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Abstract 

System-level decisions can have a large impact on the success of any design project, including those in the fluid 

power domain. Regardless of efforts by designers to optimize individual fluid power components, poor decisions at the 

systems level can lead to poor system performance and unsatisfied design requirements. In this paper, the principles of 

system-level decision making are applied to the design of fluid power systems. Describe a methodology for modelling 

fluid power component technology using predictive modelling and data mining techniques in a way that facilitates sys-

tem-level modelling and decision making is described. This approach is demonstrated on the design of a hydraulic log 

splitter. 
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1 A Systems Perspective on Fluid Power 

Systems Design 

The success of a design project involving fluid 

power technology depends on how well designers man-

age tradeoffs from a system-level perspective. For 

example, poor choices about circuit topology can limit 

efficiency and system performance regardless of how 

well designers optimize individual components. Even 

for a good topology choice, failure to relate system-

level requirements to component specifications appro-

priately can limit system performance. 

According to the principles of systems engineering, 

designers should approach systems design problems 

using a top-down hierarchical approach, with high-

level decisions between alternative architectures and 

technologies preceding decisions about implementation 

details (Royce, 1970; Boehm, 1988; Forsberg and 

Mooz, 1992; Buede, 2000; Sage and Armstrong Jr., 

2000). The systems engineering approach can be effec-

tive for designing fluid power systems because such 

systems are comprised of well-defined functional com-

ponents, e.g., pumps, valves, and accumulators, to 

which designers can allocate system-level requirements 

(also called requirements flowdown or requirements 

derivation). To decide between alternative configura 
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tions (e.g., load-sensing versus constant-displacement) 

or technologies (e.g., vane pumps versus gear pumps), 

designers can compare the “sized” system alternatives 

in light of their decision-making preferences.  

Many of the requirements allocation procedures in 

common practice are effective within a limited scope, 

but are deficient from the perspective of system-level 

decision making. Designers usually are willing to make 

sacrifices in one system attribute in order to achieve 

gains in another (e.g., giving up technical performance 

to save cost, paying extra for increased reliability). 

However, many requirements allocation procedures 

force designers to assume fixed values for certain at-

tributes in order to compute others and to neglect at-

tributes beyond a fairly narrow scope (for examples 

from the fluid power industry, see (Sauer-Sundstrand 

Co., 1997; Eaton Corp., 1998)). Although such proce-

dures are useful for verifying that a system meets its 

minimum technical requirements, they are insufficient 

for system-level decision making.  

One alternative is to use parametric optimization 

techniques to search for the best combination of com-

ponent-level attributes for a given system configura-

tion. However, this approach easily can yield compo-

nent requirements that designers cannot meet (e.g., high 

performance at unrealistically low cost). System  
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Fig. 1: Visualization of the distinction between tradeoff models and the models typically used for evaluating designs  

 

designers can avoid this problem, but to do so requires 

accurate models of the relationships among the compo-

nent-level attributes that can be difficult to create.  

The focus of this article is on defining and demon-

strating an approach by which the designers of fluid 

power systems can make sound requirements allocation 

decisions. The approach is based on predictive tradeoff 

modelling, which is a data-driven means for abstracting 

the capabilities of a system or technology in a way that 

is useful for system-level decision making (Malak and 

Paredis, 2007; Malak et al., 2008). One generates a 

tradeoff model for a type of component (e.g., pumps, 

cylinders, engines) based on data about existing im-

plementations of it. This allows one to capture relation-

ships between attributes for which a precise causal 

relationship may be unknown or difficult to derive 

analytically (e.g., ram force and cost, mass and maxi-

mum flow rate). Given a library of such models, de-

signers can compose a model for a system-level design 

alternative using standard modelling and simulation 

practices and evaluate the alternative using optimiza-

tion methods. Compared to approaches for selecting 

components from a database (e.g., (Papadopoulos and 

Davliakos, 2004; Hansen et al., 2005)), this approach 

permits designers to identify novel combinations of 

component attributes while being confident that the 

solution is both feasible from a technical standpoint and 

desirable from a decision making standpoint.  

