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Abstract 

In pneumatic systems the consumption of electrical energy depends almost linearly on the production of compressed 

air. Hence, the operation of the pneumatic line in any application plant has an enormous effect on the overall energy 

efficiency. In analysis the compressed air system can be divided into three subsystems: production, after treatment 

(storage and transmission) and consumption. These systems interact with each other and strongly affect overall system 

energy requirements. Starting from the dynamical models of the subsystems a new generic energy efficiency index (CA-

index) is introduced in the paper. It can be used both in one compressor and multi-compressor systems. The fact that the 

consumption of compressed air may be either pressure dependent or pressure independent is taken into account in the 

basic equations and in the energy efficiency index. The maximization of the index is carried out by defining and solving 

a mathematical optimization problem, which then gives the best possible operation policy of the pneumatic line. 
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1 Introduction 

During the last few years, many studies on industrial 

pneumatics have been carried out. According to these 

investigations, industrial pneumatic systems are typically 

far from optimal energy efficiency. One of the most 

comprehensive investigations, the Fraunhofer Institute 

Report (Radgen and Blaustein, 2001), lists means to 

improve energy efficiency in industrial pneumatic sys-

tems. According to the final report of the investigation 

the proportion of the compressed air (CA) production is 

10% of the total energy consumption in industry. 

In the literature several methods have been reported 

to be used for energy savings in pneumatic systems 

(Cai et al. 2006, Belforte 2000). Energy recovery, pres-

sure reduction, leakage reduction and optimizing the 

operation by a proper choice and use of the control and 

regulation system are good examples of these methods 

(Robertson, 1998). 

The compressor vendors provide the isothermal co-

efficient of efficiency of the compressor itself but be-

cause of the complexity of the overall pneumatic line 

this does not indicate the energy efficiency of the sys-

tem. A more detailed analysis is needed which takes  
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the dynamics of the multi-compressor system together 

with load into account. Dynamic modeling and analysis 

from the first principles are therefore needed. 

There are certain analogues between different distinct 

physical systems (pneumatic, hydraulic, thermal, me-

chanical or electrical). All these systems can be princi-

pally modeled by applying the laws of conservation of 

mass, energy and charge and Newton’s laws of motion 

(Lumkes, 2002). According to these laws of conservation 

the sum of all flow variables for any junction is equal to 

zero and the sum of all potential variables for any closed 

loop in the system is equal to zero. These analogies help 

the modeling of pneumatic systems. 

In this paper dynamic models for production, 

transmission, storage and consumption systems are 

presented (Parkkinen, 1990; 1991). A new energy effi-

ciency index (CA index) is then introduced based on 

the models. Minimization of the index gives an optimal 

energy savings policy for using the compressors in one-

compressor or multi-compressor systems. 

In Section 2 the different operational units of the 

pneumatic line are defined and dynamic models from 

first principles are constructed. The energy efficiency 

index is described in Section 3 and example calcula-



Jyrki Parkkinen and Kai Zenger 

46 International Journal of Fluid Power 9 (2008) No. 1 pp. 45-52 

tions of this index in different multi-compressor opera-

tion strategies are presented. The minimization of the 

index leading to an optimal control policy is formulated 

and solved as a mathematical optimization problem in 

Section 4. A few illustrative examples are discussed in 

Section 5, and conclusions are given in Section 6. 

2 Dynamic Models of Pneumatic Systems 

Parametric dynamic models for pneumatic servo sys-

tems have been discussed since the 1950’s (Shearer, 

1956). Dynamic models for pneumatic systems are useful 

for computer simulation, mechatronic design and control 

algorithm design (Ning and Bone, 2005; Cai and Kagawa, 

2007). However, most of these models are typically not 

planned from the viewpoint of energy efficiency. 

CA-systems are typically large. A typical method for 

modeling large systems is to first split them in subsys-

tems. In centralized systems all compressors, which are 

typically manufactured by the same company, are central-

ized in the same compressor room. A centralized CA 

system can be further classified into three parts, and each 

part can be modeled with RC-analogies. 

2.1 Production Subsystem 

Compressors form the production subsystem. A 

typical control method of a compressor is two-point 

control in which the compressor is either switched on 

or off. The analogy is then an electric circuit. The 

source voltage represents the pressure difference be-

tween the real output pressure and the reference (mini-

mal needed) pressure. The control method of these 

compressors varies depending on the system. 

