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Abstract  

In the technical literature numerous studies are found focused on the mathematical modelling of mechanical aspects 
of swash plate axial piston pumps. Instead, bent axis pumps are rarely considered despite their widespread use in mobile 
and fixed applications. This research paper presents the mechanical model of a bent axis pump that simulates the dy-
namic behaviour of the main measurable quantities (e.g. the shaft torque) and the mutual forces in interacting compo-
nents. The model is parametric and thus apt in predicting the influence of geometric design variables on pumps me-
chanical characteristics. A number of simulation analyses grounded on the presented model and on an ADAMS multi-
body approach are considered and contrasted one another and with experimental torque data for validation purposes.  

Keywords: bent axis pump, modeling, simulation  

1 Introduction  

Over the last two decades the Fluid Power Research 
Laboratory (FPRL) has developed and validated simu-
lation models for axial piston pumps and motors 
(Mancò et al., 2002), external and internal gear (gero-
tor) pumps (Fabiani et al., 1999), radial pistons (Caretto 
et al., 1996) as well as variable and fixed displacement 
vane pumps (Mancò et al., 2004). All have generally 
evolved in AMESim, elaborating proprietary libraries 
leading to an accurate prediction of the main hydraulic 
and mechanical quantities; recently, a multibody soft-
ware code has also been proposed for the analysis of 
axial piston pumps (Roccatello et al., 2007). For this 
last pump family, models have been specifically devel-
oped for the swash plate category; this paper, instead, 
addresses modelling aspects of bent axis pumps (BAP). 
Since the hydraulic modelling has not required substan-
tial modifications, being only adapted to the new pump 
topology (e.g. flow leakage between slippers and swash 
plate is absent), the present study will purposely focus 
on the mechanical modelling of the pump. The perti-
nent technical literature does not provide numerous 
resources about this topic: in Ivantysyn and Ivanty-
synova (2000) a description of the kinematics of BAP 
pumps is reported (considering various manufacturing 
solutions) that, in turn, supports the analysis of forces 
exchanged among components. These studies rely on  
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scalar relations based on decomposition of forces and 
kinematic quantities along cartesian axes. In Osama et 
al. (2002) a partial description of piston kinematics for 
a BAP pump is described followed by studies on 
pump displacement controls. In Manring and Dong 
(2004) rotational matrices are used to express coordi-
nate systems applied in the development of kinematic 
analysis of a swash plate pump; the analysis considers 
the existence of a secondary axis of rotation for the 
swash plate. Subsequently, results provided by kine-
matics are applied: piston velocity and acceleration 
are not attained through integration of the equation of 
motion but rather through time derivatives of analyti-
cal relations expressing its position. An analogous 
approach is followed in the present paper where 
kinematics is analysed first and all unknown reaction 
forces are determined thereafter. For this reason ex-
changed forces do not influence either position or 
velocity to account, for example, of microscale piston 
motion within the cylinder. Such an approach is de-
tailed in Wieczorek and Ivantysynova (2002) where it 
is oriented to the study of tribologic phenomena. The 
present paper proposes a compact vector algebra ap-
proach; kinematics is initially described, stressing its 
higher complexity when compared to swash plate 
units. Subsequently, the mechanical modelling of the 
three principal components is discussed (piston, cyl-
inder block, shaft) to evidence reciprocal forces. Fur-
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thermore, the dynamic behaviour of interacting forces 
is documented and analysed trying to provide an ex-
planation of existent relations between forces and 
piston kinematics. As to the shaft torque a comparison 
is shown that confronts simulated results with ex-
perimentally obtained data.  

 

Fig. 1: Section view of the bent axis pump, coordinate 

systems and main geometric quantities  

2 Pump Description and Operation  

Generally, BAP pumps, when compared with 
swash plate units, are considered (Ivantysyn and Ivan-
tysynova, 2000) more expensive and less compact, of 
more complex manufacturing and less adaptable to the 
various control strategies; nonetheless these units 
usually have a better total efficiency, are less sensitive 
to fluid contamination and allow a higher rotational 
speed. Different types of bent axis pumps are com-
mercially available; for fixed displacement units, 
distinct techniques are accomplished to transfer shaft 
rotary motion to the cylinder block: cardan joints, 
connecting rodspistons and bevel gears. This last 
solution will be considered henceforth since it allows 
a larger tilt of the cylinder block (up to 45°, (Ivanty-
syn and Ivantysynova, 2000)), thus enhancing pump 
displacement; in addition, this solution is adopted by 
numerous manufacturers. Figure 1 shows a section 
view of the pump (Casappa Strada-BAP 63): a prime 
mover provides shaft rotation. The large cylindrical 
shaft boundary houses in spherical joints pistons that 
are, in turn, lodged within cylinders in the cylinder 
block. This is tilted of an angle a and rotates (guided 
by a cylindrical pin) at shaft angular velocity due to 
the bevel gears coupling. Variable volume chambers 
are isolated from pump casing through elastic rings 
that slip onto cylinders faces due to the influence of 
fluid pressure.  

3 Pump Kinematics  

For bent axis pumps, kinematic analysis is signifi-
cantly more complex than for swash plate units. By 
way of example think of the piston centre of mass 
(CM): for swash plate pumps analytical relations 
describing coordinates (x,y,z) of CM are relatively 

simple to express since pistons undergo rotation about 
the shaft’s axis and axial translation determined by 
swash plate’s tilt (see (Roccatello et al., 2007)). In-
stead, for a bent axis unit, pistons are constrained by 
spherical joints integral with the shaft and by the 
collinearity of elastic ring centres with the cylinder 
axis. Consequently, pistons axes do not remain paral-
lel but rather orbit in space in a more complex man-
ner. Kinematic analysis has been grounded on four 
coordinate systems: geometric points of interest and 
coordinate systems being described by vectors and 
matrices, respectively.  