A mathematical basis for tradeoff modelling has 

been established previously. The focus here is on defin-

ing a methodology suitable for fluid power systems and 

demonstrating it on the design of a hydraulic log split-

ter. Section 2 is an overview of tradeoff modelling and 

a description of the proposed modelling methodology. 

Section 3 is a discussion of tradeoff model generation 

for common hydraulics components from a database of 

component attribute data. Section 4 is a demonstration 

of using a tradeoff models to model the hydraulics 

system of a log splitter. Section 5 is a comparison of 

the decision reached using tradeoff modelling to the 

results of an exhaustive search of the database of com-

ponents used to generate the tradeoff models. 

2 Overview of Compositional Tradeoff 

Modelling 

2.1 Tradeoff Modelling 

Tradeoff modelling is an approach to abstracting the 

capabilities of a system or technology in a manner that is 

useful for system-level decision making. A tradeoff is a 

compromise designers must make when a decision in-

volves conflicting objectives (e.g., to maximize effi-

ciency while also minimizing cost). Tradeoff models 

capture relationships between attributes at one level of 

abstraction that occur due to the structure of the system at 

lower levels of abstraction (e.g., a relationship between 

efficiency and cost due to manufacturing, materials, or 

other constraints). Designers identify these relationships 

using data about existing design implementations, which 

enables them to generate models without knowing the 

underlying causal mechanism and helps ensure that pre-

dictions correspond to feasible designs. This is in con-

trast with the engineering analysis models designers 

typically use, which relate attributes at different levels of 

abstraction and often are physics-based. For example, a 

traditional model for a hydraulic piston pump might 

compute pump displacement as a function of piston di-

mensions, whereas a tradeoff model might relate pump 

displacement to cost or efficiency. Figure 1 is an illustra-

tion of this distinction.  

Using predictions from a tradeoff model, designers 

can compare alternative system concepts and establish 

requirements for the detailed design of their components. 

As a simple example, designers could predict whether a 

load-sensing or constant-displacement circuit is prefer-

able for their problem and, in the process, identify re-

quirements (in terms of target attribute values) for de-

signing the pump, valves and other components. Predic-

tions depend on the preferences of a particular designer, 

so multiple designers can use the same tradeoff model 

and produce predictions appropriate for their respective 

problems. 

Prior investigation of tradeoff modelling covers both 

decision making for cases in which risk is negligible 

(Malak and Paredis, 2007; Malak et al., 2008) and deci-

sion making under uncertainty (Malak and Paredis, 

2008). The focus of this paper is on decisions in which 

one can assume risk is negligible, which one can formu-

late using multi-attribute value theory (MAVT) 
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(Fishburn, 1965; Keeney and Raiffa, 1993). In MAVT, 

one formalizes preferences for different attributes (e.g., 

cost, mass, settling time) of a system and tradeoffs be-

tween these attributes. The formal representation of these 

preferences is called a value function. 

Mathematically, a tradeoff model computes one or 

more of the attributes for a type of component as a func-

tion of its other attributes. For example, to model hydrau-

lic cylinders one could relate cost to mass, stroke, bore 

and maximum pressure. Designers obtain a tradeoff 

prediction by searching the input space of the tradeoff 

model using optimization methods with a search objec-

tive of maximizing the value function. Figure 2 is an 

illustration of this procedure for two hypothetical deci-

sion alternatives represented by the two tradeoff models, 

T1(·) and T2(·) (V(·) is a value function). A conventional 

approach to solving this decision problem would be to 

formulate an optimization problem in terms of the lower-

level attribute spaces of the alternatives. In contrast, 

tradeoff models allow designers to abstract such lower-

level details. Their role in the optimization problem is to 

constrain the search to solutions that are both feasible 

and desirable i.e., ones that rational designers can and 

would implement without designers having to model 

explicitly what constitutes feasibility or rationality. This 

is because they are based on data about actual design 

implementations. 
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Fig. 2: Visualization of prediction and selection procedure 

using tradeoff models. The dashed curves are iso-

preference curves 

2.2 Tradeoff Modelling Methodology for Fluid 

Power Systems 

The tradeoff modelling methodology consists of 

two phases: (1) tradeoff model generation and (2) sys-

tem composition and decision making. Designers can 

execute these independently. For example, model gen-

eration can be an ongoing process in which one updates 

models as new data becomes available. 

