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Abstract 

A very compact description of viscid wave propagation in straight transmission lines with a circular cross section in 

frequency domain by a transcendental transfer matrix is known since several decades. The corresponding research re-

sults show that fluid friction is limited to small dynamic boundary layers whereas the remaining fluid domain exhibits 

practically no friction effect and has bulk flow characteristics. An explanation how this boundary layer transfers its 

dissipative effect to the bulk flow has been given by Gittler et al. using asymptotic expansion techniques. They found 

that the effect of the boundary layer on the bulk flow in the centre is given by radial velocity components. The authors 

have shown that the findings of Gittler et al. are generally valid in the 3D case exploiting matched asymptotic expan-

sions.  

In this paper these results are developed further to exploit this dynamical boundary layer theory for an efficient Finite 

Element (FE) computation of viscid waves. Standard acoustic elements without viscosity as available in many FE codes 

combined with frequency dependent acoustic boundary conditions can be used to simulate 3D viscid wave propagation in 

frequency domain. Comparison with the analytical transmission line theory shows the validity and wide applicability of this 

approach. It is much more efficient than a direct resolution of the viscid boundary layer by a fine FE grid. 

Keywords: 3D viscid wave propagation, finite element analysis, singular perturbation, boundary layer theory  

1 Introduction 

In hydraulics, wave propagation effects play a sig-

nificant role mostly only in transmission lines, since the 

geometrical extensions of other fluid ducts are much 

smaller than typical wave lengths. Numerous mathe-

matical models have been developed to study wave 

propagation processes in nearly straight transmission 

lines of circular cross section. Stecki (1986) gives an 

overview until 1986. Often, the effects of fluid friction 

on the dynamics of the system – which result in a fre-

quency dependent damping – have to be modelled quite 

accurately. A very compact description of waves in 

transmission lines considering viscosity is given in the 

frequency domain (D’Souza, 1964). Time domain 

modelling is much more complex since the frequency 

dependent friction is of fractional order which causes 

history integrals in time domain descriptions. There, the 

complex friction behaviour is modelled by some ap-

proximation of the inverse Laplace transformation of  
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the wall shear stress (see for instance Zielke (1968)), 

since exact formulas can’t be found. 

If frequencies go up into the ranges of several kilo-

Hertz, the spatially one-dimensional transmission line 

models may loose their validity. Reasons are either that 

in parts of a transmission line other than axial flow 

velocities and pressure gradients become significant or 

that wave propagation phenomena are exhibited by 

some other fluid filled cavities. In such cases 2D or 3D 

wave propagation models must be established. Several 

Finite Element programs (like, e.g., Abaqus and Hib-

bitt, 2001) offer the modelling and simulation of acous-

tic fields. But no general purpose programs exist that 

can simulate viscid wave propagation in fluids with an 

acceptable efficiency.  

The authors have supervised a master’s thesis 

(Furtmüller, 2006) which uses the adaptive Finite Ele-

ment code hp-FEM (Schöberl, 2006) for the solution of 

field problems given by partial differential equations to 

analyse the 3D viscid wave propagation in hydraulic 

cavities. There, the linearised equations of motion and 
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continuity of a compressible Newtonian fluid are 

solved numerically in the frequency domain. High 

accuracy can be achieved if a fine resolution of the 

dynamic wall boundary layers in the finite element 

mesh is done. Since the boundary layer becomes thin-

ner with higher frequencies, different grids should be 

used for different frequencies in order to avoid unnec-

essarily high computational effort. The generation of 

different grids is a drawback for a fast computation of 

the frequency response behaviour over a large fre-

quency range.  

Frequency domain modelling promises to yield the 

most compact description of the dynamic behaviour of 

the system. In Manhartsgruber (2005) it was demon-

strated how frequency domain models of a transmission 

line can be combined with time domain computation of 

nonlinear hydraulic systems by applying Fast Fourier 

transform and its inverse respectively. Although in this 

work periodic systems have been investigated there is a 

realistic perspective to generalise this technique for 

transient processes. The classical transmission line 

model was used as a benchmark.  

