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Abstract 

In the fluid power applications where the typical operating conditions are dynamic the knowledge of the unsteady 
flow forces that act on the spools of the hydraulic valves represents an important issue to be addressed in order to make 
a correct design of the valve geometry and its driving system. 

This paper deals with a rigorous unsteady numerical study of the fluid dynamic behavior of a hydraulic directional 
control valve.  

A theoretical approach based upon the application of the momentum equation in the transient fluid dynamic condi-
tions is presented, while a successive numerical analysis is performed by using the commercial Fluent™ code that pro-
vided, in the past, a correct evaluation of the stationary flow forces.  

Unsteady simulations have been carried out considering three different conditions: constant pressure boundary con-
ditions during the spool movement, inlet pressure ripple at a constant spool position, damped pressure oscillations dur-
ing the spool opening phase.  

The main objective is to estimate the critical magnitude orders of the pressure ripple frequency and of the axial 
spool velocity above which the pseudo-steadiness assumption fails; in order to reach this aim, in some cases, the effects 
of the fluid dynamic phenomena connected with the unsteady flow conditions have been amplified. 
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1 Introduction 

Commercial CFD (Computational Fluid Dynamics) 
codes are considered by fluid power researchers as new 
powerful tools to optimize the design of the hydraulic 
components and to study their fluid dynamic perform-
ance.  

Before the spreading of these numerical methods a 
theoretical approach (Merrit, 1967) has been tradition-
ally used in order to provide simple analytical relations 
useful to predict the fluid dynamic behaviour of the hy-
draulic valves. 

By using CFD codes more design and optimization 
iterations can be made by using computer simulations 
replacing expensive experimental campaigns. Nowa-
days, these techniques do not require necessarily deep 
competencies in the Computational Fluid Dynamics, 
thus leaving to the engineers the task to critically ana-
lyze the solution by testing its physical validity. The 
numerical techniques have provided in the past very 
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important indications about the compensation tech-
nique (Borghi et al, 2000), the optimization of the 
notch geometry (Macor et al, 1999, 2000, 2002) the ef-
fects of wall shear forces (Yang, 2006), the three di-
mensional effects of the valve geometry and the analy-
sis of open center and proportional directional control 
valves (Del Vescovo et al, 2002, 2003, 2004); all these 
simulations refer only to steady state conditions. 

As far as the unsteady analysis is concerned, the 
traditional approach starts from the quasi-static as-
sumption of the efflux conditions. In this way some 
remarkable simplifications are possible because this 
approach does not require unsteady numerical simula-
tions. In fact, the flow force can be treated as the sum 
of two terms (Borghi et al, 1998, Nervegna 2000, 
Krishnaswamy et al, 2002): the first is the steady com-
ponent, the latter is the so-called unsteady component 
and is directly connected to the effects of the fluid iner-
tial properties. The unsteady component can be evalu-
ated by using the flow rate values computed by means 
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of steady state simulations. 
The separated study of these two components has 

allowed researchers to modify the dynamic perform-
ance of a servovalve (Krishnaswamy et al, 2002) ma-
nipulating a geometric length called in literature 
“damping length”. 

The aim of this paper is to provide a rigorous nu-
merical unsteady analysis avoiding the simplification 
deriving from the quasi-static assumption.  

The “dynamic mesh” technique, used in this work, al-
lows the movement of the boundary regions inside the 
valve while the computational mesh is updated at every 
time step. This technique has been successfully used in 
literature (Huguet, 2004) to simulate the fluid dynamic 
field in a direct relief valve during the plug movement.  

The User Defined Functions (UDF’s) have been used 
in the code in order to update the pressure boundary 
conditions. 

This paper aims to provide indications about the 
pressure ripple frequency and the spool velocity values 
above which the pseudo-steadiness hypothesis fails. 

2 Theoretical Approach 

In this section a theoretical approach will be used in 
order to identify the most important topics of the dis-
cussion that will be faced by the unsteady CFD analy-
sis. For clarity of exposure, a spool directional control 
valve will be taken as reference but the analysis, and 
the derived conclusions, is easily extendible to other 
hydraulic components. 

With reference to the control volume presented in 
Fig. 1 the momentum equation can be applied in its in-
tegral form: 

 
CV

CV
S S

( )

d dV
dt

dS dS dV

ρ

ρ ρ

=

− ⋅ + +

∫∫∫

∫∫ ∫∫ ∫∫∫

v

v n v σ f
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where ρ is the fluid density, σ is the stress vector, 
f represents the body forces per unit mass, v is the 

fluid velocity. 