2.2.1 Tradeoff Model Generation Phase 

Table 1: Summary of tradeoff model generation phase 

of the compositional tradeoff modelling 

methodology 

Step Description 

1.  

Model  

planning  

and scope  

definition  

Decide what to model and how to model 

it. For fluid power systems, identify a type 

of component to model and the attributes 

designers typically associate with it in a 

decision-making context. Define clearly 

what constitutes a component of a given 

type. 

2.  

Data  

collection 

Gather data about components within 

tradeoff model scope. Possible data 

sources: published datasheets and cata-

logues, manufacturers and vendors, ex-

perimental test data, and mathematical 

models of a component. 

3.  

Data valida-

tion and  

data mining 

analysis 

Verify that data fits tradeoff model scope. 

Data should appear plausible upon inspec-

tion by an expert. Examine for outliers. If 

necessary, use clustering analysis to re-

scope into multiple tradeoff models. Many 

texts cover the required data analysis 

methods (e.g., (Hand et al., 2001; Kutner 

et al., 2005; Witten and Frank, 2005)). 

4.  

Dominance 

analysis 

Eliminate data points that are dominated 

by the parameterized Pareto dominance 

criterion (Malak and Paredis, 2007; Malak 

et al., 2008). 

5.  

Model  

fitting 

Fit a tradeoff model to the non-dominated 

data using function approximation (e.g., 

regression, artificial neural network) or 

interpolation (e.g., Kriging). Model com-

putes one or more attributes as a function 

of the others. Choice of inputs and outputs 

is arbitrary. 

6.  

Model  

validation 

Validate the model fit and estimate predic-

tion error. For regression models, standard 

statistical analyses are reasonable. For 

other function approximation methods 

(e.g., artificial neural networks) and inter-

polation methods (e.g., Kriging), the hold-

out or cross-validation approaches are 

more appropriate. 

7.  

Domain 

characteriza-

tion 

Identify valid domain for model inputs to 

prevent automated search routines from 

extrapolating too far beyond the data. 

Often more complex than upper and lower 

bounds. If data set is convex, convex hull 

algorithms (e.g., qhull (Barber et al., 

1996)) are useful. Recent work involving 

support-vector machines is promising as a 

method for domain description (Malak 

and Paredis, 2009). 
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Table 1 is a summary of the tradeoff model genera-

tion phase. With the exception of the dominance analy-

sis step, this phase is similar to common data-driven 

modelling procedures (e.g., see (Hand et al., 2001; 

Kutner et al., 2005; Witten and Frank, 2005)). The 

main concerns are defining what data to collect, how to 

validate the data prior to generalization and how best to 

generalize it into a valid continuous model.  

Dominance analysis (Step 4) improves the accuracy 

of tradeoff predictions and is a key distinction between 

tradeoff modelling and other uses of predictive model-

ling in design (e.g., modelling cost (Dean, 1976; 

Daschbach and Apgar, 1988; Farineau et al., 2001) or 

environmental impact (Dewulf, 2003)). Domination is a 

decision-theoretic concept that is useful for eliminating 

alternatives a rational decision maker never would 

choose. The dominance criterion one uses for tradeoff 

modeling - called parameterized Pareto dominance - is 

an extension of the classical Pareto dominance criterion 

to the problem of modelling individual components in a 

systems design context. To apply the rule, one catego-

rizes attributes into two groups: those for which de-

signer preferences always have the same orientation 

(e.g., all other factors being equal, designers would 

maximize reliability, minimize cost), called monotone 

attributes, and those for which designer preferences are 

problem-dependent (e.g., gear ratio) or conflicting (e.g., 

objectives to increase cylinder speed and ram force 

yield conflicting preferences for cylinder bore diame-

ter), called parameter attributes. Designers can test 

whether one component dominates another by compar-

ing their monotone attributes provided their parameter 

attributes are equivalent. For a formal definition and 

justification of this rule, see (Malak et al., 2008). 

