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Abstract 

An important aspect of robust control development around hydraulic actuators is establishing a set of equivalent lin-

ear time-invariant (LTI) models that describe the dynamics of the system over the desired envelope of operation. The 

nonlinearities inherent in the hydraulic functions must be recast into an equivalent linear form in order to make the 

robust control problem amenable to solution by linear techniques. This paper develops a simple model-based approach 

for evaluating equivalent LTI frequency response functions of an electrohydraulic actuator by Fourier transformation of 

acceptable actuator input-output data. The efficacy of the numerical procedure is compared with two other available 

methods, namely small-signal analysis and Golubev’s least-squares approach. It is shown that the proposed approach 

can describe large signal effects and at the same time properly characterize the features of the hydraulic actuator fre-

quency response that are important for robust control design, without the need for a priori information about the asymp-

totic behaviour or structure of the equivalent LTI transfer function. The applicability of the proposed numerical tech-

nique towards development of practical controllers for fluid power systems is demonstrated by the results of a typical 

robust control design example for an experimental electrohydraulic positioning system. 

Keywords: electrohydraulic actuators, robust control synthesis, equivalent linear time-invariant modelling, frequency response functions, Fourier 
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1 Introduction 

Despite widespread use of fluid power devices, con-

trol system development for hydraulic actuators re-

mains a challenging task. The main issue that must be 

overcome is the nonlinear behaviour of the system 

functions, for example the nonlinear relationship be-

tween pressure and flow in the servovalve. Other diffi-

culties include coping with uncertainty in the hydraulic 

system parameters, whose values can vary with operat-

ing conditions or as a result of faults. To overcome 

these challenges, a number of different approaches 

have been applied for development of fluid power con-

trol systems, including state feedback (Finney et al, 

1985), adaptive control (Plummer and Vaughan, 1996), 

Lyapunov based control (Sekhavat et al, 2005), and soft 

computing (Kim and Lee, 2006). Robust control tech-

niques such as H∞ and quantitative feedback theory 

(QFT), have also received a good deal of attention in 

the fluid power literature (Piche et al., 1991; Karpenko 

and Sepehri, 2003; Niksefat et al., 2007). 
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One feature that makes robust control techniques 

appealing for control system design around hydraulic 

actuators is the possibility of desensitizing the control 

loop to plant nonlinearities and parameter variations 

using a fixed-gain control structure. This is in contrast 

to other approaches, such as adaptive control, which 

deal with system nonlinearities in an on-line fashion. 

Moreover, with robust control techniques, good tran-

sient and steady-state performance can often be ob-

tained using only the controlled variable as feedback. 

This is attractive from the perspective of industrial 

implementation (Niksefat et al., 2007). However, most 

robust control theories, including QFT, are based on the 

assumption that the system to be controlled is a linear 

one. Therefore, a key element in the application of 

robust synthesis techniques for control of hydraulic 

actuators is the necessity to express the nonlinear dy-

namics as a set of equivalent linear time-invariant (LTI) 

functions. 

An equivalent LTI function is one that generates the 

same output as the nonlinear system when driven by 
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the same input signal. A set of equivalent LTI functions 

is required to deal with parametric uncertainty in the 

original nonlinear plant and to handle the fact that the 

plant output is dependent upon the strength of the in-

put. One of the most simple and common approaches 

for translating the nonlinear hydraulic actuator dynam-

ics into an equivalent LTI form is to linearize the hy-

draulic functions around a steady-state operating point 

(Merritt, 1967). The development of linearized models 

is an effective way to gain insight into how the dynam-

ics of systems and components interact (Wu et al., 

2002). However, with this method, it is only possible to 

approximate the system dynamics by a linear plant over 

a limited region of operation. Since small-signal as-

sumptions can be violated during the operation of the 

system, great care must be exercised in the use of lin-

earized analysis for controller design (Edge, 1997). Part 

of the objective of this paper is to demonstrate that 

fixed parameter linearized models are indeed inade-

quate to describe the hydraulic system transient re-

sponse. 

An alternative approach for establishing an equiva-

lent LTI representation of hydraulic actuators is to 

employ the concept of restricted device equivalence 

(Horowitz, 1993), where the equivalent LTI function is 

found by evaluating the transforms of the actuator in-

put-output signals and taking their ratio in the fre-

quency domain. This is also called the LTI-equivalent 

(LTIE) approach (Horowitz, 1981). An important dif-

ference between small-signal and LTIE transfer func-

tions is that LTIE functions are not subject to small-

signal assumptions and can properly characterize large 

signal responses using a fixed-gain structure, a re-

quirement demanded by most robust synthesis theories. 

An additional advantage associated with LTIE model-

ling is that Schauder’s fixed point theorem can be ap-

plied to prove that the compensator which solves the 

equivalent LTI problem also solves the original nonlin-

ear control problem (Horowitz, 1993).  

The first step to derive LTIE functions for a hydrau-

lic actuator is to obtain a set of acceptable input-output 

responses from a model of the nonlinear system. Then, 

a model identification technique must be used to trans-

late the time-domain data into the frequency domain for 

controller synthesis. The only paper that employs the 

LTIE approach for fluid power systems is the work of 

Niksefat and Sepehri (2007), which developed a nu-

merical approach for inverting the hydraulic actuator 

dynamics and used Golubev’s least-squares method 

(Golubev and Horowitz, 1982) for identifying the LTIE 

transfer functions of an experimental hydraulic actua-

tor. In Niksefat and Sepehri (2007), only low-order 

models of the hydraulic system were identified. It was 

also observed that Golubev’s algorithm could improp-

erly characterize the inherent integration characteristic 

of the ram. Therefore, more attention must be directed 

towards establishing suitable techniques for identifica-

tion of LTIE hydraulic actuator models from time-

domain data. 