In a thesis by Brummayer (2000) a singular pertur-

bation approach for the viscid wave propagation in 

lines, originally developed by Kluwick and Gittler 

(1989) for gas filled tubes, for the computation of vis-

cid wave propagation in hydraulic lines was applied. 

This work exhibits the physical nature of the friction 

phenomenon very clearly. The flow in the line consists 

of a friction dominated dynamic boundary layer which 

brings all velocity components to zero at the wall of the 

line and an inviscid flow in the remaining part of the 

pipe. The inviscid part is affected by friction not by a 

shear stress but by radial velocity components that are 

created by the boundary layer and transmitted to the 

inner parts of the pipe. The results of this approach in 

terms of the pressure flow rate relations are identical to 

other results, e.g. D’Souza (1964). 

In Scheidl (2006) the dynamic boundary layer the-

ory of Kluwick et al. has been generalised for the 3D 

case. Starting from the linearised continuity and mo-

mentum balance equations for a compressible Newton 

fluid without bulk viscosity a damped wave equation of 

the pressure is derived. This equation cannot account 

for the vanishing fluid velocity at the boundary due to 

sticking. A boundary layer version of the momentum 

and continuity relations in frequency domain is derived 

and matched with the frequency domain version of the 

wave equation. From these a boundary condition for 

the pressure is derived. 

In this paper the essentials of the theory (Scheidl, 

2006) are repeated in a revised form in the next section 

for an easier understanding and also to show that the 

pressure boundary condition can be interpreted as a 

flexible wall with frequency dependent elastic and 

damping effects. Section 3 explains how this boundary 

condition can be realised in some standard Finite Ele-

ment codes within their acoustic modelling framework 

and how the results compare with the analytical theory 

of straight transmission lines. In section 4 a useful 

hydraulic application is shown.  

 

2 A Boundary Layer Theory for 3D Vis-

cid Wave Propagation in Frequency 

Domain 

2.1 Basic Equations of 3D Viscid Linear Wave 

Propagation 

Starting from the linearised equations of motion and 

continuity in an Eulerian reference frame (Cartesian co-

ordinates (x1, x2, x3)) for a compressible Newtonian 

fluid with no bulk viscosity as derived, e.g. in Scheidl 

(2006) 
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a viscid wave equation for the pressure can be derived 

(Scheidl, 2006)  
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v  is the velocity vector, p the pressure, μ the dynamic 

viscosity, ρ0 the density at reference conditions, E the 

compression modulus, and c the wave propagation 

speed. But, Eq. 2 only can be solved without Eq. 1 if 

the pressure or its gradient is given at the whole bound-

ary. This is rarely the case in fluid power applications. 

The usual condition that the fluid sticks to a solid 

boundary cannot be accounted for by the pressure only 

in contrast to the inviscid case where only the velocity 

component normal to the boundary vanishes. The latter 

is equivalent to a vanishing pressure gradient in the 

normal boundary direction. Thus generally, Eq. 2 can 

only be solved in combination with Eq. 1. Then, how-

ever, without a further analysis using Eq. 2 offers no 

significant advantage.  

Of course, Eq. 2 allows the qualitative statement 

that for a small viscosity ν  the effect of the fluid fric-

tion on the pressure field is very small in major parts of 

the fluid domain.  

2.2 Nondimensional Equations in Frequency  

Domain 

In the sequel nondimensional values related to the 

following scales are used. 
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P is a typical pressure amplitude of the wave, L a 

typical reference length, for instance, the length of a 

transmission line. This scaling makes both p
~  and 

v
~ to be of order one. The velocity scale is the so called 

Joukowski speed. 

With the Fourier Transform 
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Eq. 1 and Eq. 2 take the following form in frequency 

domain 
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ε is a very small quantity in the order of (10-5 ~ 10-7) for 

typical values of v, L, c in hydraulic applications. The 

terms of Eq. 5 and Eq. 6 with a coefficient ε  only can 

become significant where the velocity or the pressure 

field have strong local changes. Due to the scaling 

Eq. 3 the nondimensional wave length is of order 1 for. 

