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Abstract 

This paper describes development and experimental evaluation of a hydraulic actuator leakage fault detector based 

on the extended Kalman filtering (EKF). Identification of external leakage at either side of the actuator as well as the 

internal leakage between the two chambers is examined. The present work is built upon previous work by the authors, 

but incorporates a significant improvement in that the new scheme is capable of detecting leakage faults for actuators 

that are also subject to unknown loading and/or significant friction. Experiments on a laboratory-based hydraulic actua-

tor, using both structured (sinusoidal) and unstructured (pseudorandom) test signals show that: (i) under normal (no-

fault) operating condition, the EKF-based state estimator closely predicts the states of the system and the external load, 

including actuator friction, using only a few measurements, (ii) in the presence of leakage faults, the level of residual 

errors between the estimated and the measured line pressures increase indicating the occurrence of faults and (iii), dif-

ferent leakage fault types and levels can be identified by tracking the pattern of the residual errors and without a need to 

model leakage faults. The present work lays a foundation for developing on-line leakage monitoring systems for hy-

draulic actuators. 
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1 Introduction 

Fluid powered systems are used in many applica-

tions including aircraft and off-highway machines. 

Reliability is crucial for proper operation in these ap-

plications. Thus, investigation into improved control 

and enhanced reliability in fluid power systems is of 

great importance to both academic and industrial fields. 

The general objective of the research, of which this 

paper forms a part, is to develop effective fault diagno-

sis schemes that can report abnormal operating condi-

tions and locate various faults that can degrade the 

performance of hydraulic actuators. 

Faults in hydraulic systems cover a wide range, 

from component failure and fluid contamination to pipe 

leakage and material wear (Zavarehi et al., 1999; Zhou 

et al., 2002; Khan et al., 2005). However, one of the 

greatest concerns is the leakage of hydraulic fluid. 

Besides deteriorating the performance, leakage can 

cause environmental damage – prompt identification of 

this fault is of industrial concern. Leakage in cylinders 

can be classified into either internal or external. If the 

fluid leaks within the hydraulic circuit, it is called in- 
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ternal leakage. If the fluid leaks outside or collected by 

the reservoir, it is considered external. One main cause of 

internal leakage is the wear in moving components 

(Skormin and Apone, 1995). Mechanically, a tiny leak-

age is designed between the moving parts to guarantee 

non-stick movements without excessive friction and to 

supply necessary lubrication for the contact surface. 

Contamination, including tiny particles of metal and 

sealing materials caused by wear, can gradually deterio-

rate this condition by widening the clearance between the 

moving parts and eventually cause the performance of 

the system to fall out of the designed tolerance. Compo-

nent defects and poor connections are causes that con-

tribute to external leakage in a hydraulic cylinder.  

Research on fault detection and isolation (FDI) 

schemes applied to hydraulic systems were built upon 

many methods including recursive least squares algo-

rithms (Skormin et al., 1994; 1995), artificial neural 

networks (Crowther et al., 1998; Le et al., 1998) and 

observer-based schemes (Khan et al., 2005; Frank, 1994). 

The successful application of extended Kalman filtering 

(EKF) towards fluid power fault diagnosis has also been 

reported in many research articles. Zavarehi et al. (1999) 
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showed the feasibility of applying an EKF algorithm on 

modeling a two-stage proportional servovalve. They 

showed that it is possible to monitor key parameters of 

the servovalve, such as discharge coefficient or friction 

parameters between the valve spool and its housing. 

Zhang and Jiang (2002) developed an active fault-

tolerant control scheme for a class of hydraulic actuators 

used in aircraft for which an adaptive Kalman filter was 

employed to detect parameter changes due to faulty con-

ditions. Chinniah et al. (2003) developed an EKF-based 

method to estimate actuator viscous friction as well as 

the effective bulk modulus. An and Sepehri (2003) stud-

ied the feasibility of an EKF-based FDI scheme in a 

hydraulic actuator with incorrect supply pressure. The 

scheme was later extended to detect actuator internal and 

external leakage faults (An and Sepehri, 2005). A model 

of dry friction having known parameters was integrated, 

for the first time, in the EKF estimator. Accurate model-

ing of friction, however, is difficult and friction parame-

ters are subject to change over time. Thus, precise meas-

urement of friction parameters to be used in the model 

for each individual actuator is a difficult task, if not im-

possible. Additionally, the actuation system was only 

considered in an unloaded mode and under structured 

reference signals. In actual applications, hydraulic actua-

tors must respond to various reference signals while 

inevitably experience loading conditions. Examples are 

positioning of an aircraft control surface or motion con-

trol of an excavator boom.  

