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Abstract

A unique method of improving energy efficiency in fluid power systems is
called digital flow control. In this paper, binary coding control is utilized.
Although this scheme is characterized by a small package size and low energy
consumption, it is influenced by higher pressure peaks and larger transient
uncertainty than are other coding schemes, e.g., Fibonacci coding and pulse
number modulation, consequently resulting in poor tracking accuracy.

This issue can be solved by introducing a delay in the signal open-
ing/closing of the previous or subsequent valve, thus providing sufficient
time for state alteration and valve processes. In a metering-in velocity
control circuit, a feedforward neural network controller was used to create
artificial delays according to the pressure difference over the digital flow
control unit (DFCU) valves. The delayed signal samples fed to the controller
were acquired through the genetic algorithm method, and the analysis was
performed with MATLAB software.
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The results display better overall tracking accuracy than do those of
other methods. Although the system exhibits low accuracy at high acceler-
ation demands, the proposed controller still slightly increased the accuracy
compared under these conditions to traditional methods.

Keywords: digital hydraulics, speed control, pulse code modulation,
pressure peaks, neural network.

1 Introduction

1.1 Addressing the Problem

In flow control using pulse code modulation (PCM), i.e., binary coding,
particularly when shifting from a discrete flow value to another, pressure/flow
peaks appear and affect the tracking accuracy due to transient uncertainty.
This phenomenon occurs when the valves switch their states from ON to
OFF, or vice versa. In other words, if a transition flow is demanded from 1Q
to 2Q, the initial valve (V1) is closed, and V2 is opened by the digital flow
control unit (DFCU; n = 2).

These tasks should occur immediately, but in reality, they take time due
to valve dynamics, so two opposite possibilities can occur. First, if valves
overlap for a short duration, the transient net flow (pressure peak) in this
transition state is the summation of Q1 and Q2. This type of flow occurs
because the V2 opening time is shorter than the V1 closing response time.
Second, if valves underlap, in this temporary state, the transient net flow is
zero. This type of flow occurs when the V2 opening time is longer than the V1
closing time. These transition states end when the valves successfully change
their state to a stable steady state.

1.2 Summary of Previous Methods of Minimizing
Pressure Peaks

Starting with (Linjama et al., 2002a), they retarded the closing of all valves
with a fixed value to compensate for the slow opening process. Additionally,
(Linjama et al., 2003) outlined the causes of pressure peaks are the load
mass, system dynamics, and acceleration demands. Moreover, (Linjama et al.,
2002b) defined the bounds of the opening and closing delays of the valves;
however, the maximum system velocity was limited to decrease pressure
peaks in certain conditions. Besides, the magnitude of the pressure peak was
found to highly depend on velocity changes, the inertial load, and the closing
behaviour of the valve. While (Laamanen et al., 2003) experimentally verified
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that uncertainty caused by viscosity changes is proportional to the flow rate.
Furthermore, (Linjama and Vilenius, 2004) noted that delays also depend on
pressure and temperature conditions. Moreover, they retarded the opening
and closing of several valves with a specific constant value for each, and
these values varied from 10 ms to 35 ms.

In a more specific study (Laamanen et al., 2004), the results based on
two different pressure differences (2 and 8 MPa) were used to adjust the
optimal delay compensation of every valve. The target of the controller was to
have all the controlled valves switch their states simultaneously, consequently
delaying the closing process. Regarding the methodology of acquiring these
delayed values; in (Morel and Boström, 2007) research, closed-loop pressure
and flow/velocity controllers were used. However, the valve delays were
estimated from the open-loop responses of the tested system.

Another way of reducing, but not fully eliminating, pressure peaks
is through employing electricity. Notably, (Laehteenmaeki et al., 2010)
decreased the inherent valve delay from 35 ms to approximately 10 ms by
boosting the valve with 36 V of DC. In addition, the results revealed that
the valve size has an impact on delay variations. However, the difficulties
associated with boosting the valve voltage above the recommended manu-
facturer value increase the possibility of valve malfunction and decrease the
valve lifetime. Moreover, additional electric components and more advanced
controllers are needed for boosting.