ƒ = Ο(1). Local changes only occur at the boundaries 

due to the vanishing fluid velocity. Thus, Eq. 5 and 

Eq. 6 are singularly perturbed systems in the parameter 

ε (see, e.g., Eckhaus (1979), Kevorkian (1980) for 

singular perturbation theory1). The solution is domi-

nated in a larger part of the domain by the reduced 

equations, which are obtained if the perturbation pa-

rameter ε is set to zero. In our case this is the inviscid 

case. The reduced equations have a reduced order re-

garding the highest spatial derivative. This does not 

allow all physical boundary conditions to be fulfilled, 

in particular the sticking condition. In small zones at 

the boundaries so called boundary layers occur which 

locally correct the solutions of the reduced system to 

fulfil the boundary conditions. 

2.3 Matched Asymptotic Expansions of the 3D 

Viscid Wave Equation 

2.3.1 The Outer Expansion 

An appropriate set of so called gauge functions 

(Eckhaus, 1979) of our problem is the sequence  

ε
k/2, k = 0, 1, 2, 3, …. The outer expansion is an asymp-

totic expansion of the solution outside the boundary 

layers (the outer range). It is represented here as a se-

ries in the gauge functions of the Fourier transform of 

the pressure and the velocity  
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In the outer range the solutions of the reduced equa-

tions are a good approximation of the full solution. 

Furthermore, better solutions can be derived by higher 

order terms of the asymptotic expansion. For general 

form of the hydraulic duct in which wave propagation 

takes place, numerical methods, e.g. the Finite Element 

                                                     

1 Perturbation methods aim to derive solutions of equations as 

formal power series in the perturbation parameter ε. For singular 

perturbation problems which exhibit boundary layers no uniformly 

valid power series expansion exists. Solutions must be split into an 

external expansion off the boundary and an inner expansion at the 

boundary.  

method, can be used to obtain approximate solutions. 

This is not discussed further here. As pointed out in 

section 2.1 this cannot be done for the pressure wave 

equation Eq. 1 or Eq. 6 respectively due to missing 

boundary conditions. To obtain appropriate boundary 

conditions the boundary layer equations must be solved 

and matched to the outer solution. This matching pro-

vides the boundary conditions for the outer solution. 

2.4 The Inner Expansion 

At the system’s solid boundaries a co-ordinate sys-

tem ( )blblbl

321
,, ξξξ  is used to resolve the boundary 

layer. The first two axes are tangential the third is per-

pendicular to the tangent plane, as shown in Fig. 1. We 

assume that the curvature radii of the boundary as well 

as the wave length 2πc/(ƒω) are much larger than the 

thickness of the boundary layer to avoid cumbersome 

calculations due to the curved co-ordinate system. Of 

course, this imposes some restrictions on allowable 

duct geometries. Edges or a small rounding are not 

covered by this approach. The question how far such 

geometric properties adulterate the global behaviour 

cannot be answered without further investigation. It is 

doubtful if the linearised equations Eq. 1 are valid there 

at all. For instance, vortices which are likely to appear 

there at higher speeds are not in the general solution set 

of Eq. 1. The normal direction 
3

ξ  is stretched by 

ε/1 . This scaling makes the friction term in the mo-

mentum equation of equal order of magnitude as the 

acceleration and pressure gradient terms. 

11
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Fig. 1: Boundary layer co-ordinate system and its scaling 

Expressing Eq. 5 in boundary layer co-ordinates re-

sults in the following equations 
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The solution is represented by an asymptotic expan-

sion  
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Inserting Eq. 9 in Eq. 8 and collecting orders of ε  

results in the following set of equations: 

Order ( )0εO  and ( )2/1−εO  
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The two terms in the third and fourth equation with 

a coefficient 1/ ε  must vanish to make the asymptotic 

expansion valid. Thus we have 
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Since 0ˆ 03
=

in

v  at the boundary ( 0
3

=

bl
ξ ) the sec-

ond equation in Eq. 11 means that 0ˆ 03
≡

in

v .  

