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Abstract 

A particle counter was used to detect sliding wear and pitting in a low-speed hydraulic motor. The features used by a 

neural network were accumulated mass, number of particles and time above threshold. The diagnostic tool was experi-

mentally evaluated by collecting data from a test rig running under heavy-duty conditions in a laboratory.  

Accumulated time above a threshold value seems to be an adequate feature to detect severe damage to a low speed 

motor at constant operating conditions. Using a neural network to combine the three features gives earlier and more 

reliable detection of which wear mode is prevailing than when only using the features singly.  
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1 Introduction 

When component or system suppliers are going into a 

new business, access to knowledge concerning a prod-

uct’s performance in use is an asset to improving reliabil-

ity and thereby reducing the business risk. Lacking infor-

mation about how components operate in service reduces 

the ability to improve the component and increases the 

risk of future warranty claims. In order to develop high-

quality components that meet customers’ requirements, it 

is necessary to monitor the performance and use the data 

to improve component quality. For products operating 

continuously and located in remote rural areas, a diagnos-

tic system is a further guarantee of speed, reliability and 

economy in monitoring and maintenance. Suppliers need 

to be confident that monitoring will benefit their products.  

Access to a suitable indication of the deterioration of 

the product in use is also valuable in order to rectify the 

defect or shut down the plant before major breakdown. 

The demand on the diagnostic system is that it needs to 

provide real-time performance monitoring with reliable 

indicators, so that the number of false alarms is mini-

mized; otherwise, the loss of profit due to unnecessary 

plant stops increases. Even in applications using advance 

monitoring technology such as aircraft, the number of 

false warnings results in major losses. According to Stew-

art and Ephraim (1997) the average number of false warn-

ings is 1 per 100 flight hours.  
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It is also of great interest in some applications to ob-

tain an early indication to be able to act adaptively and 

change operating conditions so that the plant can be run 

safely for a short period of time but at reduced capacity. 

Therefore, establishing objective methods for diagnos-

tic analysis that detect the gradually changing status of 

the product is of great interest. Trend analysis is able to 

provide the required background to find out the true 

system condition, and give a definitive go/stop measure 

of condition. Furthermore, the real-time measures and 

analysis can also be used as a design tool in the devel-

opment of new hydraulic components and systems.  

To monitor the condition of a hydraulic system, dif-

ferent technologies, capable of predicting impending 

system failure, are suggested in the literature. Some of 

the methods can be connected to system and measure-

ments done on-line or even in-line. The monitoring 

system provides important information on the condition 

of the system.  

Vibration analysis is widely used in research for de-

tecting faults, such as bearing damage, Dempsey and 

Afjeh (2002) and Dempsey et al. (2004), cavitation, 

volumetric losses and bearing faults, Oppermann et al. 

(2005), and assembly faults by Ramden et al. (1995). 

Vibration is a single parameter that contains a good 

deal of information about the status of a machine. Vi-

bration monitoring utilizes techniques of varying de-

grees of complexity, where the simple model for fre-
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quency analysis involves vibration signature including 

a root cause analysis. Filters are used to distinguish, for 

instance, bearing damage from other machine vibra-

tions. Even though specially designed filters give dam-

age detection at a very early stage, the damage has 

already occurred. Furthermore, the fault detection rate 

of condition monitoring by analysis of vibration data is 

about 70 % according to Larder (1999).  

An essential component in hydraulic transmission, 

the hydraulic fluid, needs to be clean to ensure long 

system life. Contamination levels within the hydraulic 

system also give an indication of the status of the com-

ponents in the system. According to Roylance and Hunt 

(1999), solid particulate matter in hydraulic systems is 

the most likely cause of failure.  

Normally, hydraulic component suppliers recom-

mend that the oil should be analyzed regularly to de-

termine properties such as viscosity, oxidation, water 

content, additives and contamination level. Elemental 

analysis can determine which part in the system is 

worn. Off-line contamination analysis is carried out by 

analyzing the content taken from the filter, oil samples 

or magnetic plugs.  

Other factors of interest in analysis of contaminants 

are quantity, size, composition and morphology (Park 

et al., 2003). The morphology analyses of wear debris 

are recognized by computer image analysis. Debris 

shape is used to classify the wearing mechanism (How-

ard et al., 1998).  