In this paper, we extend the earlier work to include 

both friction and loading as unknown external distur-

bances. We verify experimentally the feasibility of ap-

plying an EKF-based state estimation approach for iden-

tification of actuator leakage types and levels in nonlin-

ear electro-hydraulic systems and in presence of un-

known external loading, significant actuator friction as 

well as pseudorandom reference input signals. The leak-

age faults include external leakage on either side of the 

actuator cylinder and internal (cross-port) leakage be-

tween the two cylinder chambers. The goal is to contrib-

ute to the development of on-line health monitoring of 

hydraulic actuators.  

2 Description of the Test Rig  

A picture of the hydraulic actuator upon which all 

tests are conducted is shown in Fig. 1. Powered by a 

motor-driven hydraulic pump, the actuation system oper-

ates with the fluid pressure of 13.8 MPa. The movement 

of the actuator (with a 610 mm stroke) is controlled by a 

Moog D765 servovalve with the flow capacity of 34 

L/min at 21 MPa supply pressure. The valve accepts 

analog command signals from a high-speed PC equipped 

with a data acquisition board. A force sensor (0 ~ 22000 

N) is mounted at the end of the rod to measure the envi-

ronmental resistance produced by a spring that can gen-

erate 6000 N when being compressed by 1 cm. The dis-

placement of the actuator is obtained by a rotary optical 

encoder via a Metrabyte M5312 quadrature incremental 

encoder card and the chamber pressures are measured by 

sensors located at each side of the cylinder.  
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Fig. 1: Hydraulic test station on which all experiments 

were performed; external load is emulated by a 

spring 

Figure 2 shows the schematic of the test rig. The 

manner in which leakage fault is produced is also 

shown in this figure. With reference to Fig. 2, the inter-

nal leakage is produced by bypassing fluid across the 

piston. This is achieved by connecting the two cham-

bers of the actuator and controlling the flow by an ad-

justable needle valve (see a similar approach by Crow-

ther et al., 1998). The internal leakage flow rate qil is 

measured using a positive displacement flowmeter 

(JVA-KL series by AW Company) with a 7.6 L/min 

range and accuracy of ± 0.5 %. To produce the external 

leakage, a portion of the fluid flow from either side of 

the actuator is bypassed to the reservoir by opening the 

corresponding needle valves. External leakage flows, 

qel1 and qel2, are measured using positive-displacement 

flowmeters.  

3 Development of the Scheme 

In this section the model of the hydraulic actuator 

under a normal operating condition is described first. 

This model is then used within an extended Kalman 

filter to predict selected states for both normal and 

faulty conditions. Note that in the development of the 

leakage fault detector, no model of the leakage is in-

cluded and leakage levels are not explicitly estimated. 

3.1 System Model  

Using a linear orifice area gradient, w, the spool 

displacement, xsp, is related to the servovalve flows, q1 

and q2, as shown below (Merritt, 1967): 
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Fig. 2: Schematic of test station. Internal and external leakage fault producing components are enclosed in dashed lines 
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Cd is the orifice coefficient of discharge, and ρ  

represents the density of the hydraulic oil. Pressure and 

flow variables are shown in Fig. 1. Continuity equa-

tions for the hydraulic flows between the servovalve 

and the actuator are given by the following relations: 
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xa represents the actuator displacement and β is the 

effective bulk modulus of the hydraulic fluid. Note that 

Eq. 3 represents the normal operating (no leak) condi-

tion. V1(xa) and V2(xa) are the volumes of the fluid 

trapped in either chambers of the actuator and ex-

pressed by the following equations: 

 
⎪⎩

⎪
⎨
⎧

−+=

−+=

)()(

)()(

amax

0

2a2

mina

0

1a1

xXAVxV

XxAVxV
 (4) 

where 0

1V  and 0

2V  are the volumes of hydraulic fluid 

in the corresponding supply pipes. Xmin and Xmax are 

positions of the piston in its fully-retracted and fully-

extended positions, respectively. The dynamic relation 

between the servovalve input signal, u, and the spool 

displacement, xsp, is expressed by a second-order dif-

ferential equation: 
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Parameter ωn is the natural frequency, ksp is the 

gain, and dm is the effective damping ratio.  