 
Fig. 1: Control volume 

Considering the axial component of Eq. 1, the fol-
lowing scalar equation can be derived: 

 ax axCV
S S

( )d v dV v dS dS
dt

ρ ρ= − ⋅ + ⋅∫∫∫ ∫∫ ∫∫v n σ i  (2) 

The second integral of the right hand side of Eq. 2 
represents the sum of all the viscous and pressure 
forces acting axially on the control volume.  

From the integration the following formula can be 
deduced: 

 spool sleeve
S

dS F F⋅ = −∫∫ σ i  (3) 

where Fspool represents the spool force that acts on the 
fluid (equal and opposite to the flow force) and Fsleeve 
represents the body valve viscous force that acts on the 
control surface. 

The first term of the RHS of Eq. 2 can be easily 
written in the form: 

 ax 1ax 2ax
S

( )v dS M Mρ ⋅ = −∫∫ v n  (4) 

where M1ax and M2ax are the axial components of the mo-
mentum flows entering and exiting the control volume. 

Finally the following equation can be deduced: 

 spool sleeve 2ax 1ax axCV

dF F M M v dV
dt

ρ= + − + ∫∫∫  (5) 

In the previous expression the unsteady term is 
clearly notable and will be later detailed. However, it 
must be underlined that the other terms are influenced 
by the unsteady flow conditions as well. For example, 
the influence of the boundary layer on the velocity pro-
file in the metering section in unsteady conditions is 
different from the influence exerted in steady condi-
tions; this phenomenon influences the flow rate value 
and affects, implicitly, the values of the momentum 
flows M1ax and M2ax.  

If the unsteadiness of the efflux conditions are of 
secondary importance, the difference between steady 
and unsteady flow force values relies almost com-
pletely in the time derivative term of Eq. 5 that is 
strictly connected to the fluid inertial properties. This 
paper tries to identify the fluid dynamic cases where 
this hypothesis can be considered valid. 

With the hypothesis that the fluid density does not 
change with the position in the control volume, the un-
steady term can be expressed as follows: 

 ax rel spoolCV CV
( )d dv dV v v dV

dt dt
ρ ρ= + =∫∫∫ ∫∫∫  (6) 
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Assuming a reference system moving with the 
spool, the absolute velocity v (and acceleration a) has 
been expressed as the sum of the instantaneous spool 
velocity vspool (acceleration aspool) and the velocity vrel, 
(acceleration arel) relative to the spool.  

Laxial indicates the axial extension of each elemen-
tary stream tube characterized by the flow rate dq,  

By using the mean value theorem for integrals the 
following equation can be written: 

 axial 1A
L dq QL=∫∫  (8) 

where L1 is the mean axial length of the elementary 
stream tubes; reasonably, L1 is equal to the distance be-
tween the middle point of the Inlet port and the middle 
point of the metering section (see Fig. 1). 

Assuming that L1 is independent on the time, the 
time derivative of the integral can be written as fol-
lows: 

 axial 1A

d L dq QL
dt

=∫∫  (9) 

It is obvious that the length L1 is not constant but in 
the case of spool opening it increases with the simula-
tion time. This approximation is strong if the ratio of 
the axial spool opening to the length of the control vol-
ume is not negligible but the aim of this theoretical ap-
proach is to provide a flow force unsteady term that can 
be easily computed. This term will be compared to the 
difference between steady and unsteady flow forces 
computed by the numerical simulations giving rise to 
important observations about the importance of the in-
ertial forces. 

In this way, the following simplified relation can be 
derived for the unsteady term of Eq. 5: 

 1 spool CV 1 spool CV
d dQL v V QL a V
dt dt
ρ ρ ρ ρ+ + +  (10) 

The two components of Eq. 10 connected with the 
compressibility of the oil are negligible. This is due to 
the very low oil compressibility. To better underline 
this observation a non-dimensional coefficient can be 
defined as the ratio of the first to the third term of the 
Eq. 10:  

1

C
1

2
1 1
2

d QL pdp Q dp pdt
dpdt dtQL Q
dt p

ρ

βρ β β

Δ ΔΠ = = = =

Δ

 (11) 

where the oil compressibility equation and the orifice 
equation have been implicitly used. 

Considering the typical pressure drops in a hydrau-
lic plant and the bulk modulus value, the last ratio can 
reach, in the extreme cases, 5 % and usually much 
lower values.  

The second term of Eq. 10 connected with the spool 
velocity is negligible; this statement can be shown by 
introducing the following non-dimensional coefficient 
as the ratio of the second term to the first one: 

 
spool VC

spool
v

r r 1
1

d v V v A Ldt
d v A LQL
dt

ρ

ρ
⎛ ⎞⎛ ⎞

Π = = ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (12) 

where Ar is the restricted section area and vr is the nor-
mal velocity in the restricted section. 