Inductance-type sensors were used on-line to meas-

ure debris size and to count debris particles (Hunt, 

1993). By monitoring the size and generation rate on-

line, wear trend analysis can predict accelerated wear 

conditions before significant or catastrophic damage 

occurs. Aircraft engine and gearbox oils are monitored 

by using on-line chip detectors that warn the pilot of 

excessive wear conditions. On-line sensors are used to 

measure the number of particles and their approximate 

size, and then calculate accumulated mass (Dempsey, 

2004). They used a technology where change in a mag-

netic field caused by the passage of a metal particle is 

measured. Ahn et al. (1996) used blockage principle as 

monitoring device and based on the Weibull distribu-

tion function, the skewness and mean particle size 

distribution were used for the explanation of trends in 

wear debris generation. The shape of the particle also 

holds information about the wear mechanism that gen-

erated it (Edmonds et al., 2000).  

In the work by Lukas and Anderson (1998), a high-

intensity laser light source and a photo sensor are used 

to count the number and size of particles. An alterna-

tive method uses acoustics for detecting forerunner 

wear debris particles (Edmonds, 2000). It works by 

insonifying the oil with a high-frequency acoustic im-

pulse and analyzing the reflected signals. 

Integrating the sensor in the system can potentially 

improve detection capabilities. A built-in capacitive 

sensor that measures on-line oil film breakthrough in 

bearings was used in Tuomas and Isaksson (2008). 

Krallmann et al. (2005) studied hydraulic oil ageing and 

combined several sensor readings to improve the state-

ment on the oil conditions. In their work, resonant fre-

quency was measured to estimate change in viscosity, 

change in resistance to estimate temperature change, and 

a capacitor to estimate electric permittivity.  

To improve the capability to detect the condition of 

the system, Stewart and Ephraim (1997) and Dempsey 

et al. (2004) used fuzzy logic techniques. Neural net-

works have been applied in many different fields, such 

as neural aided landing control (Pashilkar et al., 2006), 

image analysis (Park, 2003), wear debris identification 

(Sugimura and Yamamoto, 1995), oil condition 

(Krallman et al., 2005), fault detection (Ramden et al., 

1995 and Paya et al., 1997), medical diagnosis (Mo-

hamed et al., 2003). 

Using these techniques on the oil debris data, 

threshold limits are defined that discriminate between 

different stages and types of wear, such as pitting wear 

(Dempsey et al., 2002).  

The objective of this research was to improve detec-

tion capability of combined detection features such as 

wear debris quantity, size and time during which the 

contamination level exceeds a set threshold value, by 

applying neural network analysis techniques to hydrau-

lic motor failure data collected at the Hägglunds Drives 

test rig. The failures that are addressed are sliding wear 

on piston, cylinder and roller, and pitting on cam ring.  

The paper is organized as follows: After the intro-

duction in section 1, the detection features’ accumu-

lated number, time and mass are presented in section 2 

and neural network approach in section 3, where the 

output target levels that distinguish between levels of 

wear are also defined. In section 4, the hydraulic motor 

in the test rig used for failure data collection is briefly 

described. In section 5, the results from measurements, 

neural network modelling and simulations are pre-

sented, followed by a discussion in section 6. Section 7 

of the paper rounds off with overall conclusions. 

2 Detection Features 

The aim of this study is the on-line early detection 

of damage in hydraulic motors by counting the number 

of particles in the hydraulic fluid. Although preventive 

maintenance is known to be effective, unnecessary 

stops are not avoided and operators have less access to 

classify the apparent failure of elements if it occurs 

between service periods. It is clear that the quantity of 

particles, their size and the time the particles are within 

the system influence the degree of degradation of the 

system. The presence of particles also indicates that 

hydraulic components generate wear particles, or they 

result from fluid or additive decomposition, or enter 

from the surroundings, and are carried through the 

system (Hanawa, 1998).  

Two failure modes that are of interest are cam ring 

and roller pitting, and sliding wear on roller, piston and 

cylinder. Four different features that use the informa-

tion about particle distribution are suggested, and then 

it is determined whether a correlation exists between 

the various prediction techniques and the observed 

failure modes.  

