implemented peak detection mathematical technique was a threshold cutoff,
which is commonly used for shift detection. However, such a technique
doesn’t account for the variability in the peaks, which is why the algorithm
operated over a relatively limited range of operating conditions.

This work builds on previous work (Breidi et al., 2017) by introducing a
new technique to actively detect valve delays in real-time. This technique is a
shift detection method for the pressure signals that utilizes domain knowledge
and the historical statistical behavior of the system and could be used in a
wide range of operating conditions.

Shift Detection

Shift detection is widely applied to various fields including healthcare, quality
control and assurance, and manufacturing processes. Moreover, it is common
to raise a shift detection alarm when the rate of change in a signal surpasses
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a predefined threshold. Mathematically, a shift in f(-) is detected at time ¢ if

1f(t)] > a, (1)

where a is the predefined decision threshold.
However, the functional form of the derivative f’(ty) is usually unknown
and it is approximated from the collected data by

fte) — flts — At f(te) — f(te—1)

ft) A%&IE}O At te — te—1 ’ @
where ¢, is the time at the kth observed data point.
Accordingly, a shift at time ¢, is detected if
tr) — f(Te—
f(te) — f(te-1) > a 3)
Uy — th—1

The threshold a is the only tuning parameter in the algorithm and it is
directly proportional to the largest acceptable change in the function before
raising a shift alarm. Furthermore, a is typically chosen to be a fixed value.
If a is underestimated (i.e., chosen to be very small), then even normal
changes in the function are sometimes denoted as significant shifts. However,
if a is overestimated (i.e., chosen to be very large), then even large changes in
the function that corresponds to true shifts are not always detected. Therefore,
the choice of the threshold is critical to exactly identify true shifts.

More generally, for an underestimated fixed threshold, the technique
is highly susceptible to raise false detections due to noise vibrations and
unknown changes in the dynamics of the signal. This technique was initially
implemented on the high and low pressure readings of a three-piston inline
digital pump/motor, but it resulted in a lot of false detections due to the noise
in the signal. Examples of these false detections are shown in Figures 5 and 6.

Figure 5 shows the shift detection performance with an underestimated
threshold. Valve signals are represented in green, where non-zero represents
that the valve was on and zero represents the off state. The dashed green line is
an indicator for the state of valve 2, whereas the solid green line is an indicator
for the state of valve 1. The horizontal solid lines (red and blue) correspond to
the high and low pressure readings. The vertical cyan line is the predicted shift
in the pressure signals using the predefined decision thresholding technique.
The figure shows a false detection in Chamber 1 close to 9 milliseconds due
to the wrong choice of the threshold, where the right value of peak should’ve
been around 14 milliseconds.
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For an overestimated fixed threshold (i.e., chosen to be very large), the
likelihood of missing true shifts increases. Figure 6 shows the shift detection
performance with an overestimated threshold. The figure shows that shifts are
either detected late or not detected at all.

To overcome the limitations of fixed thresholds, research efforts were
proposed to update the decision threshold values in real-time. For example,
(Chehade et al., 2017) proposed a real-time failure threshold estimation
approach based on the available multisensory signals. (Chang et al., 2011)
proposed a dynamic threshold for stock trading signal detection. (Cho et al.,
2010) proposed a dynamic decision threshold level for improving upstream
transmission performance.

Similarly, rather than using a fixed sensitive threshold, this work proposes
a dynamic threshold that depends on the delay time distribution of historical
cycles. Specifically, after a valve is opened, an instantaneous change in the
pressure reading is expected. However, due to response delays in pump
motors, the shift occurs a few milliseconds later. Furthermore, the delay
probability distribution can be estimated from historical data and domain
knowledge. Consequently, after opening a valve the chances of observing a
shift increase with time and it is expected not only after observing a sufficient
change in the pressure but also at the time where the delay probability is large
enough. Therefore, the proposed dynamic threshold is more appropriate for
delay estimation and robust to noise.

Delay Probabilistic Model

The delay in the response time of electric devices is typically stochastic and
changes with time. Similar to other stochastic quantities, it is proposed to
model the delay as a random variable. In particular, the delay in opening
valve v at chamber c is assumed to follow the normal distribution

Dye ~ N (ftwe, 02,). 4)
Where
1 K
- E : (k)
,U/UC - K dvc 9 (5)
k=1
1 K
2 _ 72 : (k) 2
ch K 1 — (dvc :U’UC) I (6)

T k=1



Data-driven Adaptive Thresholding Model 281
K is the number of historical cycles, dq(,’f;)
cycle k for valve v at chamber c.