Considering the typical magnitude order of the 
spool velocity in commercial valves (~0.1 m/s) and of 
the flow velocity in the restricted section (~100 m/s), it 
can be concluded that the Pv value is very low (the 
other factors being of magnitude order from 1 up to 10 
except for the very small openings). 

The last observation confirms that the second term 
is negligible if compared to the first one, and conse-
quently it is negligible if compared to the term QL1ρ . 

Finally, the ratio of the forth term to the third one 
can be analyzed: 

 spool VC spool
i

1 1

a V a AL
QL QL

ρ
ρ

Π = =  (13) 

Assuming as uniform the acceleration of the spool, 
the following formula can be derived: 

 2

2 sa
t
Δ=

Δ
 (14) 

Considering the magnitude orders of the displace-
ment (~1 mm), and of the spool opening time (~10 ms) 
the acceleration equals 10 m/s2. 

The ratio of the maximum flow rate to the spool 
opening time gives an average value of flow rate time 
derivative: 

 
d rmax

2 pC A
Q

t
ρ
Δ
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Δ

 (15) 

where Armax is the maximum value of the restricted sec-
tion surface area. 

Consequently: 

 spool
i

rmax 1
d

2

a A L
A LpC

t
ρ
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Π = ⎜ ⎟⎜ ⎟
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Δ
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The magnitude order of the first denominator term 
is 10-3 while the other factors are of magnitude order 1 
so indicating that this parameter can be reasonably ne-
glected. 

Finally the flow force is given by the equation: 

 spool sleeve 2ax 1ax 1F F M M L Qρ= + − +  (17) 

where only one component of the time derivative term 
should be considered. 

In conclusion, a complete unsteady analysis highlights 
two different problems: the analysis of the so-called “un-
steady flow force component” that has been reduced to 
only one predominant term and the study of the difference 
between steady and unsteady efflux conditions that affects 
implicitly the terms M1ax and M2ax of the Eq. 17. 
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3 Description of the Geometry and of the 
Computational Grid 

The unsteady numerical simulations have been real-
ized by using the “dynamic mesh” technique. 

This technique allows an unstructured computa-
tional mesh to be updated each time step. It is consti-
tuted by three different phases: “relayering”, “smooth-
ing”, and “remeshing”. The first phase adds or removes 
layers of cells adjacent to moving boundaries to keep 
the cell dimension at a specified value, the second 
phase realizes a repositioning of the nodes, the third 
phase prevents the presence of highly distorted cells 
that could lead to convergence problems. Different pa-
rameters can be specified before the iterations start in 
order to optimize the process; they have not been re-
ported for the sake of brevity but they are detailed in 
the Fluent™ Manuals (Fluent Inc, 1995, 2000). 
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Fig. 2: The discharged mass flow rate at three different 

integration time steps 

A preliminary phase to test the physical validity of 
numerical results has been realized. In particular three 
unsteady cases have been set with the same pressure 
drop and spool velocity values but with different inte-
gration time steps. 

Figure 2 shows the results relative to three integra-

tion time steps (10 µs, 5 µs, 1 µs) and 2 ms spool open-
ing time. The comparison of the three trends proves the 
physical validity of the numerical results and the reli-
ability of the computational grid.  

Figure 3 shows the images of the computational 
grids and the obtained velocity contours at two differ-
ent axial spool displacements. 

It can be noticed that a block structured grid has 
been used in the high pressure chamber while in the 
other regions an unstructured grid has been set because 
it is more suitable to the application of the “dynamic 
mesh” technique. 

The zoomed images of the metering sections have 
been reported in order to better show the “dynamic 
mesh” process in the most critical region of the compu-
tational domain. 

4 Numerical Results 

The diagrams of Fig. 4 and Fig. 5 show the flow 
rate profiles at 30 bar pressure drop value and two dif-
ferent spool opening times, i.e. 20 ms and 2 ms. It must 
be considered that the first case coincides with the 
opening conditions of a commercial directional valve 
(spool velocity around 0.1 m/s) while the latter refers to 
prototype switching valves (spool velocity 1 m/s) and 
has been set to emphasize some fluid dynamic phe-
nomena that will be later analyzed. 

Moreover, the spool dynamics have been neglected 
because a uniform velocity has been set, while it is ob-
vious that the spool movement has an initial accelera-
tion phase and a final deceleration phase. The diagrams 
of Fig. 4 and Fig. 5 show that, in the case of 20 ms 
spool opening time, the discharged mass flow rate pro-
file in unsteady conditions is almost overlapped to the 
profile obtained in steady conditions.  