The after treatment subsystem typically consists of 

aftercoolers, driers (refrigerant or adsorption drier) and 

filters. Pressure losses in the after treatment system 

depend on the consumption of the system. The after 

treatment subsystem can be modeled with conductance. 

2.2 Transmission and Storage Subsystem 

The transmission and storage subsystem can be rep-

resented by the capacitance alone. Capacitance stands for 

air capacity of subsystem. The internal leak resistance 

represents the leakage in the after treatment subsystem. 

2.3 Consumption Subsystem 

The current sink and internal leak conductance rep-

resent the consumption of compressed air. 

 

Fig. 1: The RC-analogy of a pneumatic system. The system 

is split into three parts: 1. production, 2. transmis-

sion and storage and 3. consumption 

In Fig. 1 a pneumatic system modeled with RC-

analogy is presented. In the model, the compressor is 

described as a volumetric flow generator. The effect of 

internal leaks in production is presented with conduc-

tance, GS. In practice the internal losses in production are 

meaningless (GS is zero). The source current, JS, denotes 

the production of the compressor (air flow), and the diode 

switch represents the non-return valve of the compressor. 

Air receiver and piping network correspond to the capaci-

tance, C. The drain current, Ju, represents the constant, 

pressure-independent (reference pressure) consumption. 

The conductance, Gu, represents the pressure dependence 

of consumption. The symbols are presented in Table 1. 

2.4 Dynamic Model 

In the following a simplified dynamic model based on 

the RC-analogy is introduced (Parkkinen, 1990; 1991). 

The starting point assumes that the dynamic behavior of 

air flow and pressure are in a close vicinity of the operat-

ing point such that small-signal linear dynamical equa-

tions can be used in modeling. That implies also that 

lumped circuit parameters and the related models can be 

used as a starting point in analysis. 

It is assumed that due to losses in after treatment and 

transmission the consumption of compressed air is a cer-

tain proportion (x) of the production of the compressor 

and that a certain proportion (y) of the consumption is 

pressure-independent and that a certain portion (1 - y) is 

pressure dependent. 

If the production of the compressor is q’, the con-

sumption on minimum pressure is thereby xq’ of which 

xyq’ is the pressure-independent and (1-y)xq’ is the pres-

sure-dependent part. 

According to the electric circuit analogy (I = GU) the 

dependency between quantity variable, q, and potential 

variable, p, can be written q = kp, where k (dependency 

factor) is the inverse of pneumatic resistance. 

The volumetric flow q’(t) (the maximum flow ) in the 

production is 

 
0

'( ) '( ) ' ( )q t q t k p t= − Δ  (1) 

where '

0
q is the flow at a minimum pressure, k’ is the 

pressure dependence factor of the compressor, and Δp(t) 

is the pressure increase above the minimum pressure. The 

volumetric flow is here a mass flow (it is the equivalent 

volume of the mass of gas at reference conditions) 

(Robertson, 1998). In industry the mass flow is for con-

venience converted in an equivalent volume at the pres-

sure and temperature commonly observed in the air instal-

lation. 

The volumetric flow q(t) in the consumption is 

 
0 0

( ) ( ) ( )q t q t k p t= + Δ  (2) 

where q0(t) is the flow at the minimum system pressure 

and 
0
k  is the pressure dependence factor 

 
( )

0

min

1 'x y q
k

p

−

=  (3) 

where pmin is the minimum pressure from which the 

compression starts towards maximum pmax. 

For an isothermal process, the material balance gives 
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 ( ) ( )'q t q t dt dV− =⎡ ⎤⎣ ⎦  (4) 

where q’(t) is the production function, q(t) is the con-

sumption function, and dV is the volume of gas stored 

in the time period dt. 

According to the Boyle’s law for isothermal proc-

esses it holds that 

 ( ) ( )0 0 min
p V dV p d p V+ = + Δ  (5)  

where p0 is the atmospheric pressure (in what follows note 

that p0 = 1 bar), V0 is the air volume at atmospheric pres-

sure, pmin is the minimum pressure in the receiver, Δp is 

the pressure difference with respect to the reference pres-

sure, and V is the air volume at final pressure. 

After manipulating Eq. 1 to 5 and noting that for 

isothermal processes it holds that p0V0 = pminV one 

obtains 

 ' '

0 0 0

o

( ( ))
( ) ( ) ( ) 0

V d p t
k k p t q t q

p dt

Δ
+ + Δ + − =  (6) 

The state of the system between changes in con-

sumption can thus be described by a linear constant 

coefficient differential equation of first order. In the 

following consideration it is further assumed that the 

production of the compressor is constant (k’= 0). 