This paper develops a simple numerical procedure 

for constructing hydraulic actuator LTIE frequency 

response functions directly from the actuator input-

output pairs. The LTIE frequency response functions 

provide all the information required for robust synthe-

sis and are obtained by numerical integration of the 

continuous time Fourier integral. Therefore, the fre-

quency response functions can be obtained without the 

need for a priori knowledge about the asymptotic be-

haviour or structure of the LTIE transfer function as is 

required by other identification approaches, such as 

Golubev’s method. Additionally, the proposed numeri-

cal approach employs an extra term that improves accu-

racy as compared to the conventional discrete Fourier 

transform, which is typically applied to evaluate Fou-

rier integrals. Further, it is demonstrated that the pre-

sented technique can accurately characterize the hy-

draulic actuator magnitude and phase response over a 

wide range of frequencies and properly capture large 

signal effects.  

The applicability of the proposed numerical tech-

nique towards development of a practical controller for 

a hydraulic actuator is demonstrated by the results of a 

robust control design example. Quantitative feedback 

theory is used to design a low-order position controller 

for an experimental hydraulic ram that gives good tran-

sient and steady-state performance over a wide range of 

parameter uncertainty and without the need for addi-

tional tuning. It is also shown that the LTIE approach 

enables the synthesis of a near optimal control law, in 

terms of minimizing feedback. 

2 System Under Investigation 

The electrohydraulic system under investigation is 

shown in Fig. 1. The ram is a double rod type, operated 

under position control against a spring-force dominant 

load. The nonlinear state equations that describe the 

relationship between the servovalve control flows, Q1 

and Q2, and the actuator position output, xp, are (Kar-

penko and Sepehri, 2003): 

 p px v=�  (1a) 

 ( )p 1 2 p p

1
v AP AP dv kx

m
= − − −�  (1b) 

 ( )h
1 1 p

1

P Q Av
V

β
= −

�  (1c) 

 ( )h
2 2 p

2

P Q Av
V

β
= − +

�  (1d) 

In Eq. 1, m, d, A, and βh are the mass of the piston, 

the effective viscous damping of the actuator, the piston 

annulus area, and the bulk modulus of the hydraulic 

fluid, respectively. Pressures P1 and P2 denote the hy-

draulic pressures in each of the two actuator chambers, 

and k refers to the stiffness of the load. The volume of 

hydraulic oil on each side of the piston is given by 

variables V1 and V2. 
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Fig. 1: Electrohydraulic positioning system 

The servovalve control flows are given by (Merritt, 

1967)  

 s r v s r

1 v v 1

v
2 2

P P x P P
Q K wx P

x

− +⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
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 s r v s r
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x
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= + −⎜ ⎟

⎝ ⎠
 (2b) 

which are valid for both extending and retracting 

strokes. Pressures Ps and Pr in Eq. 2 refer to the hydrau-

lic supply and return pressures and constants Kv and w 

are the flow coefficient and orifice area gradient of the 

servovalve. The valve flow coefficient is computed as 

v d
2 /K C ρ=  where Cd is the servovalve orifice 

coefficient of discharge and ρ is the density of the hy-

draulic fluid. Variable xv is the displacement of the 

servovalve spool. 

Finally, the relationship between the control signal, 

u, and the position of the servovalve spool is modelled 

as a second-order lag (Karpenko and Sepehri, 2003) 

having undamped natural frequency ωv, damping ratio 

ζv, and valve spool position gain, ksp. Therefore, the 

equivalent LTI frequency response function relating the 

change in the position of the ram Xp(jω) to the change 

in the servovalve command signal U(jω)  can be writ-

ten as  

 
p

V H

( )
( ) ( )

( )

X j
P j P j

U j

ω

ω ω

ω

=  (3) 

where 

2
sp v

V 2 2
v v v

( )
( ) 2 ( )

k
P j

j j

ω
ω

ω ζ ω ω ω
=

+ +

 describes 

the second-order servovalve spool dynamics. Function 

PH(jω) refers to the equivalent LTI frequency response 

that captures the nonlinear relationship between the 

servovalve spool displacement, xv, and the actuator 

position, xp.  

To identify functions PH, a set of acceptable input-

output responses must first be obtained from nonlinear 

model Eq. 1. To do this, a family of acceptable output 

responses is defined as  

 a

p
( ) ( ) ( )s s s=X R T  (4) 

where a a

p p
( ) ( )X s s∈X  is the acceptable position re-

sponse to the reference command ( ) ( )R s s∈R . 

{ }( ) ( )s T s=T  is the set of acceptable closed-loop 

system functions, which map each reference input to an 

output response in set a

p
( )sX . A simple description of 

system function T(s) for a hydraulic actuator is  

 
2

p

2
1 2 pp

1
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2
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s
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s
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λ

ζ

ωω

⎛ ⎞
+⎜ ⎟

⎝ ⎠=
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 (5) 

In Eq. 5, the locations of the transfer function poles 

are fixed to set the main characteristics of the actuator 

response. Some variation in the output of the hydraulic 

actuator is, however, inevitable due to system nonlin-

earities and parametric uncertainties. The acceptable 

range of variation in the closed-loop responses is regu-

lated by adjusting parameter λ. Figure 2a shows a typi-

cal acceptable hydraulic actuator position response 

obtained using Eq. 5. 