Formal domain characterization of a tradeoff model 

(Step 7) is of greater importance for tradeoff modelling 

than for other data-driven modelling problems. This is 

because one uses a tradeoff model in concert with op-

timization methods that rely on a formal domain defini-

tion to remain in a region of valid predictions. It often 

is insufficient simply to identify upper and lower 

bounds for each attribute. Figure 3 is an illustration of 

this using engine data from the example study (2D 

projection of 6D data). Note that this is not necessarily 

an indication of poor data collection, as such associa-

tions can occur due to marketing concerns (there may 

be no demand for certain combinations of attribute 

values) or physical constraints (it may be impossible to 

produce a component with certain properties). 
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Fig. 3: Tradeoff model domain restrictions arising from the 

data 

2.2.2 System Modelling and Decision Making Phase 

The system modelling and decision making phase is 

similar to other approaches for solving decision prob-

lems using optimization methods, but with the excep-

tion that designers use tradeoff models at the lowest 

level of abstraction. One creates a system-level model 

in the same way as if no tradeoff models were involved 

and then uses tradeoff models to constrain the search of 

the system model input space. This ensures that the 

resulting requirements correspond to components that 

are physically possible to implement (i.e., not beyond 

the barrier of current technology) and the predictions of 

overall system value are accurate.  

Table 2: Summary of model composition and deci-

sion making phase of compositional tradeoff 

modelling methodology 

Step Description 

1.  

Formulate 

decision 

problem 

Identify objectives and associated at-

tributes for system-level decision (see 

(Clemen 1996) for how to identify ob-

jectives and attributes). Formalize pref-

erences for tradeoffs between attributes 

using multi-attribute value theory 

(MAVT) (Fishburn 1965; Keeney and 

Raiffa 1993). The formalized prefer-

ences are called a value function. 

2.  

Identify 

system-

level alter-

natives 

Creative process. Identify alternative 

system configurations and component 

technologies that might solve the design 

problem. 

3.  

Model  

system-

level alter-

natives 

For each system-level alternative: 

Model the relationship between compo-

nent-level and system-level attributes 

mathematically. This is called the sys-

tem composition model, and may con-

sist of multiple independent models.  

4.  

Identify 

relevant 

tradeoff 

models  

For each system-level alternative: Re-

trieve a tradeoff model from the library 

for each component in the system or 

create new tradeoff models as needed. 

Tradeoff model attributes must match 

attributes of component in system. 

5.  

Search for 

most  

preferred 

tradeoff 

(require-

ments  

allocation) 

For each system-level alternative: Use 

optimization methods to search tradeoff 

model input space for solution that 

maximizes decision preferences (value 

function from Step 1). Use tradeoff 

model domains to bound search space. 

Inputs at maximum are specifications 

for the components.  

6.  

Final  

selection 

Select system-level alternative that 

achieves largest value in Step 5 search.  

 

Table 2 is a summary of the procedure for this 

phase of the methodology. One repeats steps 3 through 

5 for each system-level alternative or skips step 6 if 

there is only one system-level alternative. Informational 

dependencies mean these steps should proceed more-

or-less in sequence, but some iteration may be required. 

For example, a designer could change his or her deci-
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sion objectives or preferences, or could identify a new 

alternative. 
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Fig. 4: Compositional modelling framework. Component 

attributes are mapped to system-level attributes via 

the system composition model 

Figure 4 is a diagram of how the system composition 
model, tradeoff models, value function and optimization 
method relate to one another. The value function is the 
objective function for the optimization routine (value is to 
be maximized). The value function computes a scalar as a 
function of the system-level attributes. These attributes are 
a function of the component-level attributes. The system 
composition model consists of several individual models, 
Si(·), that effect this mapping. Any Si(·) may use only a 
subset of the component-level attributes, but every com-

ponent-level attribute is an input to some Si(·). The opti-
mization routine controls the tradeoff model inputs and 
the tradeoff models compute the remaining component-
level attributes. 

3 Generating Tradeoff Models for  

Hydraulics Components 

To demonstrate the model generation phase of the 
tradeoff modelling methodology, a library of tradeoff 
models for hydraulics components is generated from a 
database of hydraulic components. The database con-
sists of information about the attributes of gear pumps, 
directional control valves, cylinders and engines. This 
data is acquired primarily from publicly-available data 
sheets and catalogues, with the remainder obtained 
from corporate partner companies or their vendors. The 
pricing data reflects the cost of purchasing the compo-
nents from a supplier and all data points are for similar 
purchase quantities. Whenever necessary, data has been 
“anonymized” to protect proprietary interests. 