Generally (Litvin et al., 2004), point M is repre-
sented in coordinate system Sm(xm, ym, zm) by the posi-
tion vector:  

 [ ]
Tm

m m m
1x y z=r  (1) 

The same point M can be determined in coordinate 
system Sn(xn, yn, zn) by the position vector: 

 [ ]
Tn

n n n
1x y z=r  (2) 

with the matrix equation (position vectors being 
repre-sented with homogeneous coordinates):  

 n m

nm
=Mr r  (3) 

Matrix Mnm is represented by:  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

m

m

m

O

n m n m n m n

O

n m n m n m n

nm
O

n m n m n m n

0 0 0 1

x

y

z

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

M

i i i j i k

j i j j j k

k i k j k k
 (4) 

Subscript “nm” in the designation Mnm indicates 
that the coordinate transformation is performed from 
Sm to Sn. Here, (in, jn, kn) are the unit vectors of the 
axes of Sn; (im, jm, km) are the unit vectors of the axes 
of Sm; (xn, yn, zn) represent the coordinates of the ori-
gin Om of Sm in coordinate system Sn (origin On). Dot 
products in matrix Mnm (e.g. inkm) can be expressed 
through direction cosines or as an indexed sum of 
their components (e.g. in,xkm,x+in,ykm,y+in,zkm,z).  

The inverse coordinate transformation that deter-
mines the coordinates (xm, ym, zm) taking as given 
coordinates (xn, yn, zn) can be written as :  

 m m

nm
=Mr r  (5) 

3.1 Coordinate Systems, Coordinate Transforma-

tions and Matrices  

In concert with general principles recalled above, 
the analysis of pump kinematics, as presented hereafter, 
considers four coordinate systems that prove expedient 
in the development phase of governing equations. The 
chosen systems are identified as S1, S2, S3 and S4. Coor-
dinate transformations and related matrices will now be 
introduced:  

3.1.1 Coordinate Systems S1 and S2; Matrix M12  

Coordinate systems S1 (x1, y1, z1) and S2 (x2, y2, z2) 
are fixed in space and indicated in Fig. 1. Worth of 
notice is the fact that their origins are separated by the 
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distance b. The coordinate transformation from S2 to S1 
is based on the matrix equation:  

 1
r = M12 

2
r (6) 

It is straightforward to write matrix and its inverse 
as follows:  
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 (7) 

The coordinate transformation in transition from S2 
to S1 is represented by the equations:  

 x1 =x2   

 y1 = y2 · cos α + z2 · sin α (8) 

 z1 = - y2 · sin α + z2 · cos α + b   

3.1.2 Coordinate System S3; Matrix M13  

Coordinate system S3, movable in space, has the 
origin at point A, centre of the spherical piston joint and 
axis z3 directed along the piston’s axis from A to B, 
centre of the elastic ring (see Fig. 2).  

Consider now point A that, constrained to rotate about 
the shaft’s axis, describes in S1 a circumference of radius 
Ra. Position vector 1rA is then written as (see Fig. 3). 

 

Fig. 2: Coordinate systems S3 and S1  

 

Fig. 3: Approach to pump kinematics  

 [ ]
T1

B
sin cos 0 1= −Ra Raϑ ϑr  (9) 

In turn position vector 1rB of point B in coordinate 
system S1 can be formally expressed by the matrix 
equation:  

 1 2

B 12 B
=Mr r  (10) 

where:  

 2

B
2 2

A A 1
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1

Rd
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a

ϑ
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 (11) 

being:  

 ( ) ( )
2 2

22 2 2 2 2 2

1 B A B A A 1
a x x y y z b= − + − + −  (12) 

Having identified the position of points A and B, it 
is possible to express unit vectors of S3 in S1; through 
Eq. 9 and 11, the unit vector of axis z3 in S1 is:  

 
( )1 1
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−
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Fig. 4: Coordinate systems S3 and S1  

 1 1 1 1 1 1 1 1

3 3 3,x 3,x 3,y 3,y 3,z 3,z 0j k j k j k= + + =j k  (14) 

The unit vector of axis y3 

(
T

1 1 1 1

3 3,x 3,y 3,zj j j⎡ ⎤= ⎣ ⎦j ) has the following properties: 

(a) is normal to 1k3; (b) lays on a plane parallel to plane 
(y1, z1); (c) has a unitary module. While (a) is equivalent 
to the following scalar relation (dot product between 1j3 
and 1k3 equal to zero) property (b) sets to zero the compo-
nent of the unit vector 1j3 along the x axis: 

 1
j3, x = 0 (15) 

From (c) immediately follows: 

 1
j3, x

2 + 1j3, y
2 + 1j3, z

2 = 1 (16) 

Equations 14 to 16 in three unknowns (1j3,x, 
1
j3,y, 

1
j3,z) lead to: 
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where the positive sign is selected to define the positive 
direction of 1j3. The unit vector of the x3 axis is derived 
from knowledge of the other two: 1i3 = 

1
j3 ^ 

1
k3 Matrix 

M13, is written as follows: 
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where (i1, j1, k1) are the unit vectors of the axes of S1; 
(i3, j3, k3) are the unit vectors of the axes of S3; (x1, y1, 
z1) represent the coordinates of the origin O3 of S3 in 
coordinate system S1 (origin O1).  

 

Fig. 5: Coordinate systems S4 and S1  

In the analysis N coordinate systems (S3k, k = 
1...N) are effectively considered each integral with the 
corresponding piston k (see Fig. 2) featuring points Ak 
and Bk: the aim being that of expressing with relative 
ease some involved forces; e.g., that exchanged be-
tween piston and shaft and directed along the piston’s 
axis movable in space. Coordinate systems are identi-

fied by their different angular position: ϑk = ϑ – (k – 

1)·2π / N1. Matrix M13 presented above (18) is ex-
panded in analytical relations that, owing to their 
considerable length, are here omitted; however, a 
Matlab code is provided in the Appendix that allows 
the generation of the complete symbolic expression.  