Replacing the pressure difference Δp by the relative 

pressure difference Δπ(t) = Δp(t)/p0 and by dividing with 

p0k0 + k’ = p0k0 Eq. 6 can be manipulated into the form 

 
( )

( )1 1
0

d t
t

dt

π

τ π π

Δ
+ Δ + Δ =  (7) 

where τ1 is a time-constant in loading operation of the 

compressor and Δπ is a pressure ratio. 

 
( )

1 min

0 0
1 '

V V

p k x y q
τ π= =

−

 (8) 

 
( )

0

1 min

0 0 0 0

' '( 1) 1

1

q q q x x

p k p k x y
π π

− − −
Δ = = =

−
 (9) 

Note that in Eq. 8 πmin = Pmin/P0. During the unload-

ing period the equation can be written in the form 

 
( )

( )0 0
0

d t
t

dt

π

τ π π

Δ
+ Δ + Δ =  (10) 

where the coefficients τ0 and Δπ0 are 

 
( )0 min 1

1 '

V

x y q
τ π τ= =

−

 (11) 

 0 min

0

0 0 0 0

'

1

q xq

p k p k y

π

πΔ = = =
−

 (12) 

The switching points of the pressure function appear 

at the moments when consumption is switched on or off. 

3 Energy Efficiency and CA-Index 

It is difficult to form an objective assessment of the 

energy efficiency of CA systems because the vendors 

and users have a different view on the subject. It is also 

difficult to compare different CA systems since every 

CA system is unique. Therefore it would be useful to 

have a quantitative measure which could be used as a 

common starting point. 

In addition to the system-specific isothermal coeffi-

cient of efficiency, which is often given by the manu-

facturers, it is reasonable to take into account the ef-

fects of other parts of the pneumatic power chain as 

well. A good quality factor is the one that compares the 

ideal power to the consumed power. In the following a 

new index (CA-index) for compressed air systems is 

introduced. 

The efficiency of the CA-system can be determined 

from the relation of theoretical minimum power (iso-

thermally produced minimum power) to the average 

power during the duty cycle. 

 isot min

isot

real

( )P
CA

P

π
η=  (13) 

where ηisot is the isothermal coefficient of efficiency, 

Pisot(πmin) is the minimum power to produce pressure 

Pmin isothermally, and Preal is the real power used. 

Next, consider an isothermal compression of mass 

m from pressure p1 to p2. The required work is then 

 W pdV Vdpδ = − =  (14) 

so that 

 2

1

ln ( )
pdp

W Vdp mRT mRT
p p

= = =∫ ∫  (15) 

It follows that the numerator part in Eq. 13 can be 

expressed as 

 ( ) ( )isot min 0 min
lnP xq R Tπ π′=  (16) 

(Robertson, 1998) where R0 = (m0/V0)R is a volumetric 

gas constant (J(/m3 K)) and T is absolute temperature (K) 

The duty cycle, tc, consists of the loading (t’) and unload-

ing (t’’ - t’) periods and their lengths depend on the ad-

justable parameters πmin and Δπ. The real power used, 

Preal, depends on the factors x and y. Writing 

 ( )( )
t '

real 0 min

c 0

1
' lnP q R T t dt

t
π π= +Δ∫  (17) 

the CA-index becomes 

 

( )( )

isot 0 min

t '

0 min

c 0

' ln( )
( , )

1
' ln

xq R T
CA x y

q R T t dt
t

η π

π π

=

+Δ∫
 (18) 

In the previous equations the term Δπ(t) describes 

the pressure dynamics as a function of time. It can be 

calculated from Eq. 7 and 10. Terms q’, R and T are 

constant and can be cancelled and the following equa-

tion remains 

 

( )( )

isot min

t '

min

c 0

ln( )
( , )

1
ln

x
CA x y

t dt
t

η π

π π

=

+ Δ∫
  (19) 

When the consumption is totally independent on the 

pressure (y = 1) the integral part is linear and of the 

form 
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isot min

t '(x,y 1)

max
min

c 0

ln( )
( , 1)

1
ln

( , 1) '

x
CA x y

t d t
t x y t

η π

π
π

=

= =
Δ⎛ ⎞

+⎜ ⎟= ⎝ ⎠
∫

 (20) 

which can be explicitly determined with partial integra-

tion. 