In other words, the normal fluid velocity in the 

boundary layer is of order ( )εO . This reveals that the 

lowest order of the asymptotic expansion of the bound-

ary layer solution corresponds to the boundary condi-

tion of the inviscid wave equation, namely that the 

velocity and the pressure gradient in the normal direc-

tion vanish. Furthermore, re-evaluating the third equa-

tion of Eq. 10 with the last findings yields. 
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The third equation of Eq. 10 is now fulfilled trivi-

ally and does not provide any further information. We 

have to add the next order (ε1) of this equation to in-

volve a pressure term, which differs from the solution 

of the inviscid case. 
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The boundary condition for the inner solution re-

quires that all velocity components vanish at 0
3

=

bl
ξ . 

At the solid boundaries no pressure can be prescribed. 

Indeed, the pressure variable 0ˆ

in
p  which is still present 

in our equations can only be determined by the match-

ing of the inner to the outer expansion (see Section 

2.5). 

Equations 1,2,4 of Eq. 10 and Eq. 13 can be solved. 

The solutions are 
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Equation 14 shows that the thickness of the bound-

ary layers is of order ( )fO /ε  if measured in the outer 

scale. In physical dimensions the thickness is of order 

( )FO /ν , when F denotes the angular frequency in 

physical dimensions. The tangential velocity compo-

nents show up the typical distribution in the normal 

direction as indicated in Fig. 2. They are 90° phase 

shifted to the pressure gradient, their amplitude is in-

versely proportional to the frequency. The normal ve-

locity is of order ( )εO , has a distribution in normal 

direction equivalent to the tangential components, but a 

quite different frequency dependency and a phase shift 

of 235° (see Fig. 2). The pressure which is constant in 

the normal direction in the order ε0  has a superimposed 

ε
1 order component 2ˆ

in
p  which causes a linear pressure 

change in the normal direction.  
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2.5 Matching Inner and Outer Expansions 

Inner and outer expansions have to be adapted by a 

so called matching. Using expansion operators (Eckhaus, 

1979) the matching condition for the pressure reads 
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In a similar manner exploiting Eq. 11 and Eq. 12, 

for k = 1 one gets  
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the comparison of which in combination with Eq. 16 leads to 
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For k = 2 the matching procedure Eq. 15 results in the following equations 
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⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 (19) 
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Comparing both results of Eq. 19 and inserting 

identity Eq. 16 yields the wanted boundary condition 

for the outer expansion of the pressure  

 ( ) ( ) ( )0,,ˆ1
2

2
0,,

ˆ
210

2

3

21

3

1

ξξξξ
ξ

ou

ou

pjf
p

−−=
∂

∂
 (20) 

Additionally, we get 

 
( )

( ) ( ) 00,,ˆ,00,,
ˆ

212212

3

0
2

==
∂

∂
ξξξξ

ξ

ou

ou

p
p

 (21) 

2.6 Dynamical Boundary Layer as a Flexible Wall 

Due to the momentum equation Eq. 5 the pressure 

gradient in normal direction equals the normal velocity 

time derivative 13

3

1

ˆ

ˆ
ou

ou

vfj
p

−=
∂

∂

ξ
. Inserting this in 

Eq. 20 and transforming to physical quantities we get 

the following relation of first order (up to ε ) validity 

 ( ) ( )ε
ν

Oj
E

F
pv ++−= 1

2

2

3
 (22) 

pv ,
3

 are the Fourier transformed normal velocity and 

pressure, respectively. F  is the angular frequency used 

in the Fourier Transform in physical dimensions. Equa-

tion 22 has an intuitive mechanical interpretation that 

refers directly to typical acoustical boundary settings. 

Note that the 
3

ξ - coordinate of the local coordinate 

system is oriented inwards, hence also a positive veloc-

ity component 
3
v . The complex coefficient 

( )j
E

F
+1

2

2ν
 is the acoustic admittance. It represents 

elastic and damping behaviour, the latter, of course, is 

responsible for the dissipation of the viscous effects in 

the dynamic boundary layer. A usual notation that is for 

instance applied in the acoustic modelling framework 

of the Finite Element program Abaqus reads in time 

and frequency domain  

 

p
ck

Fjv

p
c

p
k

u

out

out

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

+=

11

11

11

11
��

 (23) 

uout, vout are the outward displacement and velocity 

respectively at the boundary. In mechanical terms k1 is 

an elastic stiffness and c1 a damping coefficient or, in 

other words, the coefficients of a frequency dependent 

visco-elastic boundary. This property is sketched in Fig. 