Once the acceptable output set has been defined, the 

time history of the input signal, xv, required to drive the 

ram the along the acceptable closed-loop trajectory 

must be calculated. A suitable procedure for computing 

the inverse dynamics of the hydraulic actuator has been 

developed in Niksefat and Sepehri (2007), and is 

briefly outlined in the Appendix. This method was used 

to compute the time history of the servovalve spool 

displacement shown in Fig. 2b. The nominal parameter 

values of an existing hydraulic test rig (Karpenko and 

Sepehri, 2003), listed in Table 2 (see Section 5), were 

used to obtain the plot. Together, the time histories of 

the valve spool displacement and actuator position 

response form an input-output pair that can be used to 

identify the equivalent LTI model of the hydraulic 

actuator. Many such signal pairs are normally required 

for control system synthesis to ensure that the nonlinear 

actuator dynamics are adequately represented over the 

operational envelope of the system. 

3 Hydraulic Actuator Frequency Re-

sponse by Small-Signal Approach 

Expanding Eq. 2 as a truncated Taylor series around 

a fixed operating point o, the linearized servovalve 

flows are  

 

1 1
1 1 v vo 1 1o

v 1
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(a)  

 
(b) 

Fig. 2: Typical acceptable hydraulic actuator input-output 

response obtained using (5) with P1 = 15, p2 = 20, 

ωp = 852, ζp = 1, and λ = 14: (a) actuator position 

(output);  

(b) servovalve spool displacement (input) 

Partial derivatives 
v

Q

x

∂

∂
 are known as the valve flow 

gains and partial derivatives 
Q

P

∂

∂
 are called the flow-

pressure coefficients. For an equal area ram driven by a 

matched and symmetrical valve with Pr = 0, the pres-

sure in one cylinder half rises above Ps/2, while the 

pressure in the other cylinder half decreases below Ps/2 

by roughly the same amount (Merritt, 1967). Thus, for 

an extending stroke, the individual cylinder pressures 

are ( )1 s L

1

2
P P P≈ +  and ( )2 s L

1

2
P P P≈ − , where 

L 1 2
P P P= −  is the load pressure. Due to the relation-

ship between P1 and P2, it is quite often the case that 

K1f ≈  K2f and K1p ≈  K2p. The valve coefficients can 

therefore be written in terms of the operating point load 

pressure as follows:  

 ( )f v s vo Lo

1
sgn( )

2
K K w P x P= −  (8) 

 v vo vo
p

s vo Lo

sgn( )

2 2( sgn( ) )

K wx x
K
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=

−

 (9) 

Laplace transforms of Eq. 1 are now combined with 

Eq. 6 and Eq. 7 to derive the small-signal hydraulic 

actuator transfer function  

h f T p

H 2 2 2
1o 2o h p T h p

2 2 2 2
h T h p

( 2 )
( )

( )( 2 )

2

AK V s AK
P s

ms ds k V V s K V s K
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β

β β

β β

+
=
⎧ ⎫+ + + +⎪ ⎪
⎨ ⎬

+ +⎪ ⎪⎩ ⎭

(10) 

where VT is the combined volume of both cylinder 

halves and parameters V1o and V2o refer to the cylinder 

volumes at operating point o. 

To use transfer function Eq. 10 for control system 

synthesis, the values of the servovalve flow and flow-

pressure coefficients need to be evaluated at different 

operating points. A method for identifying the ser-

vovalve operating point, which lends itself well to 

graphical interpretation, is the load locus technique 

(Nikiforuk and Westlund, 1965). The idea is to super-

impose a plot of the hydraulic load line over a plot of 

the nonlinear servovalve flow curves. The load line 

defines the relationship between the load pressure and 

load flow of hydraulic oil needed to drive the mechani-

cal load. On the load locus plot, the servovalve operat-

ing points can be identified by the intersections of the 

load line and the valve flow curves (Nikiforuk and 

Westlund, 1965). 

From Eq. 1b, the time history of the load pressure 

required to position the actuator against the load is  

 ( )a a a
L p p p

1
( ) ( ) ( ) ( )P t mx t dx t kx t

A
= + +�� �  (11) 

The corresponding load flow through the ser-

vovalve is given approximately by  

 

( ) a1 2
L 1 1 2 2 p

h
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h
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h
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2 2

1

2 2 2
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β
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+
≈ +

� �

�

� �

�

�

�

 (12) 

Using Eq. 11 and Eq. 12, a plot of QL versus PL can 

be constructed for each acceptable hydraulic actuator 

response under consideration. The load line pertaining 

to the example actuator response of Fig. 2 is shown in 

Fig. 3. As indicated by the arrowhead, the load line is 

traversed from the initial actuator state at point ‘a’ to 

the steady-state at point ‘j’. At each location where the 

load line intersects the valve pressure-flow curves, the 

servovalve operating point can be graphically evaluated 

by reading off the operating point valve spool dis-

placement, xvo, and the operating point load pressure, 

PLo. The valve coefficients can then be solved. 