When the consumption is totally dependent on the 

pressure (y = 0) it can be concluded from Eq. 7 that the 

denominator integrand is of the form 

 1

t

τ

min max
ln 1 eπ π

−
⎛ ⎞⎛ ⎞
⎜ ⎟+ Δ −⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (21) 

The CA-index then becomes 

isot min

t '(x,y) t
-
τ

min max

c 0

ln( )
( , )

1
ln 1

( , )

x
CA x y

e d t
t x y

η π

π π

=
⎛ ⎞⎛ ⎞

+ Δ −⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫

(22) 

The value of the integral function cannot be deter-

mined explicitly. However the integral value can be 

obtained numerically. 

It is noteworthy that for many values of Δπmax and 

πmin there are no switching points in the case of total or 

partial independence. The compressor is then perma-

nently on and the pressure grows asymptotically to-

wards Δπ
∞
. In that case 

 
1 min

1
lim ( )

(1 )t

x
t

x y
π π π π

∞
→∞

−
Δ = Δ = −Δ =

−
 (23) 

and the power ratio is obtained from equation 

 

( )

isot min

min

ln( )
( , )

1
ln

1

x
CA x y

xy

x y

η π

π

=
⎛ ⎞−
⎜ ⎟⎜ ⎟−⎝ ⎠

 (24) 

for Δπmax > Δπ
∞
. 

 

Fig. 2: An example of a multi-compressor system. The 

system is a typical staggered multi-compressor sys-

tem. The vertical axis represents the relative pres-

sure of the system. The horizontal axis is the air 

flow. When all N compressors are switched on the 

total air production is N*Q 

Two-point multi-compressor systems can be im-

plemented in various ways. In Fig. 2 a staggered multi-

compressor system of N compressors is presented. 

Compressors are typically identical. They produce the 

same air flow (q) and have the equal pressure differ-

ences i.e. for compressor i Δπi = πimax - πimin is constant. 

When the system reaches the maximum pressure the 

compressor with the highest pressure levels (in this 

example case compressor 1 with pressures π1max, π1min) 

is switched off. 

When the consumption is pressure-independent the 

pressure-profile typically consists of linear parts be-

tween pressure limits and can be explicitly determined. 

For the system of Fig. 2 π1min > π2min > ... > πNmin 

and π1max > π2max > ... > πNmax 

The difference α between maximum pressures of 

each compressor is constant 

 
i-1max imax

α π π= −  (25) 

The pressure difference of the whole system is the-

refore 

 
max min

( 1)Nπ π α π− = − + Δ  (26) 

In the following it is assumed that during a duty cy-

cle of the compressor for the consumption, q, of the 

system it holds 

 ),...3,2(,'')1( Niiqqqi =<<−  (27) 

i.e. i of the N compressor of the CA system produce the 

sufficient air flow. 

During the loading period 0 - t’ of compressor i 

(compressor (N – i) according to Fig. 2) the mean shaft 

power of a system, Ptot(real(load)), is 

 

t'

o

tot(real(load)) min

isot 0

'
ln( ( 1) ( ))

'

iq R T
P i t dt

t
π α π

η
= + − + Δ∫   (28) 

(i = 2,3,….N) 

During the unloading period t’- t’’ of a compressor 

i, the compressor i - 1 (compressor N - i - 1 according 

to Fig. 2) is the compressor with the highest pressure 

limits at that time instant. The mean shaft power of the 

system is then 

t''

o

tot(real(unload)) min

isot t '

( 1) '
ln( ( 2) ( ))

( '' ')

i q RT
P i t dt

t t
π α π

η

−
= + − +Δ

−
∫  (29) 

(i = 2,3,….N) and the CA-index 

 ( )
( ) ( )

( )

N

mini isot

i=1

N

i real

i=1

,

P

CA x y

P

π

=

∑

∑

 (30) 

(i = 2,3,…N) 

The total shaft power can be obtained by summing 

the powers of each compressor during the loading and 

unloading periods. 

In Fig. 3 an alternative multi-compressor system is 

shown. In the system, all the compressors (N) have 

same pressure differences Δπmax = πmax - πmin. The 

number of compressors in loading mode depends on the 

consumption. The compressors work with a first-in-

first-out principle, i.e. when one compressor stops the 

loading the next compressor that starts is the one that 

has been switched off for the longest time. The duty 

cycle of the system is monotonic and consists of linear 

parts between the two values. In the pressure-

independent case the CA-index can be determined even 
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more easily than in a staggered case. The smaller the 

pressure difference, the more constant is the pressure. 