When working, the actuator interacts with the envi-

ronment and experiences loading. Also, the actuator 

exhibits substantial friction that could change with 

time. Thus, the effect of loading as well as friction must 

be included in the model: 

 ea21 FxmAPP +=− ��)(  (6) 

The left-hand side of Eq. 6 is the actuation force 

generated by pressure differential (P1 – P2). In Eq. 6, 

actuator friction has been considered unknown and has 

been lumped together with the external loading origi-

nated from the environment. It is represented as Fe. 

3.2 EKF Estimator 

The model described by Eq. 1 to 6, represents the 

hydraulic actuator system under the normal operating 

condition. From the EKF view point, it can be regarded 

as a stochastic process with process noise w and meas-

urement noise v: 
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where u is the input signal, x is the vector of states, and 

y is the vector of measured outputs. Considering the 

external resistance Fe in Eq. 6 as unknown, the follow-

ing state space model is derived from Eq. 1 to 6: 
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where x = [xsp, p1, p2, x, x, xsp, Fe]
T. Note that the un-

known disturbance, Fe, is characterized as a stochastic 

process that has impact on the actuator. Consequently it 

can be modeled as a random signal with certain mean 

that is deteriorated by noise with certain density. As 

will be seen later, this approach produces results that 

are reasonably justified. The state space model (Eq. 8) 

is now discretized, using the forward difference 

method:  
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T represents the sampling time. Given Eq. 9, the 

EKF estimator is now formulated in two stages: 

Stage one: time update equations (prediction): 
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Stage two: measurement update equations (correc-

tion): 
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timates of the system state vector, 
k

x , respectively. Kk 

is known as the Kalman gain. Pk, Qk and Rk are the 

covariance matrices related to the state vector,
k

x , 

process noise vector, wk, and measurement noise vec-

tor, vk, respectively. Ak, Hk, Wk, and Vk are the Jaco-

bian matrices, elements of which are updated at each 

sampling time according to the following equations:  
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For the system under consideration, elements of ma-

trix Ak are obtained as follows: 
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The EKF model generates a sequence of estimated 

state vector, +

k
x̂  given the measurements, yk at each 

sampling time T. Choosing the measurements as 

yk = [xa(k), p1(k), p2(k)]T, the elements of matrix Hk are 

defined as: 
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Covariance matrices Qk and Rk are considered con-

stants assuming noises are stationary, white and Gaus-

sian. Further, it is assumed that the noise characteristics 

of different system state variables are independent of 

each other. Thus, both Qk and Rk are diagonal, and the 

values of their elements are chosen prior to the experi-

ment based on the system response (see Section 3). The 

bigger this variance is, the better time-varying parame-

ters are tracked; however, constant parameters may 

become noisier (Beineke et al., 1997). Finally, assum-

ing noises are independent of each other, Wk and Vk are 

chosen as unity matrices. 

3.3 FDI Scheme 

The configuration of the FDI scheme is shown in 

Fig. 3. The measurements of ram displacement, xa, and 

the chamber pressures, p1 and p2, along with the control 

signal, u, are used as inputs to the EKF. The two cham-

ber pressures and actuator displacement, determined by 

the EKF, are then compared with actual measurements 

to compute the state estimation error vector, ek. Under 

normal operating condition the EKF model must close-

ly predict the actual system states. Therefore, the resid-

ual error vector, ek, must stay relatively low, reflecting 

only the estimation errors due to modeling uncertain-

ties. However, when actuator leakage faults occur (in-

ternal or external), the characteristic of the system 

changes. Theoretically, discrepancy lies between the 

faulty system model and the EKF model that is de-

signed based on the normal (healthy) condition. Due to 

this discrepancy, the state estimation of the EKF di-

verges from the actual state trajectory. By observing 

the variation of the moving average and patterns of the 

residual errors, pertaining to chamber pressures only, 

leakage fault types and levels can be identified. Note 

that the EKF-based FDI scheme proposed in this paper 

does not include models of leakage faults as they are 

difficult to obtain in practice. 
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Fig. 3: Leakage fault identification scheme 

 