The first mathematical model of the pressure peak phenomenon related to
PCM control was introduced and theoretically discussed by (Laamanen et al.,
2005), but no proposed controller was presented to resolve this issue. The
authors highlighted the negative effect of peaks on a hydraulic circuit due to
inexact switching times and suggested that the most promising pressure peak
minimization methods are switch time tuning methods and cost function-
based controllers. Later, the same authors (Laamanen et al., 2007) suggested
that the risk of pressure peaks formation is the highest in PCM coding,
followed by Fibonacci coding, then pulse number modulation (PNM).

Another cause of pressure peaks is the poor repeatability of valve pro-
cesses; consequently, (Ketonen et al., 2012) recommended that the switching
time must always be slightly longer than the valve response time, because the
random uncertainties associated with valve opening can cause large pressure
peaks.

A key study (Linjama and Vilenius, 2007) classified uncertainties in a
binary-coded DFCU into two types: steady state uncertainty and transient
uncertainty, the former of which can be divided into two forms. First, steady
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state output (flow rate) uncertainty is due to the fuzzy effective opening of
the valve. Second, step size (timing) uncertainty, which is equal to the sum of
the uncertainties of all operating valves during state changing; for example,
if a step input of 5Q is called, it cannot instantaneously occur, so a lag time
passes before reaching this value. During a transition event – which includes
the simultaneous opening and closing of valves – and due to variations in the
response time, valves tend to overlap or underlap. Notably, pressure peaks
appear in case of valves overlapping.

In conclusion, two main factors affect pressure peaks in transient states.

• The first factor is related to the circumstances, such as a change in the
operating pressure, temperature, fluid viscosity, or valve size. Variations
in the operating pressure for different valve sizes will be investigated
and compensated for, and these changes are modelled through hydraulic
characterizations.
• The second factor is randomness or inaccuracy (uncertainty) associated

with the valve itself, which is beyond the scope of this study.

2 System Description and Dynamic Modelling

2.1 Preface: A Case Study

This study is based on the work performed by (Elsaed et al., 2017), who
compared the energy efficiency of a DFCU using five on/off poppet valves
(Hydraulics, 2018a) and a low-cost proportional valve (Hydraulics, 2018b)
when implementing a metering-in hydraulic circuit. The comparison indi-
cated the DFCU managed to achieve a 93% energy reduction over the
proportional valve because the latter operates at a much higher pressure,
although poor tracking performance was observed. The source of the highest
portion of these fluctuations was DFCU dynamics and not the DFCU resolu-
tion (Elsaed et al., 2017). Moreover, decreasing the DFCU step size did not
considerably reduce these deviations.

The hydraulic system shown in Figure 1 is comprised of a (φ32/16–
1000) mm cylinder, a 4/3-way spool valve (Wadowice-WE6s12x), a relief
valve (Oleoweb-VMDR40) with a maximum pressure set to approximately
20 bar, a pump (HYDURA PVQ-06), a motor unit (1.5 kW rated power) with
a maximum delivery of 13.9 cm3/rev, a single DFCU (n = 5). The DFCU
included five on/off solenoid direct-operated poppet valves (Hydraulics,
2018a), and the variable-load ranged from 0 to 1000 N.

The oil 30-W bulk modulus used was 1.7 GPa at atmospheric pressure,
and this value was modelled as a variable according to the system pressure.
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One application of a dynamic model of fluid compression is to determine the
fluid hammer effect in the system. In this case, the effect accounted for just
0.3 bar increase in the pressure.

The natural frequency of the system (ωn) is 40 Hz, which is ten times the
digital valve operating frequency.

Figure 1 Developed near-real DFCU (n = 5).

2.2 Mathematical Equations

Velocity tracking is challenging in digital hydraulic valve systems when the
velocity approaches the smallest possible value (Linjama et al., 2016); to
address this issue, a hydraulic circuit with a low-speed range and a rated load
speed (vr) equal to 30 cm/s at a rated load (Fr) of 1000 N was developed.

The approach used was PCM with a DFCU (n = 5) due to the compact
size and adequate flow steps in the approach. At n = 5, the velocity output has
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31 steps ranging from 0.5 to 15.5 L/min. An orifice is attached to each valve
of the DFCU to adjust the valve flow rates based on the PCM sequence of
1, 2, 4, 8, and 0.5 L/min; this is an ideal sequence that is difficult to achieve in
reality. Orifice diameters of 0.85, 1.3, 1.8, 2.5, and 0.6 mm were selected for
the on/off valves at a maximum load of 1000 N. The objective was to achieve
the desired flow sequence with the minimal orifice differential pressure
(∆Po). These orifices were modelled according to formula (1) (MathWorks,
2006).