 

Fig. 3: An example of a modern multi-compressor system 

4 Optimization of the CA-Index 

One of the most essential factors in periodical 

pneumatic systems is the length of the duty cycle. In 

practical industrial systems the limitations of switching 

frequencies imposes limits to the length of the duty 

cycle. It must be larger than the inverse of the maxi-

mum possible frequency. 

On the other hand, with very large values of pres-

sure difference there is no switching point. In this case 

the compressor is permanently switched on and the 

pressure increases towards the asymptotical value 

which is very uneconomical. 

The CA-index depends on the length of the duty 

cycle of the compressor. In a two-point controlled 

compressor system the pressure profile consists of two 

parts: the loading period and the unloading period. In 

the optimization model the parameter to be optimized is 

the average power during the duty cycle. The consump-

tion may be either pressure dependent, pressure inde-

pendent or a combination of the two. 

The length of the cycle is the sum of the lengths of 

the loading period and unloading period. Starting from 

equations Eq. 7 and 10 the formula of the cycle length, 

tc, in a general form can be derived to be 

 
( )

( )

( )
min min

c

min

1 1

ln
11

1
1

y
V

t
x yx y q

x

π

η π

π

π

⎛ ⎞Δ
+ −⎜ ⎟

⎜ ⎟=
⎜ ⎟Δ −−

−⎜ ⎟⎜ ⎟−⎝ ⎠

 (31) 

The CA-index during a cycle time is 

 

( )( )
( )

isot min

t x,y

min

c 0

ln( )

1
ln

x
CA

t dt
t

η π

π π

′

=

+ Δ∫

 (32) 

where x and y are assumed to be constants. The energy 

efficiency of the system depends on adjustable parame-

ters Δπ and πmin. 

It can be proved that the theoretical solution for the 

CA-index optimization problem is to keep the values of 

Δπmax and πmin as low as possible. However the maxi-

mum permitted switching frequency of the electric 

motor forms another fundamental, hard, system-

specific constraint for the lower limit of Δπmax. The 

maximization of the minimum power, Preal, can then be 

formulated 

 max(CA) = min Preal, (33) 

subject to 1/tc = ƒ ≤  ƒmax. 

When using the idle run the motor is not switched 

and the pressure difference can be set considerably 

smaller compared to the case in which the electric mo-

tor of the compressor is totally switched off. 

The question is which is the more energy efficient 

solution: to use idle run and small pressure difference 

or switch totally off the motor and use larger pressure 

difference. 

The optimization problem, therefore, is to obtain the 

minimum average power during the duty cycle in both 

cases 

 min{Pave1, Pave2} (34) 

The average power during the duty cycle without 

idle running is similar to the denominator of Eq. 32 

( )
( )( )

t '

ave1 real 0 min

cmin 0

1
' ln

,
P P q R T t d t

t x y
π π= = + Δ∫ (35) 

In the case of idle running the average power during 

the loading period can be obtained from the equation 

 
( )

( )( )
t '

0 min

0

1
' ' ln

' ,
P q R T t dt

t x y
π π= + Δ∫  (36) 

During the unloading period the compressor is idle 

but its electric motor is switched on. The power of the 

motor is typically constant, P0, during the unloading 

period and of magnitude 20 - 30 % of the average 

power during the loading period. 

Total energy consumption during the duty cycle is 

generally 

( )
t '

ave2 0 min 0 c

c 0

1
' ln ( )) ( 'P q R T t dt P t t

t
π π

⎧ ⎫⎪ ⎪
= + Δ + −⎨ ⎬

⎪ ⎪⎩ ⎭
∫  (37) 

It is difficult to solve analytically or even numeri-

cally the optimization problem of Eq. 34. However, if 

the maximum switching frequency and the parameters 

of the system are known the values of the equations can 

easily be compared. 

Equation 33 is also valid for a staggered multi-

compressor system (Fig. 2) with different pressure 

limits. In the case of a multi-compressor with N identi-

cal compressors and equal pressure differences (Fig. 3), 

the maximum switching frequency of the system de-

pends on the number i of busy compressors. 