3. 

Comparing Eq. 22 with Eq. 23 results in the follow-

ing equations for 
1
k  and 

1
c  

 
1 1

2 2
;

E E F
c k

Fν ν

= − = −  (24) 

Of course this result is not valid for very low fre-

quencies F since then 1/k1 tends to grow to infinity. The 

physical reason behind that breakdown of this approach 

at low frequencies is that the boundary layer thickness 

which is of order ( )/O v F  is growing to infinity but is 

unaffected by other boundary layers whereas in reality 

layers of opposite sides will interact. For pipe flow, for 

instance, the very low frequency situation is described by 

the well know Hagen-Poiseuille parabolic profile. The 

boundary layer thickness for a typical hydraulic oil with 

46 mm2/s kinematic viscosity and a frequency of 10 Hz 

(F = 20π/s) is estimated to be approximately 6 mm if we 

conclude from Fig. 2 that the nondimensional layer 

thickness is about 6. 

k
1
(F)d

1
(F)

Fluid domain

Bou
ndar

y

 

Fig. 3: Frequency dependent visco-elastic boundary condi-

tion as a mechanical equivalent of the viscous 

boundary layer 

3 Finite Element Analysis of Viscid 

Waves 

The results of the last section in combination with the 

wave equation Eq. 2 and the estimate given in section 2.2 

for the nondimensional viscosity value ε suggest the 

following procedure to compute wave propagation prob-

lems in 3D. 

• Use acoustic frequency domain finite elements for 

describing the behaviour in the domain of the fluid 

apart from the boundary layer. In the terminology 

of singular perturbation theory this is the zero or-

der term of the outer expansion or a solution of the 

reduced problem which is the inviscid wave equa-

tion Eq. 2 with ε = 0. 

• Apply frequency dependent acoustic boundary 

conditions according to Eq. 23. 

3.1 Realization in the Finite Element System 

Abaqus 

The Abaqus finite element system (Hibbit, 2001) 

can run a linear acoustic analysis including also the 

coupling of acoustic fields with elastic structures. For 

this purpose, different acoustic elements from 1D to 3D 

and axisymmetric cases are available. Different bound-

ary conditions: stiff boundary, prescribed pressure, 
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coupling with a mechanical structure, frequency de-

pendent impedance boundary also coupled to a me-

chanical structure, and radiating boundaries for exterior 

problems and distributed loads in form of a volumetric 

acceleration, can be modelled.  

Concerning the procedures for acoustic analysis the 

Steady State Dynamics analysis of Abaqus is relevant 

for this frequency domain wave propagation method, 

because the Direct Time Integration cannot model 

frequency dependent impedance boundary conditions.  

3.2 Benchmark Example Straight Circular Pipe 

For an easy comprehension and for a verification the 

example of a straight, circular, rigid pipe closed at its left 

end and with a prescribed periodic pressure at its right end 

is treated. The FE mesh and the boundary conditions are 

indicated in Fig. 4. Further data of this model can be 

found in the partial listing of the corresponding Abaqus 

input file in the Appendix. The visco-elastic boundary 

conditions have to be applied at all closed surfaces, in this 

example in principle also at the left side end surface, even 

though this has no significant influence on the results. If, 

however, the diameter to length ratio becomes much 

larger the dynamical boundary layer friction at the end 

surface has substantial influence on the system behaviour.  