 
 
 
 
 
 
 

Table 3: Summary of hydraulic component database 

Compo- Description Attribute Symbol Min Max Units 

Cost cpump 213 859 $ 

Weight wpump 4.98 (2.26) 45.2 (20.5) kg (lb) 

Displacement Vg 1.18 (0.072) 48 (2.93) cm3/rev (in3/rev) 

Max. op. pressure Δpmax, pump 120 (1740) 250 (3625) bar ( psi) 

Max. op. speed nmax, pump 3000 4000 rpm 

Pump 
Single-stage gear pump 
with relief valve 

Efficiency (total) η 0.44 0.92 - 

Cost ccyl 57 404 $ 

Weight wcyl 25.3 (11.47) 390 (177) kg ( lb) 

Stroke length Lcyl 0.2 (8) 1.52 (60) m (in) 

Bore diameter bcyl 0.038 (1.5) 0.127 (5) m (in) 

Cylinder 
Dual-acting  
medium- or  
heavy-duty. 

Max. op. pressure Δpmax, cyl 172 (2500) 207 (3000) bar (psi) 

Cost cdcv 70 168 $ 

Weight wdcv 15.4 (7) 35.3 (16) kg (lb) 

Max. op. flow rate Q 60.6 (16) 113.6 (30) l/min (gal/min) 

Directional 
Control 
Valve 
(DCV) 

Manual, spool-type, three-
way closed centre or four-
way closed centre (w/ open 
position) w/ load-side relief 
valve or detent Max. op. pressure Δpmax, dcv 138 (2000) 310 (4500) bar (psi) 

Cost ceng 180 1907 $ 

Weight weng 3.4 (7.5) 58.5 (129) kg (lb) 

Max. power output Pmax, eng 0.75 (1.0) 18.6 (25.0) kW (hp) 

Speed at max. power output neng, maxP 3600 7500 rpm 

Max. torque output tmax, eng 1.08 (0.8) 55 (40.6) Nm (lb-ft) 

Engine 
Internal combustion 
engine (gasoline-
powered) 

Speed at max. torque output neng, maxT 2200 5500 rpm 
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Table 4: Summary of data eliminations and tradeoff model generation 

Component Engine (A) Engine (B) Pump Cylinder DCV 

Total # in DB 59 61 188 36 

# after outlier analysis 49 43 158 32 

# after dom. analysis 14 5 24 137 8 

Validation results: MSE (% of mean) 45.8 (15%) 33.2 (2%) 3.63 (1%) 14 (9%) 14.2 (13%) 

Notes: Kriging interpolation used for all tradeoff models 
All tradeoff models predict cost as a function of the other attributes 
Engine split into two models after clustering analysis 

 
Table 3 is a summary of the scope of the compo-

nents in the database and Table 4 is a summary of the 
results from data analysis and model fitting. A number 
of points were removed prior to fitting based on our 
data analysis results. A vast majority of the data had 
nearly the same maximum operating pressure, which 
rendered that attribute uninformative from a prediction 
standpoint. Accordingly, any components with a 
maximum pressure below this level - about 172 bar 
(2500 psi) - were eliminated and that attribute was 
removed from the tradeoff models. A similar observa-
tion applies to the engine speed data: the speed at 
maximum power was the same for most engines in our 
database (3600 rpm), and the same was true for speed 
at maximum torque (2500 rpm). Consequently, any 
engine data deviating from these marks by more than 
100 rpm was eliminated and these attributes were not 
used in the tradeoff models. A small percentage of 
components were eliminated on the basis of being ob-
vious outliers or appearing suspect in some way (e.g., 
unusually high or low price for the stated performance 
attributes). After making these changes, the parameter-
ized Pareto domination test was applied and resulted in 
a large number of data eliminations (see Table 4). 

The tradeoff model for each component is formu-
lated to predict cost as a function of its other attributes. 
Kriging methods and the DACE Matlab Kriging Tool-
box (Lophaven et al., 2002) are used to fit the tradeoff 
models and validation is performed using leave-one-out 
cross validation (Witten and Frank, 2005).  