If the total production of the CA system is nq’ + xq’ 

the maximum switching frequency, fmaxN, of the system is 

 
maxN

cminN cmin

1 1
; 0,1,..., 1

( )
f i N

t t N i
= = = −

−

  (38) 

From the equation it can be observed that the worst 

case is when i = N - 1. In that case the maximum 

switching frequency of the system is the same as the 

maximum frequency of a single compressor. 

The optimization problem then becomes 

 min(P(x, y)), (39) 

subject to 
c maxN

1/ t f≤  
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5 Illustrative Examples 

5.1 The CA-Index 

When the consumption is totally independent on the 

pressure the CA-index can be determined from Eq. 20 

isot min

' min min

min min

c

ln( )
( , 1)

1
(1 ) ln( ) 1 ln( )

( , 1)

x
CA x y

t
t x y

η π

π π
π π π

π π

= =
⎛ ⎞⎛ ⎞

+ + Δ − −⎜ ⎟⎜ ⎟= Δ Δ⎝ ⎠⎝ ⎠

(40) 

In this case values for the loading period t’ (in min-

utes) can be derived to be 

 ( )
( )

' , 1
1 '

V
t x y

x q
π= = Δ

−
  (41) 

and for the total length of the duty cycle tc (in minutes) 

 
( )c

1 1
( 1)

' 1 ' 1

V V
t y

q x x q x x

π πΔ Δ⎛ ⎞
= = + =⎜ ⎟

− −⎝ ⎠
 (42) 

For the parameter values shown in Table 2 CA-

index has then the value CA(x,y = 1) = 0.72. Note that 

the same parameter values have been used below (Fig. 

4 to 6).  

It is noteworthy that the value of CA-index is con-

stant for all values of x in the pressure-independent 

case. The CA-index depends only on the minimum 

pressure πmin and the pressure difference Δπ. 

 

Fig. 4: The effect of a pressure difference 

In Fig. 4 the effect of a pressure difference Δπ on 

the CA-index is presented, when the minimum value 

πmin = 5. 

When there are no switching points (Fig. 6) in the 

case of total or partial independence, the compressor is 

permanently on and the pressure grows asymptotically 

towards the value Δπ∞. Economically, this is often the 

most disadvantageous situation. 

From previous examples (see Fig. 4) it can be con-

cluded that the adjustable parameter Δπ  should always 

be as small as possible. 

5.2 The Optimization Problem 

In the following a numerical example of the optimi-

zation problem, Eq. 34, is presented. 

Figure 5 presents the CA-index as a function of 

proportion of consumption (x) in a pressure-dependent 

consumption. Generally, the value of the CA-index is 

larger for larger values of x. 

The consumption of the compressed air is totally 

dependent on the production. The proportion of con-

sumption x = 50 %. The pressure difference, Δπ, can be 

set to a minimum value of 2.0 and Δπmax = 5. 

Effect of the proportion of consumption in an 

independent consumption (y<1)
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Fig. 5: CA-index as a function of proportion of consump-

tion x in a pressure-dependent case (y<1) 

 

Fig. 6: The CA-index as a function of proportion of con-

sumption x 

The maximum possible switching period of the 

electric motor of the CA system is assumed to be 

5 minutes. During the idle running the power of the 

electric motor, P0, is constant and 25 % of the power 

during the loading period. The value of time constant, 

τ, can be obtained from Eq. 11. 

1 Switching off 

During the duty cycle the motor is switched twice 

(on and off). From Eq. 31 for the cycle time it can 

be concluded that the shortest permitted cycle time 

tc = 10 minutes is achieved when the pressure dif-

ference Δπ = 4.4. In that case the loading time 

t’ ≈ 2.8  minutes. 

Average power during the cycle time then can be 

obtained from Eq. 35 

t ' t
-
τ

ave1 0 min

c 0

1
' ln 1P q R T e dt

t
π π

⎛ ⎞⎛ ⎞
= + Δ −⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∫  (43) 

2 Idle Running 

When the motor runs idle the smallest possible 

pressure difference can be used. With the value 

Δπ  = 2.0 the length of the duty cycle tc2 = 3.3 and 

the loading time ' 1.6t =  minutes 

t ' t
-
τ

ave2 0 min 0

c c20

1
' ln 1

t t
P q R T e dt P

t t
π π

⎛ ⎞⎛ ⎞ ′′ ′−
= + Δ − +⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∫ (44) 
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The values of Pave1 and Pave2 can be obtained with 

numerical integrations. However the numerical val-

ues are not relevant in this consideration – only the 

relation of Pave1 and Pave2 plays an important role. 