The normal distribution is just one specific distribution. Other distribu-
tions can be considered including the empirical distribution that is solely
based on the data. Moreover, for every new recorded cycle, the estimates for
the mean and the standard deviation are updated via Equations (5) and (6).

is the observed delay at historical

Delay Estimation Algorithm

The proposed model for shift detection is mathematically written as

|f(tk) — fti1)

> a. @)
bty — tr—1

Where the smoothed values for f(t;) and f(t;_1) are

Ft) = 5LF00) + Pt 1)}, ®)

S
~ 1
Flte1) =5 {2 f(tk_i)}, ©)
and the dynamic decision threshold is

d=ax{l— P(Dye <t —toe|Dye > 0)}
1—P <7,LL’UC> ) (tuc*tk*ﬂvc>
1-d (——U/ﬁc)

Here, t,. is the time that valve v at chamber c is requested to open, S is the
number of measurements between times ¢_1 and .., ®(+) is the cumulative
distribution function of a standard normal distribution. In addition, f(t;_1)
is smoothed by considering S — 1 previous measurements, and f(t) is
smoothed by considering only one previous measurement to preserve the
ripple dynamics.

Algorithm 1 describes the proposed delay estimation approach. Initially,
the queue is empty and all the valves are closed. The valve (v, ¢) is pushed
into the queue when it shifts from a closed to an opened state. If at least one
candidate is in the queue, the algorithm continuously monitors for a shift in
the pressure signals. Once a shift is detected, (i) the first valve in the queue

= a *

(10)
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Algorithm 1 Queue-based delay estimation

1 Initialize p,c and 050 for all v and ¢
2 Initialize an empty Queue, @
3 Predefine the tuning parameter a
4 LOOP: (real-time flowing data)
5 IF valve v at chamber c shifts from O to 1
6 tve =tk
7 Push (v, c) to Q
8 END IF
9 IF @ is not empty
10 (v,0) = Q(1)
11 IF v is the high pressure valve
12 Define f(-) as Phign(+)
13 ELSE
14 Define f(-) as Piow(*)
15 END IF
16 Calculate f (tg), f (tx_1), and @
17 IF '7’?“’;):{(”“1) >4
k k—1
18 dvc =U (tkfl - tvm ty — tvc)
19 Update pt,,c and U?,C
20 Pull (v, ¢) from Q
21 END IF
22 END IF

23 END LOOP (when data stops flowing)

is extracted as (v, c), (i) the delay in opening that valve is estimated by a
uniform random number between t,_1 — t,. and t; — t,. to account for the
sampling rate of the data acquisition system, (iii) the delay distribution of the
valve is updated, and (iv) the candidate (v, ¢) is pulled out of the queue.

Experimental Setup

Experimental data were collected from a 3-piston in-line digital pump/motor
unit, shown in in Figure 7. The unit utilizes two normally closed high speed
on/off valves per displacement chamber, one mounted at the high pressure
port and the other mounted at the low pressure port, for a total of six valves.
The valves implemented on the test stand were Sun Hydraulics DTDA-XCN
valves with a 770-212 12V coil.

National Instruments hardware and software was used for data acquisition
and control. A four-Slot PXI-1031 chassis was used along with a Field
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Figure 7 Three piston digital pump/motor test stand (Breidi, 2016).

Programmable Gate Array (FPGA) card. A PXI-8108 real time controller,
running at 5000 Hz (up to 2.53 GHz), was used to execute a Matlab/Simulink
model which contained all the sensor calibration curves. NI Veristand was
used to interface between the FPGA and Matlab/Simulink. This allowed the
data to be acquired every 0.2 milliseconds.

The pump/motor unit was operated at a pressure of 70 bar, a shaft speed
of 700 rpm, and at 100% displacement.

Results

To test the accuracy of the model, actual delay times were experimentally
measured using the difference between the time that the signal was sent and
the time at which the valve opened. The time when the valve command was
sent was recorded, denoted by a black dotted line in Figure 8. The time
was recorded for a moment after the signal was sent to account for the 0.2
millisecond data acquisition and to ensure that the signal was fully sent.

The time that the valve opened was recorded using the in-cylinder pres-
sure transducer and was approximated using the moment that the in-cylinder
pressure began to spike due to being connected to the high pressure line,
shown in Figure 9.

Figure 10 shows the shift detection performance with the dynamic
threshold. The figure indicates that the dynamic threshold results in better
performance than an overestimated/underestimated fixed threshold. The right
peaks were accurately detected over the entire tested cycles.