L=1500 mmd
=

2
0
 
m

m

Abaqus acoustic 

elements ACAX4

Abaqus impedance 

boundary conditions

 

Fig. 4: Axisymmetric FE model of a hydraulic wave in a 

straight pipe  

 

Fig. 5: Amplitude of frequency response of the closed end 

pressure p
end

 to input pressure p
entr

 ratio (+)  and 

corresponding value of the analytical theory of 

D’Souza (1964) (⎯) 

 

Fig. 6: Amplitude of frequency response of the input flow 

rate Q
entr

 to input pressure p
entr

 ratio (+) and corre-

sponding value of the analytical theory of D’Souza 

(1964) (⎯)  

The applied Steady State Dynamics, Direct proce-

dure of Abaqus generates a frequency sweep which 

generates directly the frequency response behaviour of 

the system to the applied input load, in this case the 

periodic pressure oscillation at the open end of the pipe. 

The results of this computation are shown in Fig. 5 and 

Fig. 6 and are compared with the well known theory of 

D’Souza (1964). The agreement is excellent even down 

to rather low frequencies. The practical validity range 

concerning the low frequency limit is even better than 

the estimate for a circular pipe of section 2.6. The prac-

tical reason for that becomes apparent if one looks to 

the values of the admittance 1/k1 of the Abaqus input 

file in the Appendix. Even for the lowest investigated 

frequency of 0.01 Hz it is still a rather small value and 

the singularity for F → 0 according to Eq. 1 becomes 

striking only for much smaller values of F. 

3.3 Example: Transfer behaviour of curved pipes 

The transfer behaviour of curved pipes in the linear 

acoustic validity range can be studied by this method. 

In Fig. 7 a result obtained by Abaqus in terms of the 

acoustic velocity field amplitudes for the indicated 

frequency of 102 Hz is shown for a doubly coiled pipe 

with a circular cross section. An excitation amplitude of 

50 bar is applied at the lower end and no pressure oscil-

lation at the upper end of the coil. The inner parts show 

larger velocities than the outer parts. The respective 

transfer behaviour is compared in Fig. 8 with those of 

the straight pipe and a semicircle pipe both having the 

same centre line length (1.5 m) and diameter (40 mm) 

in the neighbourhood of a resonance frequency. All 

three FE models have a similar grid size of the FE 

mesh.  To show that the FE model of the straight pipe is 

quite accurate in this frequency range also the analyti-

cal results of D Souza’s theory are included. There is 

only a small shift in the resonance frequency and a bit 

more damping.  
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(Avg: 100%)
ACV, Magnitude

+4.199e+00
+4.528e+00
+4.857e+00
+5.186e+00
+5.515e+00
+5.844e+00
+6.172e+00
+6.501e+00
+6.830e+00
+7.159e+00
+7.488e+00
+7.817e+00
+8.146e+00

Step: acoustic
Increment      3: Frequency =    102.0
Primary Var: ACV, Magnitude   Complex: Magnitude
Deformed Var: not set   Deformation Scale Factor: not set

ODB: coil_oil_new.odb    Abaqus/Standard Version 6.8−1    Wed Nov 12 15:15:13 GMT+01:00 2008

X

Y

Z  

Fig. 7: Acoustic velocity amplitudes in the pipe coil at 

excitation frequency 102 Hz. 

f [Hz]  

Fig. 8: Spectrum Amplitude response of the outlet flow rate 

Q
O
 (upper coil end) versus of input pressure p

E
 near 

a resonance point for different models and pipe 

curvatures 

It must be pointed out that the linear acoustic equa-

tions Eq. 1 do not include the convective acceleration 

term and cannot create effects like the formation of 

vortices or vortex shedding. Such effects are typically 

encountered already for stationary or low frequency 

oscillating incompressible flow conditions and have 

significant influence on flow resistance. An open ques-

tion is what effect fluid compressibility has on these or 

similar phenomena.  

4 Conclusion and Outlook 

The dynamical boundary layer theory of viscid 

wave propagation opens the door to simulate 3D viscid 

wave propagation with standard inviscid acoustic FE-

models if these models are endowed with frequency 

dependent boundary impedance. The validity of this 

approach was demonstrated by a comparison with ana-

lytical results for the circular straight pipe. The practi-

cal use of this modelling technique was shown for a 

pipe coil.  

This frequency domain based method can be ex-

ploited also for time domain simulations. A method 

which is based on Fast Fourier Transform can be found 

in Manhartsgruber (2005). Methods to approximate the 

frequency domain transfer behaviour by linear state 

space models as discussed in Manhartsgruber (2005), 

Manhartsgruber (2006) can also be applied. 