4 Experimental Results 

4.1 Description of Experiments and Tuning 

Experiments are conducted using two types of refer-

ence signals for actuator displacement: sinusoidal signal 

and pseudorandom signal. The sinusoidal reference sig-

nal is characterized with amplitude of 0.02 m and period 

of 2 seconds. This signal is very structured and is ideally 

used for fault detection using off-line series of tests. The 

pseudorandom reference signal is employed to investi-

gate the performance of the FDI scheme towards on-line 

applications whereby the magnitude and duration of the 

input signal can change. The pseudorandom signal is 

characterized with a series of desired step inputs having 

amplitudes between 0.174 m to 0.184 m and durations 

between 0.2 s to 4 s. This type of signal resembles activi-

ties of flaps for typical in-flight maneuvers (see for ex-

ample the report by Nguyen et al., 1979), and thus allows 

us to investigate fault detection ability of our method 

utilizing on-line information. The duration for each test is 

60 seconds. A high gain proportional controller is used to 

close the position control loop. 

The parameters of the experimental test rig, used in 

the EKF FDI scheme, are summarized in Table 1. Pa-

rameters were obtained either directly from manufac-

turer’s data or by careful experimental measurement, and 

comparisons between the results of nonlinear simulations 

and experimental trials. The parameters obtained in Table 

1 allowed simulation results that matched the experimen-

tal results with average 2.8 × 10-4 m actuator displacement 

error, and average 1.45 × 105 Pa error in line pressures. 

When the EKF is considered, these errors are classified as 

modeling uncertainties. The environment is represented 

by a spring having elasticity of Kspring = 6.0 × 105 N/m.  

Table 1: System parameters 

A (m2) 6
10633

−

×  

m (kg) 10.0 

w (m2/m) 3
1075.20

−

×  

Cd 
2

10915.2
−

×  

ksp(V/m) 6
1094.27

−

×  

ωn (rad/s) 200π 

dm 0.7 

0

1V , 0

2V (m3) 6
104.21

−

×  

ps(Pa) 13.79×106 

β (Pa) 689×106 

ρ (kg/m3) 847.15 

 

In each experiment, the initial values of the state esti-

mates,
+

0
x̂  were set to zeros except for the line pressures 

which were set to half of the pump pressure, i.e., 
+

0
x̂ = [0, 

6.8×106, 6.8×106, 0, 0, 0, 0]T (units are consistent with the 

ones in Table 1). The initial covariance matrix, +

0
P , was 

set to a sufficiently positive-definite matrix that is diago-

nally salient (Haykin, 2001), i.e., +

i]0[i,P =104. The covari-

ance matrices, Q and R, were selected to produce a good 

convergence rate for the system under the normal operat-

ing condition and based on the combination of system 

noise analysis and modeling uncertainties. Initial values 

were selected bases on the errors between the simulation 

and the experimental results as outlined earlier. Further 

tuning was conducted by trial-and-error using a sinusoidal 

input signal, and observing the results of the EKF during 

normal operations. Matrix Q was finally chosen as 

Q = diag[10-20  104  104  10-6  10-4  10-20  102], and matrix 

R was chosen as R [ ]554
101010

−

= diag . Given the 

above parameter settings, experiments on external and 

internal leakages were carried out. 

For every test, the system started under normal operat-
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ing condition; a specific fault was then manually introduced 

at t ≈ 20 s. The external leakage on either side of the actua-

tor cylinder as well as the internal leakage between the two 

cylinder chambers were introduced by opening needle 

valves mounted on corresponding bypasses (as described 

earlier). Residual errors without fault (0 ~ 20 s) were com-

pared with the ones with fault (20 ~ 60 s).  

In our experiments, the sampling frequency was 1000 

Hz. This frequency has been tested to be the lowest appli-

cable sampling frequency for the EKF to effectively con-

verge. The measurements required for each test are the 

actuator displacement and the cylinder pressures.  

4.2 Leakage Fault Detection using Sinusoidal Input 

Reference signal 

The first experiment relates to identification of exter-

nal leakage fault as applied to chamber 1 of the actuator. 