Q = Cd ×Ao(2/ρo)
1/2 × [∆Po/(∆P

2
o + P 2

cr)]
1/4 (1)

The effective valve area was calculated using the valve performance curve
from (Hydraulics, 2018a) and Equation (2) – a simplified form of Equa-
tion (1) – by assuming Cd = 0.8, ρ = 850 kg/m3, and ∆Pv = 2.4×105 Pa at
Q = 8 L/min, or 1.33×10−4 m3/s. Subsequently, the effective valve diameter
is 3 mm.

Q = Cd ×Av[(2∆Pv)/ρ]1/2 (2)

Remarkably, the area ratios of the valves to orifices vary from 25 (smallest
orifice) to 1.4 (largest orifice). These differences will significantly impact the
formation of pressure peaks.

3 Controller Design

In the proposed system, the control objective is to regulate the speed of the
payload. The utilized controllers are introduced below.

• Feedforward controller design based on a steady state model: This
controller controls the actuator speed by regulating the metered inflow
through the DFCU and the cylinder load through a feedforward process.
• Predictive control scheme based on a neural network: This approach

reduces the transient system peaks by introducing a discrete variable-
based artificial delay to the DFCU valves.

3.1 Feedforward Controller Design Based on a SteadyState
Model

3.1.1 Controller configuration
The DFCU adjusts the inlet flow so that it balances the actuator velocity
demand based on the load disturbance by adjusting the effective openings of
the valves. The open-loop feedforward controller was used in a recent study
by (Huova et al., 2013) in a 4-DFCU system; they experimentally obtained a
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high tracking accuracy with a reduction in energy consumption of (20–60)%
at different loads compared to that of a proportional valve.

3.1.2 Controller governing equation
Based on the research of (Linjama et al., 2003), the governing formula for the
proposed circuit is as follows (3).

up = (AA × vdesired)/[QN,P1[Ps − (F +AB × PB)/AA]1/2] (3)

In this case, the calculated signal up is used to open a group of on/off
valves. The signal up is rounded up and binarized to upi, i.e., 1, 2, 4, 8, or 0.5.
Here, the system has only 32 states (including zero), as n = 5. Accordingly,
the subsequent flowchart (Figure 2) demonstrates the controller procedures.
Note that Equation (3) can be simplified by assuming that Ps is the gauge
pressure prior to DFCU implementation and that PB is the tank pressure, i.e.,
zero gauge.

Figure 2 Feedforward control diagram of the DFCU (n = 5).

3.2 Predictive Control Scheme Based on a Neural Network

3.2.1 DFCU valve dynamics
Inherent delay
A 2-position valve actuator was used to drive the on/off valves, and both
the ON (50 ms) and OFF (50 ms) responses were modelled. Furthermore, the
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dynamics of the valves were modelled as a delay phase, a subsequent constant
acceleration phase, and finally a constant velocity phase.

In this case, the valve opening and closing response times are similar;
however, this is compensated by the difference in the hydraulic flow time,
which is influenced by the corresponding hydraulic characteristics. Notably,
the flow response is faster when opening a valve than when closing a valve. In
other words, because the area ratios of valves to orifices vary from 25 to 1.4,
as previously calculated, it is evident that a significant portion of the hydraulic
resistance results from the orifices, not the valves. Consequently, any short
extending stroke (opening valve) will pass a large part of the flow, while to
stop the large fluid portion, a lengthy retracting stroke is needed (closing
valve). It is therefore imperative to delay the opening of valves, such that the
valve opening and closings processes occur as simultaneously as possible.

Table 1 shows the state transitions for the ramped input of a DFCU
(n = 4) (where n = 4 provides a more straightforward example than n = 5).

Table 1 Valve delay conditions in ascending order based on the flow demand of a DFCU
(n = 4)
Valves DFCU (n = 4) Combinations
V1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
V2 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
V3 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
V4 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Net Flow 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

An analysis of Table 1 yields the following findings.