The method for computing 3D viscid wave propa-

gation will be used frequently for the investigation of 

specific hydraulic systems. Major fields will be hydrau-

lic switching converters, attenuation devices, and other 

systems in which fast hydraulic processes generate 

wave propagation effects with a significant 3D charac-

teristics in part of the hydraulic pathway. 

Of course, this theory is limited to the linearised 

wave equation. Effects due to the convective accelera-

tion term or due to a nonlinear compressibility law, for 

instance resulting from entrapped air or a cavitating 

fluid, are not included in this approach and cannot be 

covered by frequency domain methods. The modelling 

and experimental investigation of such type of wave 

propagation phenomena will be studied more inten-

sively in the future with direct CFD simulations and 

with experiments. It is planned to apply OpenFoam 

open source software [OpenFOAM®] and to use a 

flexible, match-box type test rig developed at the au-

thors’ institute for wave propagation experiments of 

different geometries.   

Typical computing times of 3D CFD hydraulic 

wave simulations as communicated by the Hydraulic 

Systems Design Research Group at the Engineering 

Sciences and Methods Department of the University of 

Modena and Reggio Emilia are in the range of many 

hours or even days, compared to only minutes for our 

approach.  This computational advantage is essential 

for extensive design studies and optimizations.  

Since in general linear methods are part of solution 

procedures of nonlinear problems, the method pre-

sented in this paper may be helpful also as an efficient 

linear solver for nonlinear wave propagation problems. 

Nomenclature 

c Wave propagation speed [m/s] 

1

c  
Damping coefficient of  me-

chanical boundary layer model 

[kg/ 

(m2s)] 

E  Fluid compression modulus [bar] 

( )k

E
ξ

 
Expansion operators for outer 

co-ordinates 
 

( )k

E
ξ

 
Expansion operators for inner 

co-ordinates 
 

f 

Nondimensional angular fre-

quency 
 

F Physical angular frequency [rad/s] 

I

�

 Identity tensor  

j Imaginary unit  

1

k  
Elastic stiffness of mechanical 

boundary layer model 

[kg/ 

(m2s2)] 
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L  
Length scale for nondimension-

alisation 
[m] 

p  Physical pressures [bar] 

p~  Nondimensional pressure  

Δ  Laplacian operator [1/m2] 

∇  Nabla operator [1/m] 

Δ
~

, ∇
~

 Nondimensional Δ ,∇   

ε  
Nondimensional friction pa-

rameter 
 

µ Dynamic viscosity of fluid [Pa s] 

0ρ

μ
ν =  Kinematic viscosity of fluid [mm2/s] 

p̂
 

p
~

 of TransformFourier   

k
in

p̂  
p̂ ofexpansion  asymptotic

inner   theofk order  of Term
  

k
ou

p̂  
p̂ ofexpansion  asymptotic

outer  theofk order  of Term
  

P 
Pressure scale for nondimen-

sionalisation 
[bar] 

v  Fluid velocity vector [m/s] 

v
~

 
Nondimensional fluid velocity 

vector 
 

3...1,ˆ =iv
i

 
i-th component of the Fourier 

Transform of v
~

 
 

3..1, =ix
i  Co-ordinates [m] 

3..1,~
=ix

i  Nondimensional coordinates  

ρ Fluid density  [kg/m3] 

ρ0 
Fluid density reference value at 

zero pressure 
[kg/m3] 

τ  Nondimensional time  
ω  Scaling frequency [rad/s] 

3..1, =iiξ  
Nondimensional co-ordinates at 

the boundary 
 

3..1, =i
bl

iξ  

Nondimenional co-ordinates for 

the boundary layer 
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Appendix 1 

ABAQUS input file for example section 3.2  

 

*Heading 

** Job name: Frequency response straight line; 

Length: 1.5 m; diameter: 20 mm; Abaqus Version 6.6 

*Preprint, echo=NO, model=NO, history=NO, 

contact=NO 

** 

** PARTS 

** 

*Part, name=Fluid 

** Define the nodes of the mesh 

*Node 

      1,           0.,          1.5 

      2,           0.,   1.49800014 

      3,           0.,   1.49599993 

…  

   4505, 0.00999999978, 0.00200000009 

   4506, 0.00999999978,           0. 