The results are shown in Fig. 4 to 7. Figure 4 shows the 

leakage flow of average 0.32 L/min, which was intro-

duced at t = 20 s. Given pressure differential of 12 MPa, 

this flow rate relates roughly to a seal opening of 

0.17 mm, which is reasonable. The desired displacement 

(reference signal) trajectory and the actual displacement 

response are also shown in Fig. 4. Figures 5 and 6 show 

the measured (M), estimated (E) and variation of the 

moving average of the residual error (MAE) of individual 

chamber pressure when a leakage fault was introduced in 

chamber 1 (as shown in Fig. 4). 

The moving average of the error was calculated from 

n

e

k

nki

∑

= −=

i

MAE , where the size of the data, n, for cal-

culating the moving average was 4000. From Fig. 5 and 6, 

it is seen that with the introduction of leakage fault in 

chamber 1, the moving average of residual error of cham-

ber 1 pressure increased, while the residual error of pres-

sure at chamber 2 remained unchanged. 

The external force, Fe, estimated by the EKF is shown 

in Fig. 7. The measured environmental force obtained 

from the force sensor is also given. The actuator friction 

was also determined by subtracting the measured envi-

ronmental force from the estimation of the external force 

by the EKF model. With reference to Fig. 7, the value of 

friction force varies within [-1000, 2000 N].  

 

Fig. 4: Leakage fault at chamber 1, reference (desired) 

actuator displacement, and measured actuator dis-

placement (experiment 1) 

Similar results were observed when leakage was in-

troduced in chamber 2 of the actuator, i.e., the moving 

average of the residual error for the pressure at chamber 2 

changed within a short period of time after the introduc-

tion of leakage in the corresponding chamber. However, 

the moving average of the residual pressure error at 

chamber 1 did not change significantly after the fault.  

The next test was to observe the response of the EKF-

based fault detector to the internal leakage fault. This 

leakage was introduced by adjusting the needle valve 

mounted on the bypass that connects the two chambers of 

the actuator (see Fig. 2). Figure 8 shows the plots of the 

internal leakage, and the moving average of residual error 

of both chamber pressures. 

Note that the flowmeter is indifferent to the direction 

of the flow; thus, only positive flow readings can be ob-

tained in the experiments for internal leakage. 

 

Fig. 5: Measured (M) and estimated (E) line pressures at 

chamber 1; close-up plot of pressures and moving 

average error (MAE) between the measured and es-

timated pressures (experiment 1). Leakage fault was 

introduced at time t = 20 s 

 

Fig. 6: Measured (M) and estimated (E) line pressures at 

chamber 2; close-up plot of pressures and moving 

average error (MAE) between the measured and es-

timated pressures 

It can also be observed that the leakage is much 

higher when the actuator extends than when it retracts. 

The resistance due to loading plays a main role on this 

asymmetry. Exploring the experimental results shown 

in Fig. 8, it is observed that the moving average of the 
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Fig. 8: Internal leakage fault introduced at t ≈ 20 s, and the 
moving average error of line pressures 1 and 2 (ex-
periment 2)

Fig. 9: Response of fault detector to different external leak-
age fault levels in chamber 1 (Low, L, medium, M, 
and high, H). Moving average of residual pressure 
error in chamber 1 changes with fault level, while 
remains steady for chamber 2

Fig. 10: Response of fault detector to different external leak-
age fault levels in chamber 2 (Low, L, medium, M, 
and high, H). Moving average of residual pressure 
error in chamber 2 changes with fault level, while 
remains steady for chamber 1

Fig. 11: Response of fault detector to different internal leak-
age fault levels (Low, L, medium, M, and high, H). 
Moving average of residual pressure errors of both 
chambers change with fault levels

residual errors of both chamber pressures increased with 
the introduction of an internal leakage fault.

The last experiment was to investigate whether dif-
ferent levels of leakage faults can be distinguished. Fig-
ures 9 to 11 show the results of implementing three types 
of leakage faults. Table 2 summarizes the experimental 
results with the emphasis on the sensitivity of the fault 
detector.

Fig. 7: Estimated external force (environment plus friction) 
by the EKF, measured environmental force by the 
force sensor, and estimated effective actuator friction 
obtained by subtracting the measured environmental 
force from the estimated external force (experiment 1)

The above tests clearly show that by observing the 
patterns of the residual errors of the chamber pressures, 
one could identify various leakage faults. The increase of 
the moving average error of one chamber only, indicates 
the occurrence of the external leakage in that chamber. 
However, when the cross-port leakage fault occurs, the 
moving average of residual errors for both the chamber 
pressures increases. These results are consistent with 
the observation reported in our previous work (An and 
Sepehri, 2005), but relate to a more practical case of ac-
tuators experiencing substantial unknown external load-
ing and friction. In the next section, the performance of 
the fault detector will be examined for cases where the 
reference signal is unstructured.