• An induced delay is required only for valves opening under certain
conditions, as represented by the grey blocks.
• An artificial delay is needed whenever a state is changed from (2n−1−1)

to (2n−1) (i.e., from 7 to 8), and vice versa. Because all valves contribute
to this transition overlap for a short period.
• In ascending order, V1 (step size of the DFCU n = 4) needs no delay

because when shifting from a state where V1 is closed to a higher state
flow, e.g., Q2 to Q3, the latter desired state is always the summation
of the former state plus V1 (step size). Thus, when overlapping occurs,
it is for the benefit of the system because this combination will result
in the new demanded state. However, in ascending, unordered specific
transition states (9 transition states in DFCU n = 4), i.e., (Q2 to
Q5), (Q2 to Q9), (Q2 to Q13), (Q4 to Q9), (Q4 to Q11), (Q6 to Q9),
(Q6 to Q11), (Q6 to Q13), (Q10 to Q13), the artificial delay values are
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necessary for the smallest valve (V1). These states occur when V1 is
closed in the first state, while it is opened in the second one, and at least
another valve is opened in the first state and is closed in the last.
• Also, in ascending, unordered transition states, e.g., from Q1 to Q6

(corresponding to V1 to (V2 + V3)), the subsequent V2 and V3 opening
signals must be delayed.
• However, in descending transition states, whether it’s in order or not, as

long as the valves shift from OFF to ON, they should be delayed at the
opening. For instance, a transition from Q2 to Q1, V1 must be delayed,
similarly, from Q9 to Q6, both V2 and V3 should be delayed. This is
because, at least one of the valves that were opened in the first state will
close in the second state. Therefore, the delay is required at the opening
to prevent unwanted super positional flow.
• For a ramped input, the first valve opening requires no delay because no

transition has yet occurred.

For a DFCU with n = 5, the actual coding scheme used in this paper,
the only difference is the step size is 0.5 L/min, and the maximum flow
is 15.5 L/min. To apply these concepts, first, a Stateflow controller is
constructed, as shown in Figure 3. V1 delay scheme is presented in the
following flowchart, and slight changes in the configurations of other valves
delay schemes were considered. To the best of the authors’ knowledge, no
previous study has introduced a delay state-oriented technique, such as that
described here. In other words, generally delaying the opening of valves at
all state transitions, as previously shown in the literature, will not achieve an
optimal solution.

Valve switching time
According to the information given by the manufacturer (Hydraulics, 2018a),
the valve switching frequency (f) is 4 Hz. However, at steep trajectories, the
controller orders the valves to switch rapidly to keep track of the reference.
Therefore, a sort of switching regulator function is created to limit the
operating frequencies of the valves. The working principle of this function
(Figure 4) is to ensure a minimum of half period elapsed before changing the
valve state, where T is the periodic time, i.e., 25 ms. In practical applications,
it is recommended to limit the switching frequency of the valves to only 20%
to avoid repeatability issues. In this research, a 5 ms sample time is used for
delay compensation and the MATLAB solver.
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Figure 3 Delay implementation flowchart (with valve 1 as an example).

3.2.2 Controller strategy
In this study, the introduced delay is varied online according to the differential
pressure across the DFCU. Therefore, the pressure at two points must be
calculated.

• The posterior DFCU pressure in the upstream line, i.e., the piston
chamber, is represented by the load force (F ).
• The anterior DFCU pressure in the upstream line, i.e., a point after V4/3,

is represented by the input speed derivative, dv. The relation between
pressure and acceleration is described in the next paragraph.

(Jelali and Kroll, 2012) mathematically verified the deterministic connection
between flow acceleration and differential pressure. Based on the same
principle, the pressure before the DFCU can be estimated according to the
acceleration value.
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Figure 4 Valve switching regulator function flowchart.

The benefit of using dv instead of pressure is that it improves the
prediction of the desired velocity one step ahead of time, and the result is
sufficient for selecting the appropriate delay value for the next opening valve,
consequently alleviating the pressure spikes. Therefore, a control technique
is needed to regulate and predict these artificial delays. The controller is
designed as follows.