 

Fig. 3: Example hydraulic load line and graphical deter-

mination of servovalve operating points for a typi-

cal actuator position response 

Table 1 reports the servovalve flow coefficients, Kf 

and Kp, at operating points ‘a’ through ‘j’. Referring to 

Table 1, it is clear that the valve coefficients are 
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strongly time varying over the transient response inter-

val. Figure 4 shows the responses of transfer function 

Eq. 10 when the values of Kf and Kp are allowed to vary 

over time and when the values of Kf and Kp are fixed. 

Although a small-signal model with time-varying pa-

rameters can accurately reproduce the transient re-

sponse, such a transfer function violates the assumption 

of time-invariance inherent in many robust synthesis 

techniques. Therefore, unless the region of operation of 

the servovalve is suitably restricted, small-signal analy-

sis may not be suitable for design of the robust control 

system. 

Table 1: Servovalve coefficients pertaining to load 

line in Fig. 3 

point 
f

K  (m3/sec) 
11

p
10K ×  (m3/Pa·sec) 

a 1.78 0 

b 1.75 0.28 

c 1.73 0.58 

d 1.70 0.90 

e 1.61 1.26 

f 1.57 1.30 

g 1.42 1.07 

h 1.33 0.77 

i 1.26 0.40 

j 1.19 0 

 

 
(a) 

 
(b) 

Fig. 4: Comparison between nonlinear position response 

and responses of equivalent small-signal models:  

(a) response for time-varying Kf and Kp ( marks 

correspond to updates of linearized valve coeffi-

cients);  

(b) responses for fixed values of Kf and Kp 

The Bode plots of the small-signal transfer func-

tions at each operating point are shown in Fig. 5. It is 

observed that the linearization process introduces a 

significant amount of dynamic uncertainty in the low 

frequency range ω < 10 rad/sec. This results from the 

fact that some of the small-signal models, for example 

the model corresponding to operating point ‘f’, are type 

0 because Kp ≠ 0 during part of the system transient. 

However, since the servovalve meters flow, it must 

close when the position error is zeroed. Thus, the actua-

tor always physically behaves as a type 1 system and 

the actual low frequency uncertainty is much smaller 

than the amount predicted by the equivalent small-

signal plant set. 

 

Fig. 5: Bode plots of equivalent small-signal transfer func-

tion set pertaining to load line in Fig. 3 

Since robust control relates the amount of feedback 

at each frequency to the amount of uncertainty in the 

plant dynamics, small-signal analysis forces the magni-

tude of the loop transmission to be unnecessarily large 

in the low frequency range. The result is an over-

designed and conservative control system that uses 

much more feedback gain than is actually required to 

solve the robust control problem. This point will be 

further elaborated on in Section 5. 

4 Hydraulic Actuator Frequency  

Response by LTI-Equivalent Approach 

4.1 Existing Approach – Golubev’s Method 

One approach for computing LTIE frequency re-

sponse, H p v
ˆ ˆ( ) ( ) ( )P j X j X jω ω ω= , has been devel-

oped by Golubev and Horowitz (1982). The method 

allows least-squares estimates of the LTIE transfer 

function coefficients to be calculated by repeated inte-

gration of the plant input-output data. For the hydraulic 

actuator under study, the LTIE equivalent system can 

be described in the time domain by the following ordi-

nary differential equation, which assumes zero initial 

conditions (Whitfield and Messali, 1987): 

 

(n) (n-1)
n p n-1 p 0 p

(m)
0 v m v

( ) ( ) ... ( )

( ) ... ( )

b x t b x t b x t

a x t a x t

+ + +

= + +

 (13) 

where 
j

(j)
p pj
( ) ( )

d
x t x t

dt
= . Each side of Eq. 13 is then 

integrated n-times and rearranged to get  

 

(-1) (-n)
n p n-1 p 0 p

(-n) (-n+m)
0 v m v

( ) ( ) ... ( )

( ) ... ( )

b x t b x t b x t

a x t a x t

= − − −

+ + +

 (14) 
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The integrals in (14) are computed from samples of 

signals xp and xv taken at time instants tk, (k = 1,2,…N). 

For example using the trapezoidal rule, 

(-r) (-r) (-r+1) (-r+1)
p k p k-1 p k p k-1( ) ( ) ( ) ( )

2

h
x t x t x t x t⎡ ⎤= + +⎣ ⎦ , 

where h is the sampling interval. 

Assuming bn=1, a least-squares problem is assem-

bled next to solve unknown system coefficients ai and 

bj as follows  

 

{ }
N

TT
k k 0 n-1 0 m

k 1

N

k p k

k 1

( ) ( ) ,..., , ,...

( ) ( )

t t b b a a

t x t

φ φ

φ

=

=

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎧ ⎫⎪ ⎪
= ⎨ ⎬
⎪ ⎪⎩ ⎭

∑

∑

 (15) 

where 
(-n) (-1) (-n)

k p k p k v k( ) ( ),..., ( ), ( ),...,t x t x t x tφ ⎡= − −⎣  

(-n+m)
v k( )x t ⎤

⎦ . Golubev’s method thus allows the LTIE 

transfer function to be evaluated by taking the Laplace 

transform of Eq. 13, and inserting the values of ai and 

bj solved from Eq. 15. 