According to the declaration by the manufacturer of 
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the hydraulic motor, the target cleanliness level for 

heavy-duty industrial applications should not exceed 

ISO 4406 16-13. Having established the minimum fluid 

cleanliness level required for acceptable component life 

for the system, the next step is to monitor the actual 

cleanliness of the fluid to ensure that the target cleanli-

ness level is maintained on a continuous basis. It is 

important to keep the surfaces smooth during the whole 

operation of the system and not allow them to be de-

stroyed by particulate contamination. The quantity 

measure gives information about severity and rate of 

wear, while the size distribution also suggests the wear 

mode, according to Roylance (1997). Laitinen and 

Pietola (2005) found that erosive wear gave more cru-

cial damage on a valve spool than abrasive wear with 

high contamination concentration. Therefore, the first 

feature is to monitor the accumulated number nacc of 

particles greater than x µm 
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The algorithm computes a statistical history of the 

number of particles and is used to determine the wear 

status of the motor. In the second feature the prediction 

of early motor failure is based on trend monitoring of 

the accumulated time when the particle concentrations 

are above a given threshold value. This is illustrated in 

Fig. 1.  
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Fig. 1: Accumulated time above; ─··─, threshold  

The accumulated time is expressed as 
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where ti is i:th time interval when the reading is above 

the threshold value. It should be observed that a single 

reading will not contribute to the accumulated time. 

Two threshold values are defined in this paper and ISO 

4406 is used to set the two levels. The accumulated 

time, tacc1 and tacc2 are calculated when the number of 

4 µm particles > 65500, and 14 µm particles > 8200, 

respectively. The contamination level corresponds to 

the company declaration on hydraulic motor cleanliness 

target for heavy-duty applications.  

For the explanation of trends in wear debris genera-

tion, several indicators have been used. Roylance (1983) 

found that mean and variance are important. Ahn et al. 

(1996) stated that if there is severe wear, both mean size 

and skewness are expected to rapidly increase. The ac-

cumulated mass has been found to be a good predictor of 

pitting damage on spur gears, Dempsey (2001). The size 

of the debris changes when the wear mode is changed. In 

abnormal wear the size will be higher according to Hud-

nik and Vizintin (1991) and the larger the particles the 

more severe wear (Edmonds et al., 2000). When a ma-

chine element is suspected to be in an abnormal wear 

mode the latest reading should be significantly greater 

than the previous one.  

According to Frith and Scott (1994, 1996), the 

pump flow degradation is related to the mass of wear 

debris generated and that certain pumps show no evi-

dence of wear until a larger contaminant size range was 

added. They concluded that only contaminants greater 

than a certain critical size related to the gap size cause 

wear.  

Therefore, the fourth feature considers the accumu-

lated mass of debris which is expressed as  

 3 3

acc x1,i x1,i xn,i xn,i

1

4
π ( ... )

3

i j

i

m n r n rρ

=

=

= ⋅ ⋅ ⋅ + + ⋅∑  (3) 

If the density of the particles is assumed constant, 

then the accumulated volume of particles can be used 

instead.  

Wear and contamination caused by damaged sur-

faces mainly occurs in regions of close contact. In high-

torque hydraulic motor, different lubrication regimes 

exist (Isaksson and Larker, 2000). Elastohydrodynamic 

contact between cam ring and roller with high contact 

pressures and thin lubricating film are comparable to 

conditions prevailing in a gearbox.  

3 Neural Network Analysis 

Three important objectives of analysis are: catch 

faults early, identify the precise source of a fault, and 

define the remaining operating life. It is of major con-

cern to be able to predict a threshold value when it is 

critical to continuously running the motor. The purpose 

of performing neural network analysis is to achieve a 

more reliable signal at the decision level than the fea-

tures alone can give. The advantage of neural network 

analysis is that new features from multiple sensors can 

be added to the system without changing the entire 

analysis. A neural network was selected as it is known 

to be robust to input and system noises, it has learning 

capabilities, and can perform in real time. These are 

important demands on a future diagnostic system for 

the high-torque motor in a critical application. 

The neural network analysis needs data from the sys-

tem when the component is known to be in good health, 

as well as indications of gradually increasing damage 

from early detection wear to a stage when the system 

should be shut down. Supervised training or learning of 

the neural network utilizes the inputs and the correspond-

ing output value, called target or desired output, and 

modifies the weights and biases until there is sufficient 

agreement in the network’s output. The output of the 

model shows the health of the hydraulic motor.  

The neuron has k inputs, zi, and the corresponding 

connection weights are wi, then  
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1
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i

y f w z b
=
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where f is the transfer function. Both weighted input w 
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and scalar bias b are adjustable of the neuron.  