(I) Neural Network Topology

Neural network (NN) using Levenberg–Marquardt learning algorithm has
performed well in prediction of nonlinear chaotic data one step ahead
(Mirzaee, 2009; Dong et al., 2013).
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The DFCU controller delay has two independent variables (F and dv)
and four dependent variables (D1, D2, D3, D4); these are the delays values
for each valve. An NN is an ideal choice in this case study due to the
high nonlinearity of the model. Nonlinear regression using NN, a technique
commonly used in predictive modelling, is used to estimate the relationships
among variables based on the model data and to predict the response variables
(Ottenbacher et al., 2004).

An NN-based controller architecture typically consists of two steps:
system identification and control design. In the system identification stage,
the developed DFCU (n = 5) was identified from a set of input-output data
pairs collected from a genetic algorithm (GA) model. In the controller design
stage, a multi-layered feedforward neural network (MLFNN) trained with
a backpropagation (BP) learning algorithm, a widely used NN approach, is
used (Nelles, 2013).

With multilayer perceptron networks, the weights appear in a nonlin-
ear way; accordingly, BP algorithm in combination with gradient descent
algorithms is slow in determining the optimum weights. Therefore, second-
order training function such as Levenberg–Marquardt optimization (trainlm)
is recommended.

The Levenberg–Marquardt algorithm solves the problems existing by the
combination of both the gradient descent method and the Gauss–Newton
method. This optimization, however, has its flaws for huge networks. One
problem is that the speed gained by second-order approximation may be
lost. Another problem is that the memory needed may be too large to
be practical. Fortunately, the Levenberg–Marquardt algorithm is strongly
recommended and remarkably efficient for small and medium-sized NN
(Yu and Wilamowski, 2011).

The training data is distributed among three sets, training (70%),
validation (15%), and testing (15%). Training data set is used to adjust the
weights during training, while in validation, a new data is given and tested
periodically during training to determine if the model is trying to overfit.
Notably, validation data is, in some way, has been dealing with NN during
training; so, testing data is needed to evaluate the NN predictive capability.

A simple method in scheming the NN structure is to use one hidden
layer, and then, if using a large number of hidden neurons does not solve the
problem, it may be worth trying a second hidden layer (Svozil et al., 1997).
After several trials in constructing the NN structure, it was decided that NN
architecture, constructed by MATLAB/Simulink NN Toolbox, described in



Using a Neural Network to Minimize Pressure Spikes 335

Figure 5 and Table 2, yielded to the best results with the most straightforward
approach.

Figure 5 NN Simulink implementation (delay regulation).

Table 2 NN topology parameters
Parameter Data
Inputs F and dv

1st hidden layer neurons 10

Outputs D1, D2, D3 and D4

Number of epochs 27

Regression 0.8, the closer R is to one, the stronger the model.

Number of training data 110 samples.

Training method Levenberg–Marquardt BP.

Activation function type Tangent sigmoid (tansig), while linear activation functions
(purelin) are employed at the output layers.

Validation checks 6 (early stopping), the maximum number of consecutive
iterations that the validation performance fails to decrease.
If it reaches, the training will end to stop overfitting.

Mean squared error (mse) 3.7e−5 at epoch 21, the closer mse to zero, the more
accurate model.

(II) Training Data Generation
The GA calculates the optimum delay time by minimizing the CRMS error
based on Equation (4) in different scenarios.

CRMS =

(
1

T

∫ T

t=0
‖u(t)‖2 dt

)1/2

(4)

where the CRMS error is the cumulative root mean square error and u(t) is
the variation between the output speed and the reference signal.

In this study, GA is chosen because it can be employed for a wide variety
of problems, has a higher chance of reaching a global optimum solution than
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traditional optimization methods, and the search space is not well understood
(Sivanandam and Deepa, 2008).

Table 3 Specifications of the GA model
Parameter Data
Reference variable Speed at specific accelerations and specific loads.
Correcting variables D1, D2, D3 and D4 together at every iteration.
Optimization stopping criteria The optimization iteration is restarted when the maximum

speed is reached.
Objective Minimize the CRMS error.