Fig. 8: Internal leakage fault introduced at t ≈ 20 s, and the 
moving average error of line pressures 1 and 2 (ex-
periment 2)
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Fig. 12: Typical pseudorandom reference position signal

Fig. 15: Response of fault detector to different internal leak-
age levels (Low, L, medium, M, and high, H) and un-
der pseudorandom input reference signal

Table 2: Sensitivity of fault detector to leakage fault types and levels

Fig. 13: Response of fault detector to different leakage levels 
in chamber 1 (Low, L, medium, M, and high, H) and 
under pseudorandom input reference signal

4.3 Leakage Fault Detection using Pseudorandom 
Input Reference Signal

The pseudorandom position reference signal was 
given having randomly varying magnitude between 
0.174 m to 0.184 m and duration between 0.2 s to 4 s 
(see Fig. 12). The test results for different levels of leak-
ages for chambers 1 and 2, as well as the internal leakage 
fault, are shown in Fig. 13 to 15. The variations of the 
moving average of the residual errors of both chamber 
pressures are also shown in these figures. As is seen, the 
changes in the average of residual errors, in the presence 
of faults, are not as smooth as the ones pertaining to the 
sinusoidal reference signal experiments. Nevertheless, 
similar conclusion can be obtained. 

Fig. 14: Response of fault detector to different leakage levels 
in chamber 2 (Low, L, medium, M, and high, H) and 
under pseudorandom input reference signal

By observing the changes in the residual errors of 
chamber pressures one could still identify the occur-
rence of various leakage faults in the presence of vary-
ing unknown loads. The increase in the residual error of
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Table 2: Sensitivity of fault detector to leakage fault types and levels 

Leakage level No leak low medium high 

Average Chamber 1 leakage (L/min) 0.09 0.32 0.46 0.56 

Average residual pressure error of chamber 1 (×105 Pa) 0.30 0.65 1.08 1.33 

Average residual pressure error of chamber 2 (×105 Pa) 0.34 0.25 0.35 0.45 

Average Chamber 2 leakage (L/min) 0.09 0.35 0.53 0.68 

Average residual pressure error of chamber 1 (×105 Pa) 0.32 0.26 0.26 0.34 

Average residual pressure error of chamber 2 (×105 Pa) 0.30 0.46 0.93 1.31 

Average Internal leakage (L/min) 0.02 0.26 0.38 0.84 

Average residual pressure error of chamber 1 (×105 Pa) 0.31 0.79 1.08 2.23 

Average residual pressure error of chamber 2 (×105 Pa) 0.26 0.58 0.75 1.34 

4.3 Leakage Fault Detection using Pseudorandom 
Input Reference Signal 

The pseudorandom position reference signal was 
given having randomly varying magnitude between 
0.174 m to 0.184 m and duration between 0.2 s to 4 s 
(see Fig. 12). The test results for different levels of leak-
ages for chambers 1 and 2, as well as the internal leakage 
fault, are shown in Fig. 13 to 15. The variations of the 
moving average of the residual errors of both chamber 
pressures are also shown in these figures. As is seen, the 
changes in the average of residual errors, in the presence 
of faults, are not as smooth as the ones pertaining to the 
sinusoidal reference signal experiments. Nevertheless, 
similar conclusion can be obtained.  

Fig. 12: Typical pseudorandom reference position signal 

Fig. 13: Response of fault detector to different leakage levels 
in chamber 1 (Low, L, medium, M, and high, H)
and under pseudorandom input reference signal 

Fig. 14: Response of fault detector to different leakage levels 
in chamber 2 (Low, L, medium, M, and high, H)
and under pseudorandom input reference signal 

Fig. 15: Response of fault detector to different internal 
leakage levels (Low, L, medium, M, and high, H)
and under pseudorandom input reference signal 

By observing the changes in the residual errors of 
chamber pressures one could still identify the occur-
rence of various leakage faults in the presence of vary-
ing unknown loads. The increase in the residual error of 
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ing unknown loads. The increase in the residual error of 

one of the chambers only indicates the occurrence of 

the external leakage in that chamber, while the increase 

of the residual errors for both the chamber pressures 

indicates the occurrence of cross-port leakage. It was 

also evident that the moving average of residual errors 

increases proportionally with the leakage levels. 