                                                 

1 To simplify notations, while expressing points A, B and matrix 

M13, subscript k has been deliberately omitted. In (9) and (11) co-

ordinate ϑ should, in fact, read ϑk, thus identifiying N couples of 

points A and B as well as N coordinate systems S3. Pistons are 

numbered sequentially in the CCW direction: hence, piston k + 1 

follows k if the pump rotates clockwise. 

3.1.3 Coordinate System S4; Matrix M14  

A last fixed coordinate system S4 has been intro-
duced O4 (x4, y4, z4), to identify the axis z4 that cor-
responds to the line of action of the force exchanged 
in the bevel gears mating: this being convenient while 
writing equilibrium equations and more specifically 
the reaction force Rcs between cylinder block and 
shaft through the mating gears. In the left portion of 
Fig. 5 it can be observed that the driving gear is inte-
gral with the shaft while the driven with the cylinder 

block. Axes of rotation are tilted of an angle α, gears 
feature the same number of teeth and have equal pitch 

cones angles (δa = δt). Under the hypotheses that (i) 
the condition of meshing involves only one pair of 
teeth (Jacazio and Piombo, 1997), (ii) that gears are in 
point contact and (iii) that the exchanged force Rcs is 
applied at O4, midpoint of teeth faces on the conical 
pitch surface, the position vector of the origin O4 in 
coordinate system S1 follows:  

 

T

1

O4 a

mZ mZ
0 - cot b 1

2 2

⎡ ⎤
= + →⎢ ⎥
⎣ ⎦

δr  (19) 

being the pitch cone diameter at the contact point d = 
mZ. It is then possible to write:  

 2
rO4 = M21 

1
rO4 (20)  

Knowledge of 2rO4 allows to express the three com-
ponents of unit vectors x4, y4 and z4 as follows:  

- The unit vector of x4 in S1 (
1
1i) is oriented from 

O4 to O2 and consequently:  
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- The unit vector of z4 in S1 (
1
k4) has a tilt equal to 

the pressure angle (αp) and can be defined as follows: 
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where the operator sign (ω) accounts for the possibility 
of reversing pump rotational speed.  

- The unit vector of y4 in S1 (
1
j4) is, by definition:  

1
j4 = 

1
k4 ^ 

1
i4 Matrix M14, is written as follows: (cfr. (4)): 
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This also leads to: M24 = M21M14 
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4 Mechanical Modelling  

4.1 Piston Model  

Figure 6 shows a generic piston k and applied ex-
ternal forces. 

 

Fig. 6: Free body diagram of the piston  

4.1.1 Known Forces Acting on Piston 

- Fp,k: force originated by fluid pressure acting 
along axis z2: 

 

T
2

pi2

p,k k

π
0 0 p

4

D⎡ ⎤
= −⎢ ⎥
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F  (24) 

- Fpf,k: friction force: 

 ( )
T

2 2

pf,k pf,k Bk, z0 0 sign⎡ ⎤= −⎣ ⎦vF F  (25) 

in general pf,kF  depends on point Bk velocity. 

- Pp, k: piston weight: 

 

T1

p,k

2 1

p,k 12 p,k

0 m g 0
pi

⎡ ⎤= −⎣ ⎦

=M

P

P P

 (26)  

- FiA,k and FiB,k: inertia forces. Two contributions are 
considered since piston mass is, by hypothesis, lumped in 
points Ak and Bk. This assumption avoids calculations of 

terms dependent on angular acceleration ( )ω�  and of 

correspondent inertial contributions. In the Appendix it is 
shown that this simplification does not give rise to signifi-
cant differences in attained results. Thus, piston mass mpi 
is divided, into two generally different portions: mA at 
point Ak and mB at point Bk as follows:  

 mA + mB = mpi (27) 

 mA = χ mpi 

Taking the time derivatives of Eq. 9 and 11, veloc-
ity and acceleration of points  Ak  e  Bk  are determined. 

Consequently: 
 2

FiA,k = mA 
2
aAk 

2
FiB, k = - mB - 

2
aBk (28) 

4.1.2 Unknown Reactions on Piston  

- Rs,k: reaction force on piston (point Ak) from shaft; 
mating of the two components has been modelled with 
a spherical joint that removes three translational DOF. 
Three reaction forces are then unknown:  

 
T

2 2 2 2

s,k s,kx s,ky s,kz
⎡ ⎤= ⎣ ⎦R R RR  (29) 

Note that in the N coordinate systems S3, with origins 
in the spherical piston joints, reaction (3Rs,k) has a single 
component along piston axis (k3). Position vector 

2
Rs,k can 

be written in S3 as 
3
Rs,k through matrix M23k = M21 M13k. 

- Rc,k: reaction force on piston (point Ck) from cylinder 
block; the assumption is here made that the piston may 
contact the internal cylinder face in a generic point be-
longing to the circumference with centre Ck (see Fig. 6). 
In this respect it should be noticed that the elastic ring is 
not integral with the piston and, as a consequence, the 
latter may lean onto the cylinder in a point that differs 
from the centre of the sphere defining the external surface 
of the ring (at point Bk)

2. In coordinate system S2 only two 
unknown reaction forces exist since no contribution is to 
be accounted along the z2 axis3.  

 
T

2 2 2

c,k c, kx c, ky 0⎡ ⎤= ⎣ ⎦R RR  (30)  

4.1.3 Equilibrium Equations  

Piston translational and rotational (about O2) equi-
librium equations in coordinate system S2 are written, 
in vector notation, as follows4:  
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 (32) 

From Eq. 31 and 32 a linear system of five equa-
tions in five unknowns (2Rs,kx  

2Rs,ky  
2Rs,kz  

2Rc,kx  
2Rc,ky) 

is obtained:  

 Ap Xp = Bp (33)  

4.2 Shaft Model  

Figure 7 shows the shaft and applied external 
forces. Equilibrium equations will be written in coordi-
nate system S1. The shaft and the driving bevel gear 
will be considered as a single rigid body.  