No specific rule was found for the optimal number of samples required for
the NN, but in general, large quantities of input/output data and few hidden
neurons yield the best results. A simple method of determining the quantity
of required training data is to apply the following minimum and maximum
thresholds for training samples (Lawrence and Petterson, 1993),

Min number = 2× (inputs + hidden neurons + outputs) (5)

Max number = 10× (inputs + hidden neurons + outputs) (6)

Based on the above limits, between 32 and 160 values should be used.
The samples were associated with desired accelerations of 5, 10, 15, 20, 25,
30, 35, 40, 45, and 50 cm/s2 and discrete loads of 0, 100, 200, 300, 400,
500, 600, 700, 800, 900, 1000 N; thus, 110 samples were used in total. These
samples cover the complete system operating range to develop an accurate
model for the NN.

The GA optimized delays are presented in Figure 6. Notably, the four
graphs were generated by GA concurrently at every iteration, because the
relationship between each dependent variable (output) is not limited to the
independent variables (inputs) separately, but also the interactions among
the dependent variables themselves, based on the working principle of
PCM-coding.

Overall, the developed DFCU (n = 5) (Figure 1) controller (Figure 7)
features are as follows.

• Pressure-compensated flow is achieved.
• The induced delays are predicted.
• The valves are distributed based on a binary method with a 0.5 L/min

step.
• System dynamics and nonlinearities, such as fluid inertia, bulk modulus,

supply pressure, and electric motor properties, are considered.
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Figure 6 Four contours of the 110 delay samples optimized by the GA for V1, V2, V3 and
V4 at different loads and accelerations.

• Finally, the inherent response and switching time of each valve are
included in the system model. However, the 4/3 valve dynamics and
hydraulic resistance were neglected to focus on DFCU performance.

4 Simulation Results

4.1 Controller Delay Testing

4.1.1 Sinusoidal test at maximum load
The results of a sinusoidal input of 1 rad/s at the maximum load, i.e., 1000 N,
without the artificial delay NN are presented in Figure 8 (CRMS = 1.8), and
the results with a functional NN (CRMS = 1.3) are shown in Figure 9. It is
evident that the CRMS is reduced by 28% by applying the NN.

The corresponding separate flow rates are presented in Figure 10. It is
clear that the valve overlap is decreased.

A detailed explanation for the poor performance shown in Figure 8 is
given in Figure 11. Mainly, a recurrent delay caused by the valve switching
regulator. To a lesser extent, the system inertia and the inherent delay of the
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Figure 7 Developed DFCU (n = 5) controller block diagram.

Figure 8 Developed DFCU (n = 5). Sine input reference and the response output at 1000 N
(NN is OFF).
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Figure 9 Developed DFCU (n = 5). Sine input reference and the response output at 1000 N
(NN is ON).

Figure 10 Valve overlap minimization with the NN for a sinusoidal signal at the maximum
load.

valve. Notably, V5 should have been operated at 15 Hz to track this trajectory
smoothly, while larger valves at relatively lower frequencies.

The improvement in the tracking accuracy shown in Figure 9 is based
on two synchronized stages (Figure 12). (I) NN generates the corresponding
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delay values at 1000 N load and [30, 2.5] cm/s2 acceleration. (II) These values
become accessible to the controller at the exact times defined by the delay
scheme, previously depicted in Figure 3.

Figure 11 Valve 5 controller signal and the corresponding dynamics, a closer analysis for
Figure 8 [0, 0.5] sec.

Figure 12 Unconstrained and constrained delay values by the NN architecture (F: 1000 N,
dv: 30–2.5 cm/s2) for Figure 9.

The following Table 4 compares the actual delays applied, to the recom-
mended induced delays for an ideal ascending order reference. Because of the
relatively steep sine wave and the slow valves, some states were not possible
to achieve; consequently, these states were overpassed by the controller. Also,
there is no need to delay V5 in this scenario.
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Table 4 Performance analysis for the delay scheme applied to DFCU (n = 5)
Parameter DFCU (n = 5)
Theoretically
delayed
valves

V1 V2 V1 V3 V1 V2 V1 V4 V1 V2 V1 V3 V1 V2 V1

Actual
delayed
valves

V1 V2 0 V3 V1 V2 0 V4 V1 V2 V1 V3 V1 V2 0

Flow rate 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4.1.2 Sinusoidal test at no load
The results for a sinusoidal input of 1 rad/s at no load and without the
NN are presented in Figure 13 (CRMS = 2.4). When the NN is applied
(CRMS = 1.5), as shown in Figure 14, the controller performance increases
by 38%.