5 Conclusions 

This paper presented an EKF-based fault diagnosis 

technique to detect various leakage faults in hydraulic 

actuators. The proposed scheme is an improvement over 

the one previously developed by the authors in that it 

aims at online fault detection by considering unstructured 

reference input signals, realistic unknown loading condi-

tions and unmodeled actuator friction. It was experimen-

tally shown that with three measurements, i.e., the actua-

tor displacement and the two chamber pressures, the fault 

detector could identify external and internal leakage fault 

types and levels for actuators that are also subject to 

external disturbance, emulated by a strong coil spring. 

Given the parameter settings for the proposed FDI 

scheme, experiments on external and internal leakages 

showed that leakages as low as 0.25 L/min can be de-

tected. Additionally, it was shown that under normal 

working mode, the external load, including the friction, 

can be reasonably estimated by the scheme. The results 

presented in this work, which is believed to be a contri-

bution to the field, have thus laid a foundation for future 

research on developing on-line health monitoring of 

hydraulic actuators. Future work will take into account 

uncertain dynamics, drift and theoretical study of ob-

servability. Future work will also involve combining the 

resulting diagnostic tool and merging it with control 

reconfiguration (Karpenko and Sepehri, 2003) in real-

time to obtain a fault-tolerant controller for hydraulic 

actuators that are subject to leakage faults. Presently, the 

algorithm runs at 1000 Hz. Combining it with a fault-

tolerant controller in real-time may demand a faster com-

putation facility.  
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Nomenclature 

Cd Orifice coefficient of discharge  

q1 Flow into and out of cylinder cham-

bers 1 and 2, respectively 

[m3/s] 

q1 Flow into and out of cylinder cham-

bers 1 and 2, respectively 

[m3/s] 

w Orifice area gradient  [m2/m] 

xsp Servo valve spool displacement [m] 
ρ  Density of hydraulic oil [kg/m3] 

ps Pump pressure [Pa] 

p1  Pressure at cylinder chambers 1 and 2, 

respectively 

[Pa] 

p2 Pressure at cylinder chambers 1 and 2, 

respectively 

[Pa] 

xa Actuator displacement [m] 

A Piston area [m2] 

β Effective bulk modulus [Pa] 

V1 Volume of the fluid trapped in cylinder 

chambers 1 and 2, respectively 

[m3] 

V2 Volume of the fluid trapped in cylinder 

chambers 1 and 2, respectively 

[m3] 

0

1
V  Volume of the fluid trapped in supply 

pipes connecting cylinder chambers 1 

and 2, respectively 

[m3] 

0

2
V  Volume of the fluid trapped in supply 

pipes connecting cylinder chambers 1 

and 2, respectively 

[m3] 

Xmin Position of the actuator when fully 

retracted or extended, respectively 

[m] 

Xmax Position of the actuator when fully 

retracted or extended, respectively 

[m] 

u Valve input voltage [V] 

Ksp DC gain of servo valve model [m/V] 

ωn Natural frequency of servo valve 

model 

[rad/s] 

dm Damping ratio of servo valve model [Ns/m] 

Fe External force [N] 

Kspring Young’s modulus of the loading spring [N/m] 

m Mass of ram [kg] 

x System state vector  

xk Discrete system state vector  

y Output vector  

A Transition matrix  

W Process noise matrix  

w Process noise vector  

H Measurement matrix  

v Measurement noise vector  

Q Covariance matrix of process noise  

R Covariance matrix of measurement 

noise 

 

Pk Covariance matrix of transition matrix  
−

k
P  a priori covariance matrix of transition 

matrix at discrete moment k 

 

+

k
P  a posteriori covariance matrix of tran-

sition matrix at discrete moment k 

 

Zk Measurement at discrete moment k  
−

k
x̂  a priori estimation of state vector at 

discrete moment k 

 

+

k
x̂  a posteriori estimation of state vector 

at discrete moment k 
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Kk Kalman gain matrix at discrete mo-

ment k 

 

+

0
P  Initial covariance matrix of transition 

matrix 

 

+

0
x̂  Initial state vector  

ek State estimation error vector  

T Sampling period [s] 
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