 

Fig. 7: Shaft free body diagram  

                                                 

2 The elastic ring seals the variable volume chamber while the piston 

contacts the cylinder in a point of the circumference centred in Ck. 

3 Friction, expressed previously, is here considered as a known 

force. 

4 To simplify notation Ak and Bk are written as A and B 
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4.2.1 Known Forces Acting on Shaft  

- Fm: spring force; in coordinate system S2 has a 
single component (along z2): 

 
T

2 2 1 2

m m,z m 12 m
0 0      ⎡ ⎤= =⎣ ⎦F  MF F F  (34)  

where 2Fm,z is the spring force magnitude, determined 
from elastic and geometric properties.  

- 2Rs,k: this reaction has already been obtained in S1 
in the piston model; hence it is now a known force: 

 

T
2 2 2 2

s,k s,kx s,ky s,kz

1 2
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→ =

R R R

M

R
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 (35)  

- Rcs: reaction force on the shaft from the cylinder 
block through the bevel gears mating. This reaction 
will be evaluated in the cylinder block model and can 
be considered here as a known force with three compo-
nents in coordinate system S1:  

 
T

1 1 1 1

cs cs, x cs, y cs, z
⎡ ⎤− = − − −⎣ ⎦R R RR  (36)  

- Ps: shaft weight:  

 1
Ps = [0   -msg   0]

T (37)  

- Tsf: friction torque on the shaft. Two parameters (Cs) 
and (Ct) are introduced to consider viscous torque losses 
and losses proportional to torque Td required by the pump 
to keep the shaft turning at constant angular velocity: 

 ( )
T

1

sf d t s
0 0 1T C C ω= − − −⎡ ⎤⎣ ⎦T  (38)  

4.2.2 Unknown Reactions on Shaft  

- Rb1: reaction force (point C1) from tapered roller 
bearing. In S1 we will generally observe three components:  

 
T
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b1 b1, x b1, y b1, z
⎡ ⎤= ⎣ ⎦R R RR  (39)  

- Rb2: reaction force (point C2) from cylindrical 
roller bearing. In this case the component along z1 is 
missing, therefore:  
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- Tex: drive torque required from prime mover:  
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4.2.3 Equilibrium Equations  

Shaft translational and rotational (about O1) equi-
librium equations in coordinate system S1 are written, 
in vector notation, as follows:  
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 (43)  

The system takes the following matrix notation (six 
unknowns 1Rb1,x 

1
Rb1,y 

1
Rb1,z 

1
Rb2,x 

1
Rb2,y 

1
Td): 

 Aa Xa = Ba (44)  

4.3 Cylinder Block Model  

Figure 8 shows the cylinder block and applied ex-
ternal forces. Equilibrium equations will be written in 
coordi-nate system S2. 

 

Fig. 8: cylinder block free body diagram  

4.3.1 Known Forces Acting on Cylinder Block  

- Fm: spring force; in coordinate system S2 has a 
single component (along z2):  

 
T

2 2

m m,z
0 0⎡ ⎤= ⎣ ⎦FF  (45)  

- Fpf,k: friction force (see (25)).  
- Pc: cylinder block weight. Active along the y1 axis: 

 [ ]
T1

c c
0 0= −m gP    2 1

c 21 c
=MP P  (46) 

- Tcf: friction torque on cylinder block. By account-
ing for the viscous component only:  

 [ ]
T2

cf c
0 0= C ω-T  (47)  

- 2Ftp,k: force, originated by fluid pressure within the 
cylinder, pushing the cylinder block against the pump 
cover; it acts along axis z2 at point Htp,k:  

 
T

2 2

tp,k tp,kz0 0⎡ ⎤= ⎣ ⎦FF  (48) 

where 2Ftp,kz = Ac pk and Ac being shown in Fig. 8. 
- 2Fth: force, originated by fluid pressure, pulling 

the cylinder block away from the cover. The assump-
tion is here made that the pressure field, consequent to 
fluid pressure in cylinders, evolves linearly on sealing 
lips as specifically indicated in Fig. 8. This determines 
(2Fth,z) and its point of application (Hth). 

 
T

2 2

th th,z
0 0⎡ ⎤= ⎣ ⎦FF  (49) 

- Rc,k: force on cylinder block (point Ck) from pis-
ton. A known force already evaluated (see(30)): 

 
T

2 2 2

c,k c, kx c, ky 0⎡ ⎤− = − −⎣ ⎦R RR  (50) 

4.3.2 Unknown Reactions on Cylinder Block  

- Fh: hydrodynamic force, originated by fluid veloc-
ity and pressure, that pulls the cylinder block away from 
the cover; by assumption Fh acts along axis z2 and arbi-
trates the axial equilibrium of the cylinder block: 

 
T

2 2

h h,z
0 0⎡ ⎤= ⎣ ⎦FF  (51) 

However, it should be observed that such a force is 
not applied on the cylinder block axis but rather in a 
point of coordinates (x2, y2) = (xh, yh) to be so identi-
fied to guarantee its equilibrium also in reference to 
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tilting moments about axes x2 and y2. 
Beside Fh two unknown moments should then be 

considered. 
- Th: moment of force Fh due to its offset position 

from axis z2: 

 
T

2 2 2

h h,x h,y 0⎡ ⎤= ⎣ ⎦T TT  (52) 

the following equations correlate involved quantities: 

 

2

h,y

2

h,z

2

h,x

2

h,z

=

−

=

T

F

T

F

h

h

x

y

 (53) 

- Rcn: reaction force exerted by the pin; active in the 
radial direction at the mean contact point (Hcn): 

 
T

2 2 2

cn cn, x cn, y 0⎡ ⎤= ⎣ ⎦R RR  (54) 

- Rcs: reaction force from the bevel gear integral with 
the shaft and acting along the line of action of the mat-
ing gears. Its orientation coincides with axis z4 in S4 
and its point of application with O4.  