Figure 13 Developed DFCU (n = 5). Sine input reference and the response output at no
load (NN is OFF).

Figure 14 Developed DFCU (n = 5). Sine input reference and the response output at no
load (NN is ON).
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4.1.3 Variable-load test
In these tests, the fluid inertia was neglected to simplify the simulation, and
the corresponding impact on the results was marginal for the defined purpose
of this study. The system was tested based on a trapezoidal load (1000 N),
as presented in Figure 15. The undershoots and overshoots were caused by
rapid, unexpected loads.

Figure 15 Developed DFCU (n = 5). Trapezoidal load (F) of 1000 N [1, 1.5] sec and the
response output.

A ramped input with a high-slope load (dF/dt = 100) is shown in
Figure 16. The speed stabilizes after the load settles at 1000 N.

Figure 16 Developed DFCU (n = 5). Ramped load of 1000 N and the response output.

4.1.4 Descending & ascending unordered trajectory tests
The main purpose of this test is to evaluate the delay scheme and further
inspect the controller stability.

(A) Descending Unordered
A step input (33 to 21 to 12) cm/s, is presented in Figure 17 (NN is off), and
Figure 18 (NN is on). The velocity ripples are due to the system inertia and
the absence of a damping factor such as the load.
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Figure 17 Developed DFCU (n = 5). Descending unordered reference and the response
output at No load (NN is OFF).

Figure 18 Developed DFCU (n = 5). Descending unordered reference and the response
output at No load (NN is ON).

The corresponding valves for this trajectory are (I: V1, V5, V4 to II: V3,
V2 to III: V2, V1, V5), and as previously explained, the valves that should be
delayed are I: None. II: Both V2 and V3. III: V1 and V5 only, as shown in
Figure 19.

Figure 19 Unconstrained and constrained delay values by the NN architecture for descend-
ing unordered trajectory (F: no load, dv: constant).
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(B) Ascending Unordered
A step input (12 to 21 to 33) cm/s, is presented in Figure 20 (NN is off), and
Figure 21 (NN is on).

Figure 20 Developed DFCU (n = 5). Ascending unordered reference and the response
output at No load (NN is OFF).

Figure 21 Developed DFCU (n = 5). Ascending unordered reference and the response
output at No load (NN is ON).

The corresponding valves for this trajectory are the same as in the previ-
ous test, but in reverse order, i.e., (I: V2, V1, V5 to II: V3, V2 to III: V1, V5,
V4). However, the valves that should be delayed are I: None. II: V3. III: V1,
V5 and V4, as shown in Figure 22.

Discussion
Interestingly, V5 required to be delayed in both tests. The delay state-oriented
technique shown in Figure 3 can easily determine the exact time suitable for
implementing the delay values for V5. However, determining the value of
this delay, i.e., D5, wasn’t either optimized using the GA nor predicted using
the NN, while a constant predetermined value of 15 ms was given to the
controller, for the following reasons:

(I) V5, which is the smallest valve, has a minimal effect on the pressure
peaks in the system.
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Figure 22 Unconstrained and constrained delay values by the NN architecture for ascending
unordered trajectory (F: no load, dv: constant).

(II) The conditions at which V5 should be delayed are relatively limited,
particularly in ascending transition states. In a DFCU (n = 5), the
number of every possible “paired” states is 2n P “2” = 992. While the
number of ascending, unordered transition states in which V5 needs to
be delayed is 55, as shown in Table 5. In descending transition states,
V5 should be delayed whenever it opened, i.e., 1/2 × 2n−1 P 2 = 120,
this is because the number of states in which the smallest valve is ON in
the “descending” order is “1/2” × 2n−1.

Table 5 Delay times required for the V5 in DFCU (n = 5), during ascending, unordered
transition states at the ideal operating conditions (V1: 1Q, V2: 2Q, V3: 4Q, V4: 8Q, V5: 0.5Q)

From Total Flow Rate (Q) To Total Flow Rates (Q)
1 2.5, 4.5, 6.5, 8.5, 10.5, 12.5, and 14.5.
2 4.5, 5.5, 8.5, 9.5, 12.5, and 13.5.
3 4.5, 5.5, 6.5, 8.5, 9.5, 10.5, 12.5, 13.5, and 14.5.
4 8.5, 9.5, 10.5, and 11.5.
5 6.5, 8.5, 9.5, 10.5, 11.5, 12.5, and 14.5.
6 8.5, 9.5, 10.5, 11.5, 12.5, and 13.5.
7 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, and 14.5.
9 10.5, 12.5, and 14.5.
10 12.5, and 13.5.
11 12.5, 13.5, and 14.5.
13 14.5.