Golubev’s method was applied to estimate a LTIE 

transfer function to fit the example hydraulic actuator 

input-output signal pair shown in Fig. 2. The identified 

transfer function is  

8

H 2 3 2 5

5.18 10 ( 48.6)( 122.0)
( )

( 161.3 6.8 10 )( 8.9 2.0 10 )

s s
P s

s s s s s

× + +
=

+ + × + + ×

(16) 

The ability of the identified LTIE transfer function 

to reproduce the original nonlinear position response is 

shown in Fig. 6. As is seen, the results are indistin-

guishable. A Bode plot of Eq. 16 is shown in Fig. 7. It 

is observed that the identified LTIE transfer function 

properly captures two of the important features of the 

hydraulic actuator behaviour. The first is the inherent 

integration characteristic of the ram in the low fre-

quency range, ω < 10 rad/sec. The second feature is the 

resonant mode in the high frequency range, ω = 500 

rad/sec, that results from the interaction between the 

load mass and the compressibility of the hydraulic oil. 

Proper identification of the resonant mode is important 

for control system design since the resonance peaks 

occur when the phase lag is 180º and thus tend to limit 

the achievable gain margin. Another interesting charac-

teristic of the identified LTIE transfer function is the 

fact that it has a more complex structure than the small-

signal transfer function. The additional transfer func-

tion elements are necessary to account for large signal 

effects, for example dynamic changes in the values of 

the operating point flow coefficients, which could not 

be properly represented by the fixed parameter small-

signal models. 

In spite of the desirable features of Golubev’s 

method, several drawbacks of the approach for hydrau-

lic actuator model identification are noted below:  

The algorithm was found by the authors to be quite 

sensitive to the sampling interval, h, and the length of 

the data record, N, used to assemble the least-squares 

system Eq. 15. If parameters h and N were chosen in-

correctly, the algorithm was observed to generate trans-

fer functions with unstable poles and zeros.  

The length of the data record used in the approxi-

mation plays an important role in determining the fre-

quency range over which the transfer function estimate 

is most accurate. Short data records had to be used to 

properly identify the actuator resonance, at the expense 

of degraded accuracy in the low-frequency range. This 

suggests that difficulties may be encountered when 

applying Golubev’s method to systems having both 

slow and fast dynamic modes as in hydraulic actuators 

with internal leakage.  

 

Fig. 6: Comparison between nonlinear position response 

and response of LTIE transfer function obtained by 

Golubev’s method. Results are indistinguishable 

 

Fig. 7: Bode plot of LTIE transfer function obtained by 

Golubev’s method 

To obtain good transfer function fits, a priori in-

formation about the asymptotic behaviour of the trans-

fer function had to be inserted into the model. For ex-

ample, it was necessary to set parameter b0 = 0 in 

Eq. 15 to force the LTIE transfer function to have a 

pole at the origin.  

There is no way to decide, a priori, the degrees of 

the numerator and denominator polynomials that give 

the best fit of the time-domain data, even if the excess 

of poles over zeros is known. This makes the applica-

tion of the approach tedious, if not unmanageable, in a 

practical design scenario where many LTIE models 

must be identified to represent the response of a hy-

draulic actuator under different operating conditions. 

4.2 New Approach – Fourier Transformation 

A different approach that can be used to compute 

LTIE frequency response H p v
ˆ ˆ( ) ( ) ( )P j X j X jω ω ω= , 

which has not been applied to hydraulic actuators, is 

Fourier transformation. An advantage of Fourier trans-

formation over Golubev’s method is that the magni-
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tudes and phase angles of the LTIE plants can be ob-

tained directly without the need to solve a rational 

transfer function. The use of Fourier transformation can 

therefore improve the efficiency of the LTIE modelling 

process, the most time consuming aspect of robust 

control development. In this Section, a numerical pro-

cedure for evaluating the Fourier transform of the hy-

draulic actuator input-output signal pairs is developed.  

Consider the Fourier transform of output xp(t):  

 -jωτ
p p0

ˆ ( ) ( )X j x e dω τ τ

∞

= ∫  (17) 

From a numerical perspective, Eq. 17 should be 

considered as a sum of three components (Mopsik, 

1985)  

 

p 1 2 3

jωτ -jωτ
p p

0

-jωτ
p

ˆ ( )

( ) ( )

( )

h T

h

T

X j I I I

x e d x e d

x e d

ω

τ τ τ τ

τ τ

−

∞

= + +

= +

+

∫ ∫

∫

 (18) 

In Eq. 18, h  refers to the fixed sampling interval 

and T denotes the end of the finite interval over which 

the sampled xp(t) data are available. The second term in 

sum Eq. 18 is the only component of the indefinite 

integral that can be obtained directly. The frequency 

band over which the numerical approximation to Eq. 17 

is valid, is therefore limited to the interval (Mopsik, 

1985) 

 
1 1

T h
ω< <  (19) 

Restriction Eq. 19 is necessary because at high fre-

quencies, ω > h-1, term I1 is typically dominant and it is 

difficult to evaluate I1 due to the oscillatory nature of 

the integrand (Bailey and Swarztrauber, 1994). How-

ever, for frequencies ω « h-1, the contribution of com-

ponent I1 becomes small. At the other end of the spec-

trum, T-1 < ω term I3 can become dominant, but the 

value of I3 can only be estimated since signal xp(t) is 

truncated at time T. 