Initially, the engine model fit was poor. The data 
was re-examined using the k-means clustering algo-
rithm (Hand et al., 2001), which identified two distinct 
clusters and independent tradeoff models were fit to 
each. The partitioning groups the engines into ones 
with higher maximum torque (those above 30 N-m (22 
ft-lb)) and ones with lower torques. This improves 
prediction accuracy significantly, but at the expense of 
requiring two independent optimization searches (one 
using each engine tradeoff model). 

4 System Composition and Requirements 

Allocation for a Hydraulic Log Splitter 

This section is a demonstration of the system com-
position and decision making phase of the methodology 
(Fig. 4). It relies on the modelling expertise of a de-
signer to formalize the relationships between compo-
nent-level attributes and system-level attributes for 
each system alternative. Designers use these models 

together with their value function (i.e., formalized pref-
erences for system-level attributes), tradeoff models 
and optimization methods to allocate requirements to 
each component and compare system alternatives. 
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Fig. 5: Hydraulic log splitter: (a) physical layout, (b) func-

tional configuration, where white boxes correspond 

to tradeoff models, and (c) circuit diagram 

A hydraulic log splitter is used as an example in this 
paper due to its simplicity. A log splitter is a system 
that divides a roughly cylindrical log into two or more 
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pieces, typically in association with the harvesting of 
firewood. Several physical configurations are possible, 
but the example is limited to a horizontal-acting type 
(Fig. 5(a)). An operator loads a log into the system and 
then operates a control to drive a wedge into the log. 
The wedge action is aligned with the grain of the wood, 
so minimal effort is required after initiating the split. 
The primary function of the hydraulic subsystem is to 
apply the driving force for this wedge. Critical system 
requirements include portability (typically light weight, 
has wheels for transport, etc.), cost and splitting capa-
bilities (maximum size of log it can handle, maximum 
force it can apply at wedge, etc.).  

Figure 6 contains the objectives hierarchy used to 
formulate the decision problem. Each leaf of the tree 
associates with an attribute the system model must 
compute: 

• Cost: Sum of the purchase prices of the hydraulic 
components and the engine. Assembly and other 
cost factors are not considered in this example. 

• Weight: Sum of the weights of the hydraulic com-
ponents and the engine. The weight of the structure 
is not considered in this example. 

• Ram Force: Maximum force the system can apply 
to the log. 

• Log Length: The maximum length of log that will 
fit into the system. 

• Cycle Time: An index for how long it takes to split 
a log. Defined as the time for the wedge to extend 
0.15 meters (6 inches) at maximum engine torque 
(i.e., maximum ram force) plus the time to retract it 
with the engine running at maximum power  
(a conservative approximation of maximum ram 
speed). 
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Fig. 6: Objectives hierarchy for the log splitter problem 
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Fig. 7: Graphs of the individual value functions for the five 

system-level attributes of the log splitter problem 

Figure 7 contains graphs of the individual value func-
tions corresponding to the system attributes Preferences 
for tradeoffs are elicited in a hierarchical fashion, begin-
ning with a value function for the three performance at-
tributes followed by one that combines this result with 
weight and cost (for a discussion on eliciting preferences, 
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see (Keeney and Raiffa 1993)). The performance attribute 
is a tradeoff among its constituent objectives: 
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where vT = VT(zT) is the value function result for the 
cycle time attribute at zT, vF = VF(zF) is for the ram force 
attribute and vL = VL(zL) is for the log length attribute. 
The top-level value function is  
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where the vc = Vc(zc) is the value function for the cost 
evaluated at zc, vw = Vw(zw) is for the weight attribute, vp is 
the performance attribute defined above and z is the sys-
tem-level attribute vector. Thus, the system-level decision 
problem is to maximize Eq. 2, and the requirements allo-
cation objective is to find the component-level attributes 

at this maximum. Let S represent the vector-valued sys-
tem composition model (comprised of the Si(·) from 
Fig. 8), y�  denote the vector of component-level attributes 

controlled by the optimization routine, and ( )T y�  denote 

the vector of all the component-level tradeoff model pre-
dictions. Thus, one can state the requirements allocation 
problem formally as  

 ( )( )( )*

argmax ,V
∈

= = ⎡ ⎤⎣ ⎦
y

y z S y T y
Y�

� � � , (3) 

where Y  is the domain in which the tradeoff model 

predictions are valid and ( )* *

,⎡ ⎤⎣ ⎦y T y� �  are the most 

preferred component requirements for the system. 
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where Δpmax sys is the maximum operating 
pressure of the system as dictated by the 
rating limitations of components or the 
pressure that can be generated by the 
engine-pump combination. 