The inputs are the damage detection features given 

by  

accumulated number of particles, nacc 

accumulated time, tacc1;4 µm particles > 65500  

accumulated time, tacc2;14 µm particles > 8200  

accumulated mass, macc 

The output is the state of the motor. Four different 

threshold limits were defined that discriminate between 

levels of sliding wear and pitting, respectively. These 

are shown in Table 1. The pitting mode should not 

produce so many particles compared to sliding wear 

and is expected to be low. However, the accumulated 

mass during pitting mode should increase when large 

particles are released from the surfaces.  

Table 1: Condition of the motor given by the level 

and the different feature status, L=Low, 

H=High 

Level  0.5 1.5 2.5 3.5 

 nacc L L L H 

Sliding tacc1 L L L H 

wear tacc2 L H H H 

 macc L L H H 

 nacc L L L L 

Pitting tacc1 L L H H 

 tacc2 L H H H 

 macc L L L H 

4 Test Rig  

Endurance tests were conducted using a hydraulic 

motor testing facility located at Hägglunds Drives. The 

rig was capable of running a motor at high load and a 

speed corresponding to heavy-duty industrial applica-

tion until the motor received critical damage. The hy-

draulic motor was a radial-piston type motor with rotat-

ing cylinder block/hollow and a stationary housing 

having a displacement of 35,200 cm3/rev, see Fig. 2. 

High-torque hydraulic motors are developed toward 

more compact units delivering higher specific torque 

and power output (> 1 kW/kg of motor weight). As a 

crucial part of this, roller element bearings are replaced 

by slider bearings in the transferring parts. This has 

been one of the reasons for choosing to look at the 

high-torque motor when studying sliding wear and 

pitting.  

The pistons are located in bores inside the cylinder 

block, and two valve plates direct the incoming and 

outgoing oil to and from the working pistons. Each 

piston works against a cam roller. When the hydraulic 

pressure is acting on the pistons, the cam rollers are 

pushed against the slope on the cam ring that is rigidly 

connected to the housing, thereby producing torque. 

The cam rollers transfer the reaction force to the pis-

tons, which are guided in the rotating cylinder block. 

Rotation therefore occurs, and the torque available is 

proportional to the pressure in the system, 560 Nm/bar. 

The endurance tests were carried out at a higher 

system pressure than under normal duty to create accel-

erated test conditions. The surface structure is changed 

by the run-in process, where material is removed, de-

formed plastically or moved in the contact until a 

steady-state condition can be maintained (Tuomas and 

Isaksson, 2008). The aim is to reach the right load-carry 

capacity as smoothly and quickly as possible. There-

fore, the test started with a run-in period when the sys-

tem pressure was reduced to 60 %. The shaft speed was 

at a constant level during the whole test period.  

 

Fig. 2: Hydraulic motor with particle counter (1) attached 

at drainage line; (2), roller; (3), cam ring; (4), pis-

ton 

Particulate counts were monitored by means of a 

particle counter placed in the drain line of the motor. 

The commercially available monitoring device for 

quantitative measurement of solid contaminants uses a 

high-intensity laser light source and a photo sensor to 

count the number and size of particles in the fluid. The 

particles produce a measurable interference in the 

transmission of light through the sample in the light- 

scattering cell. The increase in energy due to scattering 

effect produced by the particle when interrupting the 

focused laser light across the sampling area was meas-

ured. Three particle size channels were used to measure 

contaminants greater than 4, 6 and 14 micrometers.  

5 Results 

Three experiments were carried out. During the 

tests; data from the particle counter was collected once 

per 10 minutes. Tests always started with run-in at 

lower pressure after an inspection. Indicators that are 

normally used to terminate a test are increased leakage 

flow, high temperature in motor housing or chips on the 

magnetic plug that is regularly checked.  

5.1 Test 1 

After 1120 hours of run time with data collection the 

hydraulic motor was disassembled. 20 micometers radial 
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wear on cylinder bore in the position of the piston ring 

was observed. The testing continued with new seals and 

wear rings, without replacement of any other compo-

nents. The test was terminated after total testing time of 

1,549 hours. First, some chips were observed on the 

magnetic plug (about 24 running hours before bringing 

the test to a halt), then increased leakage in the drain line, 

chips in the filter and increased temperature in the motor 

housing. The failure mode was sliding wear on cylinder 

and the radial wear on the bore was 200 micrometers.  