(III) To optimize the delay values of the smallest valve, D5, an additional
laborious optimization process could be done by either one of these
two proposals. (A) Rerunning the GA model at negative speed slopes
(descending order), i.e., dv = negative. (B) Creating scenarios simu-
lating the 55 ascending, unordered transition states, to be subsequently
run by the GA. Finally, feed these optimized samples to the NN. These
suggested solutions are left for future studies to explore.



346 E. Elsaed et al.

5 Conclusion

A controller is proposed for a digital hydraulic system coded with PCM.
The use of an NN yielded a considerable reduction in the tracking error of
up to 38%. The feedforward controller is better suited than the traditional
feedback controller for regulating artificial delays. Notably, because of the
rapid occurrence of pressure peaks, i.e., rapid surges and declines, once the
valve receives the ON command, the feedback controller cannot respond and
reduce the resulting error.

These findings could be extended and applied in separate meter-in and
meter-out circuits. Referring to the earlier studies of DVS control and due
to the previously discussed problems with PCM; many researchers have
implemented PNM control methods. Therefore, with the aid of the proposed
delay controller, PCM has extensive application potential in the flow control
field.

However, the system still has some issues, such as those associated with
fast demand acceleration or sudden loads, which are related to the slow
valve response. Another important point to consider is that typical DFCUs
operate at higher frequencies than 4 Hz, still, with the aid of the proposed
controller and the same employed principle, pressure peaks could be studied
for minimization. It should be noted that fast valves are also characterized
by inherent problems, such as noise, severe hammering effects, and high
costs. Another point to consider, the delay value of the smallest valve in the
system, i.e., valve 5, wasn’t optimized using the GA, while this value was
tuned aiming to mitigate the pressure peaks in specific scenario, which is not
necessarily the optimum value in different conditions.

Finally, the paper managed to minimize the pressure peaks in a PCM
metering hydraulic circuit using NN and hence increases the tracking
accuracy.

Nomenclature
Quantity Description Unity
AA Piston area (piston side) m2

AB Piston ring area (rod side) m2

Ao Orifice area m2

Av Valve effective cross-sectional area m2

CRMS Cumulative root mean square error –
Cd Coefficient of discharge –
Di Delay inputs for valves, i = 1. . . 5 ms
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Quantity Description Unity
F Force/Load N
Fr Rated load N
n Numbers of valves valve
PB Pressure in chamber B Pa
Pcr Minimum pressure for turbulent flow Pa
Ps Supply pressure Pa
Q Flow rate m3/s
QN,Pi Nominal flow of the i-th pump side valve,

i = 1. . . 5
(m3/s) Pa1/2

T Periodic time s
up State of the pump side digital flow control unit –
upi Control signal of the i-th pump side valve –
V Valve –
vdesired Piston desired velocity cm/s
vr Rated load velocity cm/s
∆Po Orifice differential pressure Pa
∆Pv Valve rated pressure Pa
ρ Fluid density kg/m3

ωn System natural frequency Hz

Acronyms

Acronym Description
BP Backpropagation
DFCU Digital flow control unit
GA Genetic algorithm
MLFNN Multi-layered feedforward neural network
NN Neural network
PCM Pulse code modulation
PNM Pulse number modulation

References

Dong, G., Fataliyev, K. and Wang, L. One-step and multi-step ahead
stock prediction using backpropagation neural networks. 2013 9th
International Conference on Information, Communications & Signal
Processing, 2013. IEEE, 1–5.



348 E. Elsaed et al.

Elsaed, E., Abdelaziz, M. and Mahmoud, N. A. 2017. Investigation of
a digital valve system efficiency for metering-in speed control
using MATLAB/Simulink. International conference on hydraulics and
pneumatics-23rd edition (HERVEX) 2017 Băile Govora, Romania.
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