Here the relation ave1

ave2

P

P
gives 42.9 %  

The conclusion in this case is that it is more profit-

able to use a switching off policy. 

The comparison between the switching off se-

quence and the idle running sequence can respec-

tively be applied for multi-compressor systems 

when all the parameters are known. 

6 Conclusions 

Every CA system is unique and analytic approaches 

are needed to analyze its energy efficiency. Since com-

pressor users and vendors have different views on the 

subject, objective measures and methods are needed. 

Energy efficiency in industrial pneumatic systems can 

be considered from two different viewpoints: the use of 

electric energy in the compression process and the use 

of the compressed air. Most of the electric energy in 

pneumatic systems is used in the compressor. The en-

ergy need of the compressor depends mainly on three 

factors: the need of outlet pressure, the pressure in the 

intake pipe and the compression process of the com-

pressor type. A new parameter, a CA-index, for energy 

efficiency in CA-systems is introduced. The CA-index 

is a parameter that compares the theoretical minimum 

power to the real consumed power. The real power can 

be obtained by computational means or measurements 

from each consumption point. 

There have been relatively few models of CA sys-

tems. The function of a CA system is based on thermo-

dynamics and the system can be modeled by a white box 

method. In the model the CA system is divided into three 

parts. Each part of the model can be presented with an 

electric circuit analogy. Differential equations for poten-

tial variable pressure as a function of time can be derived 

from the model. The parameters of the model that de-

scribe the system are the pressure dependency factor y, 

the proportion of consumption x, the minimum pressure, 

πmin, and the pressure difference Δπ. With the dynamic 

model the pressure as a function of time and the energy 

efficiency at a given time interval can be obtained. 

The pressure difference is adjustable and is the most 

crucial parameter. Too large of a pressure difference 

causes a permanent loading period without unloading and 

too small of a difference causes too high of a switching 

frequency which may damage electric motors. An alterna-

tive method for two point control is idle running. The 

optimal solution can be determined by computational 

means when all system-specific parameters are known. 

Nomenclature 

α Difference between maximum  

pressures 

 

CA CA-index of the system  

Δp(t) pressure increase above the mini-

mum pressure. 

[Pa] 

 

Δπ Pressure difference  

Δπmax Maximum pressure difference  

f switching frequency [1/s] 

fmax maximum permitted switching  

frequency 

[1/s] 

S
G  Conductance (production) [S] 

u
G  Conductance (consumption) [S] 

S
J  Source current [A] 

u
J  Drain current [A] 

k’ Production dependence factor [m3/s Pa] 

k0 Consumption dependence factor [m3/s Pa] 

p0 Athmospheric pressure [bar] 

Pave Average power at a given interval [W] 

Preal The real (shaft) power [W] 

pmin Minimun compression pressure [bar] 

pmax Maximum compression pressure [bar] 

πmin Relative minimum compression  

pressure 

 

πmax Relative maximum compression  

pressure 

 

q(t) Outlet air flow [m3/s] 

q’(t) production function [m3/s] 

q0‘(t) Flow at a minimal pressure [m3/s] 

R Gas constant [J/m3 K] 

T Absolute temperature [K] 

t’ Loading time [s] 

t’’-t’ Unloading time [s] 

tc Length of duty cycle [s] 

τ Time constant [s] 

x Proportion of production  

y
 

Pressure dependency factor  
η  Isothermal constant of efficiency  

Δπ(t)  Relative pressure increase above the 

minimum pressure 
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Appendix 

Table1: Symbols of RC-circuit analogy of CA sys-

tem 

 Electrical Pneumatic 

Potential Variable  

(production) 
Us Δp = (p1 - p2) 

Source current Js q’ 

Pressure Dependence 

(production) 
Gs k’ 

Storage C V 

Potential Variable  

(consumption) 
Uu p2 

Drain Current Ju q 

Pressure Dependence 

(consumption) 
Gu k0 

 

Table 2: Parameter values in the example (Section 5) 

 
Symbol Value 

Minimum relative 

pressure 
5 πmin 

Relative pressure 

difference 
2 Δπ 

Volume 7 m3 V 

Air flow rate 35 m3/min q’ 

Coefficient of  

Effciency 
0.8 ηisot 
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