If the Fourier integral is truncated after the hydrau-

lic system has reached steady-state, restriction ω < T-1 

can be removed since the value of xp(t) will be constant 

for t ≥ T. Therefore, term I3 can be computed exactly, 

i.e. jωT
3 p ( )I x T e jω

−

= . Alternatively, one can work 

with time derivative 1 a
p p( ) { ( )}x t sX s

−

=� L . In the 

steady-state, 
p
( ) 0x t =�  for t ≥ T making I3 ≡ 0 in 

Eq. 18. The required frequency response function 

p
ˆ ( )X jω  can then be recovered as 

p p

ˆˆ ( ) ( )X j X j jω ω ω=
� . A similar approach can be 

taken to evaluate the frequency responses, 
v

ˆ ( )X jω , of 

the actuator input signal.  

In light of the above discussion, an estimate of the 

frequency response function for signal xp(t) can evalu-

ated by computing the truncated Fourier integral  

 -jωτ
p p
ˆ ( ) ( )

T

h
X j x e dω τ τ= ∫  (20) 

Calculation of the transcendental integrand in 

Eq. 20 is carried out by first subdividing the integration 

interval (0,T] into N panels of length h. Then, by as-

suming term xp(τ) is constant over each panel and by 

using a Filon-like approach (Filon, 1929) along with 

Euler’s formula, Eq. 20 is rewritten as  

p

1

p

0

1 cos( ) sin( )ˆ ( )

( )[cos( ) sin( )]
N

k

h j h
X j

j

x kh kh j kh

ω ω

ω

ω

ω ω

−

=

− +

=

× −∑

(21) 

Note that the sum in Eq. 21 bears resemblance to 

the discrete Fourier transform and can be computed 

efficiently using the fast Fourier transform (FFT). 

However, Eq. 21 offers improved accuracy over the 

FFT since a multiplicative factor is used to correct for 

the error introduced by the FFT assumption that terms 

‘cos(ωh)’ and ‘sin(ωh)’ are constant over the integra-

tion interval. The correction factors to the left of the 

sum in Eq. 21 are constant at each frequency, ω. There-

fore, the correction terms can be applied afterwards to 

the results of a FFT computation with little additional 

overhead. Moreover, the values of the multiplicative 

factors only need to be calculated once for a particular 

vector of frequencies. This fact can be exploited to 

speed the analysis of families of time signals. 

Equation 21 was applied to evaluate the LTIE fre-

quency response functions for the xv(t) – xp(t) signal 

pair shown in Fig. 2. A Bode plot of the identified 

LTIE frequency response ratio, 

H p v
ˆ ˆ( ) ( ) ( )P j X j X jω ω ω= , is shown in Fig. 8. As can 

be seen, the proposed numerical procedure properly 

identified the low frequency integration characteristic 

of the ram as well as the resonant mode in the high 

frequency range. Moreover, the LTIE frequency re-

sponse ratio obtained by Fourier transformation is iden-

tical to the one identified using Golubev’s method. 

However, an important advantage of the Fourier trans-

formation approach is that the LTIE frequency response 

function can be arrived at without the need to make 

assumptions on the structure of the LTIE transfer func-

tion. 

 

Fig. 8: Bode plot of LTIE frequency response obtained by 

Fourier transformation approach 
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5 Robust Control Design Example 

The proposed Fourier transformation approach, de-

scribed in Section 4, was applied to develop a robust 

two degree-of-freedom QFT position control system 

around an experimental electrohydraulic actuator. A 

photograph of the experimental setup is shown in 

Fig. 9. A description of the test rig has been given 

elsewhere (Karpenko and Sepehri, 2003) and is there-

fore not repeated here. The nominal parameters of the 

experimental actuator and the parameter uncertainties 

considered in the robust design are given in Table 2.  

 

Fig. 9: Photograph of experimental setup 

Table 2: System parameters used for controller devel-

opment 

fixed  

parameters 

value 

A  (mm2) 633 

L  (mm) 610 

v
K  (m3/2/kg3/2) 0.0292 

w  (mm2/mm) 13.21 

v
ω  (Hz) 150 

v
ζ  0.9 

uncertain  

parameters 

min nominal max 

s
P  (MPa) 13.8 17.2 18.6 

h
β  (MPa) 345 689 1030 

m  (kg) 11 12.3 13.7 

d  (N/m·sec) 200 250 300 

k  (kN/m) 0 30 60 

sp
k  (mm/V) 0.025 0.028 0.031 

 

Parameter uncertainty was considered in the design 

since variation in some hydraulic system parameters is 

inevitable and this can degrade the closed-loop per-

formance. For example, the supply pressure can vary 

with changes in the demand for fluid and the value of 

the bulk modulus can fluctuate with fluid temperature 

(Merritt, 1967). The mass of the piston, rods, and load 

can be difficult to measure precisely and the value of 

the viscous damping coefficient often changes in dif-

ferent parts of the actuator stroke. Similarly, changing 

flow forces can impact the valve spool position gain as 

the servovalve ages. An uncertain load stiffness was 

also considered, in this paper, to account for different 

loading conditions under which the actuator is expected 

to operate. Since the QFT design technique has been 

well documented (Horowitz, 1993), only an outline of 

the approach is given here. Briefly, the design proce-

dure involves the following steps: 

5.1 Step 1 – Generating LTIE Plant Templates 

The plant templates are generated from the set, 

{ }V p v
ˆ ˆ( ) ( ) ( )P j X j X jω ω ω= ⋅P , of LTIE frequency 

response functions that describe the behaviour of the 

hydraulic actuator over the considered envelope of 

operation. The templates characterize, as gain and 

phase variation on the Nichols chart, changes in the 

dynamics of the hydraulic actuator that arise due to 

hydraulic nonlinearities and system parametric uncer-

tainties over the set of acceptable output responses. 