Log 
Length 

( )L L cylz S L= =y  

 
Cycle 
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where Qτ is the maximum flow rate the 

system can achieve at τmax eng and QPWR is 
the maximum flow rate (in l/min) at Pmax 

eng. Both are non-decreasing functions of 
pump displacement, the engine speeds at 
the respective operating points and com-
ponent rating limitations. 

Fig. 8: Summary of system composition model for log 

splitter design problem 

To solve the decision problem, one must relate the 
component-level attributes to those used in Eq. 2. Fig-
ure 8 is a summary of the system model used to achieve 
this for the log splitter example. It is important that one 
use every attribute of a tradeoff model in the system 
model or assign them constant value; passing unused 
variables to the optimization method can reduce solver 
efficiency significantly. 

It is possible for one to develop more sophisticated 
system models for this problem - e.g., simulating the 
actual cycle time, accounting for tubing/hoses. Al-
though these considerations are important in general, 
the focus here is on the application of the tradeoff mod-
elling methodology. For an example involving other 
components and more complex simulation models, see 
the hydraulic hybrid vehicle example in (Malak, 2008).  

The models are integrated according to the diagram 
in Table 2. Only one system configuration is under 
consideration, but there are two engine tradeoff models. 
Thus, one must solve two optimization problems, one 
for each engine tradeoff model, and choose the better 
result from the two runs.  

5 Comparison to Exhaustive Search of 

Components Database 

To demonstrate that the tradeoff modelling ap-
proach yields a reasonable requirements allocation 
solution for the log splitter, the results of the optimiza-
tion search defined in Section 4 are compared to an 
exhaustive search of the components database. One 
typically would not do an exhaustive search in practice 
due to the large number of combinations that can exist. 
Even after removing outliers, our modestly-sized data-
base yields nearly 13 million possible combinations for 
the log splitter system. One should not expect the two 
approaches to yield equivalent solutions, since the 
tradeoff models are able to generalize beyond the data-
base contents. However, the exhaustive solution does 
provide a meaningful baseline for comparison. One can 
expect the tradeoff modelling approach to do no worse 
than the exhaustive search on the basis that the tradeoff 
models are representations of the database contents. 

Table 5 contains results from the exhaustive search 
and the two tradeoff modelling optimization runs (one 
with each engine tradeoff model). The Engine A trade-
off model corresponds to the tradeoff model for lower-
torque engines. According to the tradeoff modelling 
approach, a system that includes an engine from the 
Engine A domain is preferred to a system with an en-
gine from the Engine B domain (preference value of 
0.958 compared to 0.933). The exhaustive search cor-
roborates this result, with its engine being virtually 
identical to the engine predicted using the Engine A 
tradeoff model. 
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Table 5: Comparison of requirements allocation results for log splitter design problem 

Component Attribute 
Composed Tradeoff  
Models (Engine A) 

Composed Tradeoff Mod-
els (Engine B) 

Exhaustive Search of DB 

Cost $ 223 $ 221 $ 223 
Weight  11.7 kg (5.3 lb) 7.9 kg (3.6 lb) 11.7 kg (5.3 lb) 
Displacement  6.1 cc/rev (0.37 in3/rev) 5.7 cc/rev (0.35 in3/rev) 6.1 cc/rev (0.37 in3/rev) 
Max. op. speed 4000 rpm 4000 rpm 40000 rpm 

Pump 

Efficiency 0.88 0.63 0.88 

Cost $ 233 $ 213 $ 260 
Weight 181 kg (82.3 lb) 155 kg (70 lb) 253.75 kg (115.1 lb) 
Stroke length 0.68 m (27 in) 0.88 m (34.5 in) 0.71 m (28 in) 