 

T
4 4

cs cs,z

4 4 4

cs 24 cs 21 14 cs

0 0

 

⎡ ⎤= ⎣ ⎦

→ = =

R

M M M

R

R R R

 (55) 

4.3.3 Equilibrium Equations  

Cylinder block translational and rotational (about 
O2) equilibrium equations in coordinate system S2 are 
written, in vector notation, as follows:  

 
( )2 2 2 2

m pf,k tp,k c, k

k k k

2 2 2 2 2

c th cs h cn

 ...

 ... 0

+ + + − +

+ + + + + =

∑ ∑ ∑F F F R

P F R F R

 (56)  

( )

( )

2
2 2 2

Bk pf, k Htp tp,k

k k

2 2 2 2 2 2

Ck c, k Gt c Hth th

k

2 2 2 2 2 2

cf h Hcn cn O4 cs

        ...

...  ...

 ... 0

r r

r r r

r r

∧ − + + +

+ ∧ − + ∧ + ∧

+ + + ∧ + ∧ =

∑ ∑

∑

F F

R P F

T T R R

 (57)  

The system takes the following matrix format (six un-
knowns 2Fh, z, 

2
Th, y, 

2
Th, x, 

2
Rcn, y, 

2
Rcn, y, 

4
Rcs, z): At Xt = Bt  

5 Simulation  

The aforesaid mechanical model, coded in Fortran, gave 
origin to a dedicated library of specific submodels (see Fig. 
9) in the AMESim simulation environment. As to the hy-
draulic modelling, use has been made of previous research 
work at FPRL on axial piston pumps (Monacò et al., 2002). 
Figure 10 reports the complete AMESim sketch assessed 
for the attainment of simulation results proposed ahead. 
Basically, the lower portion of the sketch shows icons of 
mechanical submodels (cylinder block, piston, shaft and 
spring). Those at the right side permit the assignment of 
geometric parameters of the portplate and of other pump 
components. Those to the left evaluate, in turn, flow areas 
for the suction and delivery side as well as chambers vol-
umes variations. The upper part of the sketch illustrates 

instead the hydraulic modelling of the unit. Testing condi-
tions for simulations are set at a delivery pressure of p* and 
a rotational speed of 1500 rpm, the working fluid (a mineral 
oil) is at constant tem-perature of 60°C. Table 5.1 collects 
further informations on pump and fluid characteristics. Fig. 
10 shows portplate timing and the instaneous pressure 
within a cylinder attained from hydraulic simulation. This, 
along with the complete pressure distribution within pump 
cylinders, neglecting friction and inertia, beside providing 
needed informations for the mechanical analysis, represents 
the basic source for the onset of mutually exchanged forces 
within the pump unit.  

Table 5.1: Informations on pump and fluid characteristics 

Pump type Casappa Strada-BAP 32.63 

Pump dis-
placement 

63.7 [cm3/rev] 

Max. angular 
velocity 

1600 rpm (@ pmax = 350 bar) 
2350 rpm (@ 0 bar) 

Number of 
pistons 

5 

Fluid Agip Arnica 46 
Kinematic viscosity (@ p*r, 60°C) 

= 41.3 cSt 

Portplate 
integral with 
pump cover 

 

Flow rate @ 
1500 rpm 
(ideal value) 

95.6 [l/min] 

Torque @ p*r 
(ideal value)  

278.8 [Nm] 

 

 

Fig. 9: Bent Axis Pump Library  

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1.2

piston 1 pressure

deliverysuction

theta [deg]

p 
/ p

*  
[ −

 ]

notches

r

 

Fig. 10: Pressure on piston 1  
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Fig. 11: Bent axis pump modelling 

5.1 Reactions on Piston  

Reaction forces on piston originate from the inter-
action with the shaft (via the spherical joints) and with 
the cylinder block. Components of these reaction 
forces will be considered in coordinate system S2. 

5.2 Reactions between Piston and Shaft  

Figure 12 shows, in a complete shaft revolution, the 
three components of the reaction force Rs on piston 15: 
the most significant contribution is along axis z2 with 
oscillations about a mean value of 11000 N (delivery 
phase) that clearly reproduce instantaneous pressure in 
cylinder 1. It can further be noticed that components 
along the other two axes, namely x2 and y2, though 
sensibly smaller, reach nonetheless values that cannot be 
ignored as both tend to tip the cylinder block. In more 
detail, Fig. 13(a) demonstrates that when the piston is at 
the left of axis z2 (180-360°) Rs has a negative compo-
nent along axis x2 since the piston is so tilted to give 
always rise to a negative Rs (x2). Along axis y2 the cor-
respond-ing component is instead negative in the angular 
interval 180° to 270° being the piston axis tilted as r1 in 
Fig. 13(b); subsequently (from 270° to 360°) it becomes 
positive ( piston axis tilted as r2).  
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Fig. 12: Rs: piston-shaft reaction force  

                                                 

5 Piston 1 is so identified: at time t = 0, it has ϑ = 0 i.e. its point A is 

on the axis y1 (see Fig. 1, top right).  
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Fig. 13: Reaction Rs: plane x2-z2 and plane y2-z2 

5.3 Reactions between Piston and Cylinder Block  

Figure 14(a) shows components of the reaction 
force acting on piston 1 from the cylinder block; during 
suction Rc essentially balances piston inertia effects. In 
the delivery phase higher values exist (up to 700 N) as 
already was the case dealing with shaft reactions. In 
Fig. 14(b) force Fp and the two reactions Rs and Rc are 
indicated: in plane x2 - z2, their composition is also 

shown with values corresponding to ϑ ≈ 280° and ne-
glecting inertia.  
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Fig. 14: Reactions Rc (components) and Rs (plane x2-z2)  
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5.4 Reactions on Shaft  

Components of these reaction forces will be consid-
ered in coordinate system S1.  