Several templates of the experimental hydraulic actua-

tor under consideration are shown side-by-side in 

Fig. 10 for selected frequencies, ω rad/sec. The tem-

plate points were computed by first selecting p1 = 15, 

p2 = 20, ωp = 852, ζp = 1 and [14,33]λ∈  in Eq. 5 to 

generate a family of acceptable outputs for step com-

mands of differing magnitudes. The time histories of 

the servo-valve spool displacements required to gener-

ate the acceptable output response set were then calcu-

lated by simulating the inverse model of the hydraulic 

actuator dynamics given in the Appendix. Various 

combinations of the uncertain hydraulic actuator pa-

rameters were considered. Finally, the magnitude and 

phase of the LTIE frequency response function for each 

input-output pair was determined at each design fre-

quency by transforming the time-domain signals using 

Eq. 21. 

 

Fig. 10: Templates of LTIE plant set, ( )ωP , at selected 

frequencies, ω (rad/sec) 

5.2 Step 2 – Generating Performance Bounds and 

Loop Shaping 

Closed-loop performance requirements on robust 

tracking and robust stability were translated into QFT 

bounds on the nominal open-loop transfer function, 
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L = GPnom, where G is the transfer function of the ro-

bust controller and Pnom is the LTIE function of a 

nominal plant selected from set P . In QFT, the entire 

design process is carried out in the frequency domain 

so it is not necessary to express Pnom in rational form. 

However, some robust synthesis techniques, for exam-

ple H∞, require a transfer function or state equation 

representation of the nominal LTIE model. If required, 

such a transfer function could be identified from the 

nominal LTIE frequency response using a complex 

curve fitting procedure such as the one described in 

(‘t Mannetje, 1973) or (Stahl, 1984). 

After selecting the nominal LTIE frequency re-

sponse, the QFT bounds are derived either by moving 

the plant templates between the appropriate closed-loop 

magnitude contours (M-circles) on the Nichols chart or 

by a computer search. QFT bounds are shown in 

Fig. 11 at several design frequencies. The frequency 

response of L is then manipulated by adding controller 

poles and zeros until the loop shape lies in the accept-

able region on the Nichols chart. The nominal loop 

transmission should lie above the open tracking bounds 

(solid lines) and outside the closed stability bounds 

(dashed lines) that encircle the (-180°, 0 dB) critical 

point. The transfer function of the robust controller is 

solved by evaluating ratio G = L/Pnom: 

 
6

2 2

2.76 10 ( 25)
( )

( 16)( 108 120 )

s
G s

s s s

× +

=

+ + +

 (22) 

 

Fig. 11: QFT bounds, ( )ωB , and designed loop transmis-

sion, ( )L jω  

5.3 Step 3 – Controller Verification 

To confirm the operation of the designed robust 

control system, the robust controller Eq. 22 and a pre-

filter, designed by the QFT methodology to further 

shape the actuator step responses, were implemented on 

the hydraulic test bench. The experimental system was 

tested for a variety of different input commands and for 

different loading rates. In all the tests, good transient 

and steady-state performance was observed without the 

need to further tune the controller or prefilter. Figure 12 

shows a typical closed-loop step response obtained 

while operating the experimental hydraulic ram against 

a 30 kN/m spring. Despite the large variation in the 

control valve drive signal, which nearly reaches the 

10 V saturation level (see Fig. 12b), the actuator posi-

tion response is observed to fall well within the pre-

scribed acceptable envelope. Figure 12 thus confirms 

the validity of the model-based robust control system 

design, even for large signal operation of the electrohy-

draulic actuator. 

5.4 Comparison with Small-Signal Approach 

In order to illustrate the advantage of LTIE model-

ling over small-signal analysis, templates for each ap-

proach have been plotted in Fig. 13 along with the 

corresponding QFT bounds for ω = 1 rad/sec. For con-

sistency, a nominal plant with 
nom

( 1) 22.4P j = −  dB 

and 
nom

( 1) 90.1P j∠ = − °, indicated by the ×  in Fig. 13, 

was selected from each of the small-signal and LTIE 

plant sets. Since the LTIE approach accurately models 

the low frequency integration characteristic of the ac-

tuator, the width of the LTIE template is small as is 

seen in Fig. 13. This allows it to fit alongside the M-

circles, leading to a trough in B(1) that can be ex-

ploited to reduce the amount of controller gain required 

to realize the closed-loop specifications. On the other 

hand, the width of the small-signal template is much 

larger so the QFT bounds dictate that the template must 

be positioned differently in order to satisfy the M-

circles. It can be seen from Fig. 13 that locating the 

small-signal template to satisfy the QFT bound requires 

at least 30 dB more control gain as compared to the 

amount needed to properly position the LTIE template. 

Thus, feedback is minimized by using the LTIE ap-

proach. 

 

(a) 

 

(b) 

Fig. 12: Typical experimental closed-loop position response 

using robust QFT controller and prefilter:  

(a) position; (b) control signal 
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Fig. 13: Comparison of uncertainty templates and QFT 

bounds obtained using small-signal and LTIE ap-

proaches for ω=1 rad/sec. Several M-circles (dot-

ted) are shown for reference.  

6 Conclusions 

This paper has investigated, from a robust control 

design perspective, various approaches for deriving 

equivalent LTI models for electrohydraulic actuators. 