5.2 Test 2 

A new cylinder block and pistons were installed and 

the other components within the motor were the same 

as during test 1. After 1,145 hours the test was ended, 

as chips were found on the magnetic plug. The failure 

mode pitting damage was found on one of flanks of the 

cam ring.  

5.3 Test 3 

The test proceeded with a new cam ring and one 

new piston unit. The test was stopped after 4,885 hours. 

In subsequent inspection the motor was found to be in 

good condition.  

5.4 Run-in Condition 

During a run-in period the contamination level is 

normally high, due to entrance of particles from the 

surroundings and run-in of surfaces such as bearings 

and cam rings, which gradually reduce until the system 

settles in. In Fig. 3 the accumulated number of particles 

is plotted for the three tests. Due to the large variation 

in the contamination level during run-in, the first read-

ings are not included in the accumulated features.  
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Fig. 3: Accumulated number of particles, nacc /1 x 108 

during the start-up  

The readings used in the accumulated features start 

after 500 samples (or approximately 83 hours). When 

the system is stable and in a normal operation mode, 

the particle counting can be used for trend analysis.  

In Fig 4 the accumulated number of particles is 

plotted when excluding the first 500 samples. It is clear 

that the contamination level of test 1 still increases 

faster than test 2 and 3. A high single reading was also 

observed during experiment 3 at reading 2500. The 

high reading was due to problems with the cooler sys-

tem and the test was halted and restarted.  
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Fig. 4: Accumulated number of particles, nacc /1 x 108 after 

500 samples 

5.5 Accumulated Number of Particles 

In Fig. 5 the accumulated number of particles is 

shown for the three tests. It was not possible to set a 

threshold value for test 1 and 2 so that test 3 could run 

without giving an alarm at the end of the test. If setting a 

higher threshold so that test 3 returns a good result, then 

also test 2 passes without alarm. It is notable that test 1 

(24 hours) and test 2 (122 hours) do have a high increase 

in contamination level just before the test was terminated. 

 

Fig. 5: Accumulated number of particles, nacc /1 x 108 

During test 1 there is a clear increase which starts 

24 hours before final stop. When studying the meas-

urements of test 2 more carefully, 122 hours before the 

test was terminated, there is an increase in accumulated 

number of particles during a time period of half an hour 

and thereafter more or less a steady-state level.  

5.6 Accumulated Mass 

The feature accumulated mass gives similar results as 

accumulated number of particles. The problem with an 

excessively high level in test 3 is even more pronounced 

in this case, Fig. 6. The rapid increase in accumulated 

mass at the end of test 1 and 2 is also observed.  
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Fig. 6: Accumulated mass, macc /(1 x 10-7 ρ) 

5.7 Accumulated Time 

Accumulated time above the threshold 1 is shown in 

Fig. 7 and above threshold 2 in Fig. 8. The output from 

the model is zero during the complete test 3, while test 

1 gives a clear reading just before the test was ended.  

 

Fig. 7:  Accumulated time, tacc,1 /1 x 104, when number of 

particles is greater than 4 μm 

 

Fig. 8:  Accumulated time, tacc,2 /1 x 104, when number of 

particles is greater than 14 μm 

Accumulated time for the large particles, tacc,2, gives 

a clear indication about 70 hours before test 1 was 

terminated. Test 2 gives a first level indication at the 

end of the test, when the failure mode is pitting. 

5.8 Neural Network  

The sigmoid function was used as the non-linear ac-

tivation function for all neurons, and the network was 

trained using the back-propagation algorithm.  

Neural network training for pitting and sliding wear 

was carried out by randomly using 60 % of data in test 

1 to 3. The condition of each feature, when changing 

from low to high level is given in Table 2. Fig. 9 shows 

the results from that training pitting and shows clear 

target levels for test 1 and 2. At the end the level of test 

1 decreases while test 2 increases, indicating that pit-

ting damage should be expected.  

Training of the neural network seems to also give 

an appropriate output signal for test 3. The output value 

is close to 0.5, which it should be as no damage oc-

curred during this test. 

Table 2: Feature conditions 

Feature change to high when 
8

acc
/1 x 10n >25 

7

acc
/(1 x 10 )m ρ

−

≥ 10 

4

acc,1
/1 x 10t ≥ 0.1 

4

acc,2
/1 x 10t ≥ 0.1 

 

In Fig. 10 the results of the tests are shown when 

data from all three tests are used in the training of the 

network model for sliding wear. Both test 1 and 2 give 

increase warning level during the test. The highest level 

is for test 1, which gives a value of 3.5 at the end, while 

test 2 reaches a level of 2.5.  