5.4.4 Reactions from Bearings  

Figure 15 shows, in continuous lines, plots of compo-
nents in S1 of the reaction force Rb1 (tapered roller bear-
ing). Prevailing components act along axes y1 and z1 and 
exhibit comparable magnitude (the shaft is subjected to 
forces Rs from pistons (Fig. 16) that have an approximate 
tilt of 41 degrees with the shaft axis6). In addition and with 
dashed lines Fig. 15 also reports the two components of 
the reaction force Rb2 (cylindrical bearing).  
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Fig. 15: Rb1 and Rb2 reactions (components) on shaft  
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Fig. 16: Reactions on shaft from bearings 

                                                 

6 The model and ensuing simulation take into account the fact that 

piston axis is not parallel with that of the cylinder. 

7 Piston pressure coincides with the variable chamber pressure. Delivery 

pressure is instead evaluated in the fixed capacity used to model the deliv-

ery volume. In Fig.17 the two traces seem to overlap. In effect the former 

is higher than the latter since a pressure drop occurs as fluid flows out of 

the piston chamber through the cylinder block kidney and the portplate. 

5.4.5 Pump Torque  

Figure 17 shows the instantaneous torque 1Td re-
quired to keep the pump running at constant speed, see 
Eq. 41. At steady state and in one shaft revolution, a 
number of oscillations equal to the number of pistons is 
detected; their extent being correlated with delivery 
pressure (dashed lines, bottom) and, in turn, with the 
continuously changing pressure inside variable volume 
chambers (piston 1, full line, bottom)7. Figure 18 dis-
plays a comparison of experimental torque data with 
those predicted by the present model. Both are obtained 
as averages of torque signals sampled over a given time 
window (1 shaft revolution in simulation and at least 
1 s in the test rig). Experimental data acquisition is 
performed, upon reaching steady-state (1500 rpm), for 
a number of discrete pump loading conditions (delivery 
pressure range: 0 - 350 bar). 
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Fig. 17: Pump torque (top) and pressures (bottom) 
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Fig. 18: Measured and simulated torque  
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Fig. 19: Rc reaction, component x2 
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Fig. 20: Rc reaction, component y2 

6 Influence of Load on Internal Forces  

As anticipated, the model easily allows quantita-
tive knowledge of exchanged forces in the pump 
when different loading conditions are examined. In 
this respect, a situation is analysed whereby, at con-
stant speed, the unit is operated at peak load (p*i). 
Figure 21 to 24 report predicted results from the pre-
sent model at 1500 rpm and p*i, set against the previ-
ously shown case at 1500 rpm and p*. All forces that 
were considered formerly are now detailed over three 
shaft turns and, as expected, all increase with load. 
Worth of notice is the fact that the tapered roller bear-
ing undergoes cyclic component forces (see Fig. 23) 
surpassing, respectively, 14000 N (Rb1x), 35000 N 
(Rb1z), and 50000 N (Rb1y). It can further be ob-
served (Fig. 19) that, during suction (see pointing 
arrow), the reaction Rc(x2) initially rises and then 
decreases as a consequence of piston acceleration and 
related inertial effects. 
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Fig. 21: Rs reaction, components x2 and y2 
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Fig. 22: Rs reaction, component z2  

 

Fig. 23: Tapered roller bearing reactions (Rb1)  
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Fig. 24: Cylindrical bearing reactions (Rb2)  

7 ADAMS Virtual Pump Model  

In lack of challenging experimental verifications of 
the internal forces predicted by the present model one 
additional investigation is here detailed. This has re-
quired the deployment of a full 3-D virtual pump in the 
ADAMS multibody environment (see Fig. 35). The 
con-straints assigned are coherent with those used in 
the mechanical model: i.e. spherical joints (pistons-
shaft; tapered roller bearing-shaft), and inline joints 
(pistons-cylinder block; cylindrical bearing-shaft). 
External actions on the pump are exerted as follows:  

• the instantaneous pressure within variable volume 
chambers attained in the hydraulic model (Fig. 11) 
fitted with a spline as shown in Fig. 25, is put to 
use in ADAMS.  

• an angular speed of 1500 rpm is assigned to the shaft.  

The ADAMS simulation will ultimately yield the 
torque required to keep the pump running at steady-
state. However, the multibody environment also allows 
quantitative knowledge, through appropriate measures, 
of the intervening internal forces. Strip charts of such 
forces can be monitored while the pump is running and 
the data stored for appropriate post-processing analysis. 
Figures 26 to 29 provide a visual cue of ADAMS re-
sults contrasted with those achieved utilizing the me-
chanical model exposed in this paper. Plots of the dif-
ferent reaction forces are nearly identical for the two 
approaches. Figures 26 and 27 appear, at first sight, as 
being one the mirror of the other this being false due to 
the effects of piston inertia. If this contribution were 
neglected then reactions Rc, Rs and Fp would be in 
equilibrium as shown previously in a simplified scheme 
in Fig. 14b, where the component along axis x2 of Rc 
equals that of Rs8. 