A comprehensive video for 1000 milliseconds of operation is attached
with the supplementary files to help visualize the performance of the detec-
tion model. In addition, the next two sections provide more details on the
dynamic threshold model and the delay estimation algorithm.
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Figure 10 Example of the dynamic threshold model on a digital pump/motor setup.

Table 1 The estimated delays versus the manually calculated delays

Manually Calculated Delays Estimated Delays
(Milliseconds) (ftve, Ove) (Milliseconds) (tve, Ove)
(VI,C1) (5.37,0.13) (5.31,0.057)
V1, C2) (5.60,0.14) (5.71, 0.070)
(V1,C3) (5.39, 0.090) (5.50, 0.064)
(V2,C1) (5.33,0.12) (4.91, 0.062)
(V2,C2) (4.84,0.10) (4.90, 0.069)
(V2,C3) (4.47,0.11) (4.49, 0.055)

Table 1 summarizes the experimentally calculated delays and the algo-
rithm estimated delays based on Algorithm 1. Specifically, the mean and
standard deviation of the delay for 70 cycles (i.e., around 6000 milliseconds
of operation). The experimentally calculated delays are based on manual
peak detections in the in-cylinder pressures. The experimentally calculated
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Figure 11 Estimated delays vs true delays for (V2, C2).

delays are considered to be close enough to the true delays and serve as the
comparison basis for the delays. The table shows that the mean and standard
deviation of the estimated delays are very close to that of the manually calcu-
lated delays. The table provides clear evidence that the proposed Algorithm 1
accurately and reliably estimates the delay with a 95% confidence interval
that is within 2 samples (0.4 milliseconds) of the manually calculated delay.

For better comparison between the calculated delays and the estimated
delays, Figure 11 shows the estimated and calculated delays over the 70
cycles of Valve 2 at Chamber 2. Not only does this show the accuracy of
the proposed method in detecting the valve delays in real-time, but it also
accounts for the error due to the sampling rate of the data acquisition system
of 0.2 milliseconds, which wasn’t considered in the existing approaches,
resulting in more realistic estimations for the delays. The figure provides
enough confidence in the predictions and performance of the proposed delay
estimation algorithm.

Figure 12 further shows the distributions of the predicted delays for the
six valves. Every red dot represents the delay estimate of one cycle. The
Probability Density Function (PDF) is shown on the left side of the figure
and the Cumulative Distribution Function (CDF) is shown on the right side.
The figure shows a symmetric and normal spread of the predicted delays
around the center of the fitted distributions, which is a major observation
that validates the choice of the normal distribution.

Figure 13 shows the sample quantiles of the actual delays versus the quan-
tiles of the estimated distributions shown in Figure 12. While the normality
assumption holds only for the range —1 and 1, that range covers the first
quartile, the median, and the third quartile. Furthermore, the low standard
deviation shown in Figure 15 in comparison to the mean value shown in
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Figure 13 Normal probability plot showing the actual delay quantiles versus the estimated
distribution quantiles for the six digital pump/motor on/off valves.

Figure 14 introduces high sensitivity in fitting a distribution for the delays
and also suggests that the mean value by itself is a good estimate regardless
of the distribution assumption.

Finally, Figures 14-16 show the adaptive mean, standard deviation, and
threshold for the entire 6000 milliseconds, respectively. The initial values
for the mean of the delay is chosen based on domain knowledge to be 5
milliseconds, the standard deviation is chosen to be 0.1 milliseconds and the
threshold is selected based on another training dataset based on the distance
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of the highest peak and the mean value in that dataset. As shown in the
Figures, the mean, standard deviation, and threshold adaptively change for
each of the six digital pump/motor on/off valves. This provides another reason
for the high accuracy of the proposed algorithm.
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Figure 16 The adaptive threshold as a function of time.

Conclusion

This paper shows the development and evaluation of a statistical based
thresholding model which adaptively estimates real-time valve delays that
can be used for digital Pump/Motors to improve efficiency in hydraulic
systems. The contributions of the paper are multifold: first, an automated
statistically data-driven algorithm is proposed to estimate the delay in real-
time during operation. Second, a probabilistic model is provided for the
delays to quantify the uncertainties and confidence of the estimated delays.
To validate the effects of the this model, real time data was acquired and
analyzed using pressure transducers to measure and approximate the valve
delays for a hydraulic system including an 3 piston in-line pump/motor and
6 on/off solenoid valves. The model was then compared to this real time data
to determine the effects of the model. The results prove the algorithm to be
successful in measuring and adapting the threshold for real time valve delays.
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