The final step in increase in test 1 comes about 70 

hours before end of test, compared to 24 hours using 

only accumulated number of particles or accumulated 

mass. 

 

Fig. 9: Simulation output for pitting 
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Fig. 10: Simulation output for sliding wear 

6 Discussion 

During the common run-in of lubricated surfaces the 

surfaces become smoother. Therefore, when starting up 

the motor it is important that the motor output power is 

limited. However, the run-in period when contamination 

level is high needs to be investigated more carefully, as 

contaminants entering high-loaded contacts such as 

cam/roller cause indentation of the surfaces that might 

drastically decrease the life of the components perma-

nently. Sayles and MacPherson (1982) showed that 10 % 

of the rolling contact surfaces became covered with inden-

tations when roller bearings were run 30 minutes in a 

lubricant contaminated with wear debris from a gearbox. 

This unfavourable situation consumed 90 % of the ex-

pected life of the bearing. The reduction in life was per-

manent, even if the bearing was run in clean oil for the 

remainder of the test. A particle induces plastic deforma-

tions of the surfaces, deformations which remain even if 

the lubricant is filtered later on. Thus, the smooth surfaces 

are destroyed, making them rough, and the rough surface 

then has high contact stresses and a short life, even with a 

low load. 

During test 1 the increase in accumulated number of 

particles is much higher than for tests 2 and 3. The sliding 

wear produces more particles at an early stage. In test 1 

we have intense wear to piston and cylinder, and a large 

number of particles are generated compared to test 2, 

where final shutdown was done due to pitting on the cam 

ring which is supposed to produce a much smaller number 

of particles. This is a way of improving prediction of 

which type of failure is prevailing. Instead of using neural 

network analysis it might be possible to use clustering 

analysis instead.  

The back-propagation rules were used to adjust the 

weight and biases of network so as to minimise the error. 

The neural network may be trained with different algo-

rithms, but this would exceed the scope of this paper. 

Remaining to examine is how reliable a statement is. It 

would be useful to prove the statement with additional 

testing with several others but same motor type.  

In order to obtain stated service life it is important, ac-

cording to the manufacturer of the hydraulic motor, to 

follow the recommendation concerning contamination. 

There seems to be a good correlation between the cleanli-

ness level recommended and the health of the motor.  

In lubricated contacts, the coefficient of friction and 

lubricating film thickness depends on the speed, viscosity 

and pressure, commonly illustrated by a Stribeck curve. 

Hence, changing the operating conditions influences the 

wear and it will be necessary to add more information to 

the neural network, such temperature, speed and pressure.  

Impact of oil type might be considered by training the 

neural network, as additives influence lubricating film and 

wear, Toumas and Isaksson (2007). 

7 Conclusions 

A particle contamination diagnostics tool for detecting 

wear type in a hydraulic motor was evaluated. Three 

features; accumulated number of particles, accumulated 

mass and accumulated time above threshold value, were 

used as particle-counting algorithms to detect sliding wear 

and pitting damage in a hydraulic motor.  

Accumulated time of service above a certain threshold 

seems to be an adequate feature to detect the damage to 

the hydraulic motor. One observation is that a technique 

for setting accurate threshold limits for particle-counting 

algorithms’ fluid cleanliness levels defined according to 

ISO 4406 could be used. 

Using a neural network to combine the three features 

gives more reliable detection earlier and thereby improves 

the decision-making capabilities, compared with only 

using the features singly.  

The generation of particles appears to depend strongly 

on the wear mode. Sliding wear produces many more 

particles at an early stage of service compared to pitting.  

The use of an automatic particle counter in determin-

ing which wear mode is applicable gives promising re-

sults. More tests need to be carried out and an additional 

feature for run-in period after each stop should be intro-

duced.  

Nomenclature 

b Scalar bias  

f
 

Transfer function   

macc
 Accumulated mass [kg] 

nacc
 Accumulated number of particles  

x,i
n  Number of particles greater than x, for 

sample number i 

[m²] 

rx,i
 

Particle radii  [m] 

acc
t  Accumulated time as number of parti-

cles above threshold 

[s] 

i
t  Time the number of particles are 

above threshold  

[s] 

 y  State of the motor  

wi

 
Neural network weight factors   

Zi

 
Input to neural network  

ρ  Density  [kg/m3] 
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