                                                 

8 In Fig. 14b the polygon of forces has been simplified by omitting 

the contribution of piston inertia. Owing to this the polygon turns 

Figure 30 collects results relative to the evaluation 
of the instantaneous torque in Adams and in the present 
model. In the same figure are also reported torque mean 
values collected from experimental data and predicted 
in Adams and in the mechanical model. The Adams 
model, where friction between pistons and cylinder 
block is neglected, yields a slightly lower mean torque 
value than the present model. Further, it is also interest-
ing to investigate the torque required from the shaft to 
transfer rotary motion to the cylinder block through the 
bevel gears. In this respect, simulations indicate that 
this originates from two different sources:  

• friction effects between the cylinder block and (i) 
guide pin, (ii) portplate (pump cover), (iii) working 
fluid in the pump casing. These contributions are 
modelled through a viscous friction coefficient C, 
see (47); 

• onset of a periodic torque featuring a change in 
sign and consequent to the balancing effect of reac-
tion forces that pistons exert on the cylinder block.  

Figure 32 (top, full line, present model) shows a 
plot of reaction 4Rcs, z (see Eq. 55) while (bottom, full 
line, Adams model) shows the torque to be applied to 
the cylinder block inline joint, where the same shaft 
velocity is imposed9. In both cases an equal viscous 
friction coefficient value is adopted for the cylinder 
block: C = 0.0054 Nm/(rev/min) that, at 1500 rpm, 
originates a constant resistant torque of a 8.1 Nm. Also 
the situation where this coefficient is supposed to be 
zero is deliberately considered; though this is not realis-
tic (the and negative sign (the barrel therefore either 
brakes or barrel rotates fully immersed in a viscous 
fluid and a accelerates the shaft). It will be demon-
strated that this is lubricated gap exists with the fixed 
portplate) still it consequent to the behaviour of inter-
vening reactions Rc serves the purpose of highlighting 
the fact that the shaft-between pistons and barrel. In 
fact, if this contribution barrel exchanged torque exhib-
its an alternate positive were absent the situation de-
picted in the same Fig. 32 with dash lines would be 
obtained respectively for the force (top) and torque 
(bottom). Due to the periodic change in sign, both 
models bring to evidence this specific aspect. In greater 
detail consider Fig. 31 showing a sufficient to multiply 
force times the torque front view of the cylinder block: 
reactions Rc from pistons onto the cylinder bock are 

indicated for the angular position ϑ = 0° (circular 
marker shown in Fig. 32). 

                                                                            

into a triangle of forces. Then, in cited figures, the presence of iner-

tial effects motivate the small but existing difference in compo-

nents of Rc and Rs. 

9 To verify if values of the present model are in agreement with 

those provided by the multibody approach it is sufficient to multi-

ply force 4Rcs, z times the torque arm; as an example, at  ϑ = 0 the 

present model leads to 329.7 [N] * 0.050023 [m] = 16.49 [Nm] 

whereas ADAMS to 14.22 [Nm]. As stated, the difference may 

well be accepted since friction between pistons and cylinder block 

has been neglected in Adams. 
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Fig. 25: Instantaneous pressure within a variable volume 

chamber (800 points for cubic spline, not all 

shown) 
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Fig. 26: Comparison on reactions Rs  
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Fig. 27: Comparison on reactions Rc   
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Fig. 28: Comparison on reactions Rb1 
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Fig. 29: Comparison on reactions Rb2  
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Fig. 30: Comparison of pump instantaneous and mean torque  
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Fig. 31: Reactions Rc, ϑ = 0 
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Fig. 32: Periodic Force and Torque 

 

Fig. 33: Reactions Rc, ϑ = 38 

The resultant negative torque (- 6.1 Nm) acts in the 
CW direction which is opposite to the shaft angular 
speed (CCW); consequently in order that equilibrium 

may be fulfilled the shaft will transfer a positive torque 
of (+ 6.1 Nm) to the block corresponding to a reaction 
4
Rcs, z > 0. 

On the contrary at ϑ = 38° Fig. 33 shows that 
torque (+ 4.5 Nm) acts now in the CCW direction as is 

the case for ω: equilibrium will then require that the 
shaft transfers a negative torque. One supplementary 
check may be obtained through the Adams model by 
transferring motion from the shaft to the cylinder block 
through three-dimensional contacts among bevel gears 
teeth10 rather than via the inline joint: Fig. 34 shows a 
plot of reaction Rcs (along axis x2, see Fig. 31) that 
demonstrates how its behaviour, similar to that ob-
tained from the present model, clearly reveals the 
aforementioned periodic change in sign. 
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Fig. 34: Reaction cylinder block-shaft (present model and 

3D contacts in ADAMS) 

From what has been written the conclusion may be 
drawn that, for this type of pump, the torque required to 
keep the unit turning at constant speed is rather low 
(Ivantysyn and Ivantysynova, 2000): moments that 
need be balanced are those stemming from friction, 
inertia and reactions transmitted from pistons to the 
cylinder block. 

8 Conclusions  

This research paper has presented the mechanical 
model of a fixed displacement bent axis pump. Pump 
kinematics has been addressed introducing four coordi-
nate systems that were found expedient in the subse-
quent formulation of needed equations. Interesting 
peculiarities of piston kinematics have been pinpointed. 
Modelling phases led to the build up of a dedicated 
library coded in Fortran and integrated in AMESim to 
enrich capabilities that were limited to the fluid-
dynamics of bent-axis pumps. The only available ex-
perimental data were relative to the torque required to 
drive the unit at constant speed under different loading 
conditions. Consequently, validation was effected util-
izing these data as references and attained results were 
satisfactory. However, the effort required in modelling 
also aimed at the evaluation of internal forces ex-

                                                 

10 The specific 3D contact algorithm of ADAMS is used. 
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changed among intervening pump components. In this 
respect, since specific experimental data were unavail-
able being, altogether, rather difficult or even impossi-
ble to obtain, a full three dimensional virtual model of 
the unit was assessed in the multibody code Adams. 
This second approach was used to provide opportuni-
ties of performing cross-verifications with the original 
AMESim predictive results of exchanged forces. Also 
in this case a fair agreement was confirmed. The 
AMESim model is, at this stage, more flexible and 
complete than the ADAMS counterpart also allowing 
the hydraulic simulation of the pump and its interac-
tions with the circuit it is feeding. Furthermore, being 
fully parametric, it permits with relative ease to gain 
quantitative knowledge of the effects entailed by 
changes in one or several geometric parameters on 
pump hydraulic and mechanical performance. 