Cylinder 

Bore diameter 0.114 m (4.5 in) 0.102 m (4 in) 0.127 m (5 in) 

Cost $ 83 $ 75 $ 90 

Weight 18.7 kg (8.5 lb) 25.9 kg (11.8 lb) 15.4 kg (7 lb) 

Directional 
Control Valve 

Max. op. flow rate 68.1 l/min (17 gal/min) 73.8 l/min (19.5 gal/min) 68 l/min (18 gal/min) 

Cost $ 330 $ 800 $ 300 

Weight 105 kg (47 lb) 192 kg (87 lb) 121 kg (55 lb) 

Maximum Power  6.7 kW (8.9 hp) 11.2 kW (15 hp) 6.7 kW (9 hp) 

Engine 

Maximum Torque 18.8 N-m (13.8 ft-lb) 32.3 N-m (23.8 ft-lb) 19 N-m (14 ft-lb) 

Ram Force (vF) 0.897 0.775 0.958 
Log Length (vL) 0.944 0.996 0.963 
Cycle Time (vT) 0.987 0.993 0.967 
Performance (vP) 0.874 0.812 0.918 
Weight (vw) 0.928 0.887 0.87 

Value Compo-
nents 

Cost (vc) 0.955 0.850 0.955 

System Value (v) 0.958 0.933 0.956 

 

 
Overall, the tradeoff modelling approach yields re-

sults similar to the exhaustive search solution. The 
tradeoff modelling approach identifies targets for the 
pump and engine that are virtually identical to those of 
the exhaustive search solution. However, the tradeoff 
modelling approach does generalize beyond the data-
base contents for the cylinder and DCV requirements. 
Upon examining the system attribute valuations, one 
can see that the tradeoff modelling solution sacrifices 
small amounts in terms of the performance attributes in 
order to improve in the weight attribute. That this par-
ticular solution is not in the database, underscores a 
strength of the tradeoff modelling approach over dis-
crete searches. 

6 Conclusions 

This paper contains a description and demonstration 
of a methodology for modelling fluid power systems 
for system-level decision making. The approach is 
rooted in systems engineering principles and represents 
an improvement beyond common practice within the 
fluid power industry. A major advantage of the tradeoff 
modelling approach is that it provides designers with a 
means to capture and reason about associations among 
attributes that otherwise would be difficult to relate. 
Another advantage is that by virtue of being fit to data 
about existing design implementations, tradeoff models 
provide predictions that correspond to feasible design 
solutions. This is important for minimizing redesign 
and iteration in a systems design project. Also notewor-
thy is that designers can reuse tradeoff models on dif-
ferent design problems. A company could maintain a 

library of tradeoff models for common types of compo-
nents that its designers could reuse frequently, thereby 
maximizing return on modelling investment. One limi-
tation of tradeoff modelling is that the models are only 
as good as the data upon which they are based. This can 
be problematic if data about a particular attribute is 
hard to come by (e.g., for many types of components, 
reliability data can be hard to find) or if only few ex-
amples of a particular type of component exist (e.g., the 
component database contained ample data about cylin-
ders, but significantly less for the DCV). However, in 
such cases it is possible for designers to account explic-
itly for the risk introduced by inaccurate models by 
formulating decisions under uncertainty. A preliminary 
investigation into tradeoff modelling for decision under 
uncertainty has been made (Malak and Paredis, 2008), 
but further research is required. 
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Nomenclature 

 
V(·) System value function  
Vc(·) Value function for system cost  
Vw(·) Value function for value for system 

mass 
 

VF(·) Value function for ram force  
VL(·) Value function for log length  
VT(·) Value function for cycle time  
VP(·) Value function for performance 

attributes 
 

T(·) Tradeoff model  
z Vector of system-level decision 

attributes 
 

zc System cost decision attribute [US$] 
zw System mass decision attribute [kg] 
zF Ram force decision attribute [N] 
zL Log length decision attribute [m] 
zT Cycle time decision attribute [s] 
Si(·) Model for the ith system-level attribute  
yi Decision attribute for a component  

Δpmax Max operating pressure [bar] 

Qτ Max flow rate at max engine torque [l/min] 

QPWR Max flow rate at max engine power [l/min] 
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