Small-signal analysis is a common approach used to 

model fluid power actuators for control system synthe-

sis. However, as demonstrated here, fixed-parameter 

small-signal models are generally inadequate to de-

scribe the transient response. The LTI-equivalent 

(LTIE) modelling approach, on the other hand, enables 

large signal responses to be accurately characterized 

using a fixed-gain structure, and is therefore a more 

appropriate choice for fluid power control system de-

velopment. 

A simple model-based approach for evaluating the 

LTIE frequency response functions was proposed in 

this paper. In this approach, the LTIE frequency re-

sponse functions are computed directly from the actua-

tor input-output data pairs by numerical integration of 

the continuous-time Fourier integral. Instead of relying 

on the discrete Fourier transform to perform the compu-

tation, the proposed approach employs an additional 

term that improves the accuracy of the quadrature. It 

was shown that the Fourier transformation approach is 

able to describe large signal effects and at the same 

time properly characterize the features of the hydraulic 

actuator frequency response that are important for ro-

bust control design. Moreover, the proposed approach 

does not require a priori knowledge about the asymp-

totic behaviour and structure of the LTIE transfer func-

tion, as is the case with other identification techniques 

such as Golubev’s least-squares method. 

A QFT control system design example around an 

experimental hydraulic ram demonstrated the applica-

bility of the proposed numerical technique towards the 

development of practical fluid power control systems. 

This paper therefore makes further contributions to 

model-based hydraulic actuator control system design 

using a broad range of robust synthesis techniques 

including LQG, H∞, μ-synthesis, and QFT. 

Nomenclature 
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A  piston annulus area 

Cd discharge coefficient 

d viscous damping coefficient 

h sampling time 

k load stiffness 

K1f, K2f, Kf  linearized servovalve flow gains 

K1p, K2p, Kp 
linearized flow-pressure coeffi-

cients 

ksp servovalve spool position gain 

Kv servovalve flow coefficient 

m mass of piston, rods and load 

o subscript – denotes operating point 

P1, P2 pressures in each cylinder half 

PL load pressure 

Pr tank pressure 

Ps hydraulic supply pressure 

Q1, Q2 control flows 

QL load flow 

T signal truncation time 

u servovalve control signal 

V1, V2 cylinder volumes 

νp piston velocity 

VT total cylinder volume 
w  orifice area gradient 

xp piston position 

xv servovalve spool position 

βh 
effective bulk modulus of hydraulic 

fluid 
ρ  density of hydraulic oil 
ω  angular frequency 

v
ω  

servovalve second-order natural 

frequency 

v
ζ  

servovalve second-order damping 

ratio 
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Appendix – Inverse Hydraulic Actuator 

Model 

Consider the nonlinear description of the hydraulic 

actuator dynamics given by Eq. 1. The time histories of 

acceptable xv(t) are computed numerically from accept-

able position trajectories, xp(t), using the approach 

described previously in Niksefat and Sepehri (2007). 

Differentiating and manipulating Eq. (1b), which 

describes the dynamics of the piston, leads to the fol-

lowing relation:  

 1 2 p p p( )A P P mx dx kx− = + +
� �

��� �� �  (23) 

Using Eq. 1c and Eq. 1d along with Eq. 2 and Eq. 

23, a system of linear equations Ax = b, with solution 

vector T

1 2 v
[ , , ]P P x=
� �

x , can be formed where  

v h s r v s r

1

1 v

v h s r v s r

2

2 v

0

1 0
2 2

0 1
2 2

A A

K w P P x P P
P

V x

K w P P x P P
P

V x

β

β

⎡ ⎤
⎢ ⎥

−⎢ ⎥
⎢ ⎥

− − +⎛ ⎞⎢ ⎥
= + −⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥
⎢ ⎥− +⎛ ⎞⎢ ⎥+ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

A (24) 

and  
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T

h p h p

p p p
1 2

, ,

Ax Ax
mx dx kx

V V

β β⎡ ⎤
= + + −⎢ ⎥
⎣ ⎦

� �

��� �� �b  (25) 

Using the time derivatives of xp(t), the linear system 

formed by Eq. 24 and Eq. 25 is solved for the corre-

sponding values of variables 
v
x , 

1
P� , and 

2
P� . To 

propagate the inverse model forward in time, the previ-

ously solved pressure derivatives, 
1 i
( )P t�  and 

2 i
( )P t� , 

are integrated using Euler’s forward method. The re-

sults of the numerical integration are the values 
1 i+1
( )P t  

and P2(ti+1), which are used to solve the system of equa-

tions at the next time step. 

 

 

 

 

Mark Karpenko 

is currently completing his Ph.D. degree in 

Mechanical Engineering at the University of 

Manitoba, and holds B.Sc. and M.Sc. 

degrees from the same University. His 

research interests include robust control of 

fluid power systems and, in particular, fault 

tolerant control. He has published several 

papers on QFT control system design for 

hydraulic and pneumatic servos. 

 

 

 

 

 

Nariman Sepehri 

is a professor with the Department of Me-

chanical and Manufacturing Engineering, at 

the University of Manitoba. He received  

M.Sc. and Ph.D. both from the University of 

British Columbia, Canada. His areas of 

interest include telerobotics applied to 

hydraulic manipulators and fluid power fault 

tolerant control and diagnosis systems.  

 

 

 

 
 