On the contrary, the ADAMS model, tied with an 
imported 3D-CAD geometry of the specific unit, defi-
nitely lacks this flexibility. Obviously, at least this 
restraint, can be subdued by generating anew pump 
components through purposely written macros (Roc-
catello et al., 2007), yet at the expense of rather marked 
efforts. 

 

Fig. 35: ADAMS multibody model 
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Fig. 36: Reaction Rc (ADAMS) 
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Fig. 37: Reaction Rs (ADAMS)  
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Appendix: Remarks on the Modelling of 

Piston Inertia  

Dealing with piston inertia (subheading 4.1.1) an 
assumption was made: the piston mass was concen-
trated in points A and B with values mA and mB. It is 
then appropriate to verify if this is acceptable or if 
erroneous approximations in the evaluation of piston-
shaft (Rs) and piston-cylinder block (Rc) reaction 
forces are introduced. To check this aspect use has been 
made of the ADAMS multibody pump model (Fig. 35). 
Two approaches were followed: the first portrays the 
piston as a massless rod linking two equal masses at 
points A and B. The second retains true piston geometry 
and mass. Constraints are identical and conform with 
those already explicited in this paper: point A attaches 
to the shaft and the piston (spherical joint); point B 
adapts to the cylinder axis (inline joint). A constant 
angular speed was applied to the shaft and the pump 
was run in absence of loads. Fig. 36 confronts the be-
haviour of Rc at 1500 and 2350 rpm using the two 
approaches, whereas Fig. 37 provides the same infor-
mations for Rs. Though differences exist (most evident 
at max rated pump speed), observing that involved 
forces are at least an order of magnitude smaller than 
other intervening forces (e.g. see Fig. 14), the hypothe-
ses set forth in the modelling of inertia effects are 
deemed acceptable.  
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Nomenclature  

Ak Centre of the spherical piston 
joint. A 

 

Ac Area on which cylinder pressure 
acts 

 

Bk Centre of the elastic ring  
Cc Viscous friction coefficient (cyl-

inder block rotation) 
 

Cij  Direction cosine  
Ck Point on piston where the reac-

tion force with the cylinder block 
is applied 

 

Cs Viscous friction coefficient (shaft 
rotation) 

 

Ct Torque loss coefficient (Coulomb 
friction) 

 

Dpi Cylinder diameter  
Fh Hydrodynamic force  
FiA, k Inertia force (mass lumped at 

point Ak) 
 

FiB, k Inertia force (mass lumped at 
point Bk) 

 

Fm Spring force  
Fp, k Force from fluid pressure on 

piston 
 

Fpf, k Piston-cylinder block friction 
force 

 

Fth Hydrostatic component force 
pulling the cylinder block away 
from the portplate (acts at Hth) 

 

Ftp, k kHydrostatic force (acts at Htp)  
Gpi, Gt, 
Gs 

Piston, cylinder block and shaft 
centres of mass  

 

Mnm Matrix linking coordinate system 
m with n 

 

N Number of pistons  
O1 Intersection between shaft axis 

and plane hosting centres of 
spherical piston joints 

 

O2 Intersection between shaft and 
cylinder block axes 

 

O4 Point of application of the force 
exchanged between shaft and 
cylinder block through bevel 
gears 

 

On, Om Origins of ‘new’ and ‘old’ coor-
dinate systems (matrix M nm). 

 

Pc ,Ps 
,Ppk 

Cylinder block, shaft and piston 
weights 

 

Ra  Distance from axis z1 of centres 
of spherical piston joints 

 

Rc, k Reaction on piston from cylinder 
block 

 

Rcs Reaction on shaft from cylinder 
block 

 

Rcn Reaction on pin from cylinder 
block (acts at Hcn) 

 

Rd Distance between cylinder and 
cylinder block axes 

 

Rb1 Rb2 Reactions on shaft from tapered 
conical and cylindrical bearings 
(points C1 and C2)  

 

Rs, k  Reaction on shaft from piston k  
Sm Coordinate system m  
Td Drive torque required from prime 

mover (component along z axis) 
 

Tsf Friction torque on shaft  
Tcf Friction torque on cylinder block  
Th Moment of force Fhy  due to its 

offset position from axis z2 
 

Tex Drive torque required from prime 
mover (vector) 

 

Z Number of teeth of bevel gears  
im, jm, 
km 

Unit vector of the axes of coordi-
nate system Sm  

 

n a Xq component along axis q of the 
acceleration of point X in coordi-
nate system n 

 

b1 Distance of pointAk from Bk   
b Distance between origins O1 and 

O2  
 

d Bevel gears conical pitch diame-
ter 

 

g Acceleration of gravity  
m  Bevel gears module  
mA, mB Masses associated with points Ak 

and Bk 
 

ms, mc, 
mpi  

Shaft, cylinder block and piston 
masses 

 

Pk  Pressure in variable volume 
chamber of piston k 

 

   
p*r Rated pressure  
p*I Intermittent (peak) pressure  
nrX, q component along axis q of the 

position of point X in coordinate 
system n 

 

nvX, q component along axis q of the 
velocity of point X in coordinate 
system n 

 

xm, ym, 
zm 

Cartesian axes of coordinate 
system S 

 

α Tilt of cylinder block axis with 
the shaft axis 

 

αp Pressure angle in bevel gears  

δa/t pitch angles in bevel gears   

ϑ, ϑk Angular position of piston 1 (ϑ) 
and piston k 

 

χ Mass fraction associated with 
point A 

 

 Angular speed.   
k reference to the specific piston k = 

1...N  
 

[…]T Matrix transponse  
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