** Define the elements: Abaqus acoustic 4 node 

element: ACAX4 

*Element, type=ACAX4 

   1,    1,    2,  753,  752 

   2,    2,    3,  754,  753 

…  

3749, 3753, 3754, 4505, 4504 

3750, 3754, 3755, 4506, 4505 

** Define Node-sets and Element-sets 

*Nset, nset=Fluid, generate 

    1,  4506,     1 

*Elset, elset=Fluid, generate 

    1,  3750,     1 

** Section: Fluid: Define fluid properties, by refer-

ring to the material ‘oil’ for all fluid elements 

*Solid Section, elset=Fluid, material=oil 

1., 

*End Part 

** ASSEMBLY 

*Assembly, name=Assembly 

**   

*Instance, name=Fluid-1, part=Fluid 

*End Instance 

** Define further Node- and Element-sets for load 

and boundary definitions 

*Nset, nset=acoustic_pressure,internal, in-

stance=Fluid-1,generate 

  751,  4506,   751 

*Elset, elset=acoustic_pressure, internal, in-

stance=Fluid-1,generate 

  750,  3750,   750 

*Elset, elset=boundary_layer_admittance_S3, inter-

nal, instance=Fluid-1, generate 

 3001,  3750,     1 

*Elset, elset=boundary_layer_admittance_S4, inter-

nal, instance=Fluid-1, generate 

    1,  3001,   750 

*Surface, type=ELEMENT, 

name=boundary_layer_admittance 

boundary_layer_admittance_S3, S3 

boundary_layer_admittance_S4, S4 

*End Assembly 

**  

** MATERIALS 

** Define compression modulus and deinsity of the 

fluid 

*Material, name=oil 

*Acoustic Medium 

 1.6e+09, 

*Density 

850., 

**  

** INTERACTION PROPERTIES 

** The first column is the values of '1/k' the real 

part =sqrt( ν F/2(E*ω) 

**The second column is the values of '1/ c' the 

imaginary part = sqrt( ν F/2)/E 

** The third column is the frequency F/(2π) 

*Impedance Property, 

name=boundary_layer_admittance 

 1.1958e-11, 7.5134e-13,       0.01 

 3.7814e-12, 2.3759e-12,        0.1 

    1.2e-12,   7.51e-12,         1. 

   1.69e-13,   5.31e-11,        50. 

    1.2e-13,   7.51e-11,       100. 

… 

   1.71e-14,   5.26e-10,      4900. 

    1.7e-14,   5.29e-10,      4950. 

   1.69e-14,   5.31e-10,      5000. 

**  

**  

*Acoustic Wave Formulation, type=TOTAL WA-

VE 

** ----------------------------------------------------------- 

** Tjis defines the calculation procedure  

** STEP: acoustic 

**  

*Step, name=acoustic, perturbation 

Frequency_response 

*Steady State Dynamics, direct 

0.01, 5000., 1000, 1. 

**  

** BOUNDARY CONDITIONS 

** This defines the load: input pressure amplitude 

of 50 bar (5e6 Pascal); only a real part is  

** taken! 

** Name: acoustic_pressure Type: Acoustic pres-

sure 

*Boundary, load case=1 

acoustic_pressure, 8, 8, 5e+06 

*Boundary, load case=2 

acoustic_pressure, 8, 8 

**  

** INTERACTIONS 

** This defines the acoustic boundary conditions by 

which the viscous boundary layer is  

** modeled 

** Interaction: admittance 

*Simpedance, prop-

erty=boundary_layer_admittance 

boundary_layer_admittance 

**  

** OUTPUT REQUESTS 
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**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field 

*Node Output 

POR 

*Element Output, directions=YES 

ACV 

**  

** HISTORY OUTPUT: H-Output-1 

**  

*Output, history, variable=PRESELECT 

*End Step 
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