A slight difference is noticed if the spool velocity is one 
magnitude order greater than the previous case (Fig. 5). 

 

   
 

   
Fig. 3: “Dynamic mesh” process during the spool movement and velocity contours (0.3 and 0.8 mm axial spool openings) 
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As far as the flow forces are concerned, (Fig. 6 and 
Fig. 7) the values computed in the unsteady case are 
significantly greater if the spool opening time equals 2 
ms while the difference is less evident if the opening 
time is 20 ms. 
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Fig. 4: The discharged mass flow rate: unsteady vs steady 

(case 30 bar, 20 ms) 
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Fig. 5: The discharged mass flow rate: unsteady vs steady 

(case 30 bar, 2 ms) 

In order to better analyze the differences between 
unsteady and steady results three different terms can be 
identified starting from Eq. 17. 

The first term derives from the viscous effects: 
 visc sleeve_unsteady sleeve_steady_F F FΔ = −  (18) 

the second one derives from different efflux conditions 
in the inlet and metering sections (see Fig. 1): 
 _efflux 2ax 1ax unsteady 2ax 1ax steady( ) ( )F M M M MΔ = − − −  (19) 

the third term derives from the unsteady inertial term: 

 inertial 1_F L QρΔ =  (20) 

The flow rate time derivative has been analytically 
estimated starting from the results presented in the dia-
grams of Fig. 4 and 5. 

In addition to the three components, Fig. 8 and 
Fig. 9 show the term ∆F_global as the difference between 
the steady and unsteady global flow forces computed 
by Fluent™ i.e.: 
 global unsteady steady_F F FΔ = −  (21) 

These terms are derived from the numerical integra-
tion of the pressure and viscous forces on the surfaces 
of the spool.  
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Fig. 6: The flow force: unsteady vs steady (case, 30 bar, 

20  ms) 
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Fig. 7: The flow force: unsteady vs steady (case, 30 bar, 

2 ms) 

From the previous diagrams the following observa-
tions can be derived: 
• the first component deriving from the unsteadiness 

of the viscous effects is negligible, 
• the component that refers to the efflux conditions 

is appreciable only in the case of 2 ms spool open-
ing time while in the other situation it is negligible, 

• the third component is primarily responsible for 
the difference between steady and unsteady solu-
tion in both cases. 

The global difference ΔF_global (that is the rigorous 
difference between steady and unsteady flow forces) is 
not exactly the algebraic sum of the three terms. This is 
due to the approximation concerning the length L1 and 
to numerical inaccuracy problems.  

In order to better analyze the efflux conditions in 
the steady and unsteady simulations, the traditional ori-
fice equation connecting the flow rate to the pressure 
drop and the opening section can be considered: 

 2 d 2 2
2( , ) ( , ) ( ) pQ A t C A t A t

ρ
Δ=  (22) 

According to the quasi-static assumption the value 
of the discharge coefficient Cd is dependent only on the 
opening section area. For this reason the value of the 
steady state discharge coefficient can be considered 
valid in unsteady conditions at the same opening area. 
This assumption enforces that the effects deriving from 
the unsteadiness of the fluid dynamic field on the efflux 
conditions are negligible.  
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Fig. 8: Unsteady corrections (case 30 bar, 20 ms) 
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Fig. 9: Unsteady corrections (case 30 bar, 2 ms) 

The last effects can be summarized as follows : 
• the influence of the boundary layer, 
• the average fluid dynamic angle, 
• the average pressure value in the vena contracta, 
• the ratio of vena contracta area to the the geometri-

cal restricted area. 

By using the numerical results provided by the 
code, it is possible to make a comparison between the 
efflux conditions in the unsteady and steady simula-
tions in order to test directly the validity of the pseudo-
steadiness hypothesis. 

The diagram of Fig. 10 presents the ratio vmax/ v  of 
the maximum velocity value to the average value in the 
restricted section. This ratio can be considered repre-
sentative of the boundary layer effects on the velocity 
profile in the metering section.  

The diagram of Fig. 11 presents the ratio: 

 outletpR
p
−

=
Δ

p  (23) 

where poutlet is the enforced pressure outlet and p is the 
average pressure value in the restricted section. 

This ratio indicates the level of pressure recovery in 
the zone between the restricted section and the outlet 
section. 

In both diagrams only if the opening time equals 
2 ms some differences can be appreciated. 
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Fig. 10: Boundary layer effects 
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Fig. 11: Pressure recovery effects 

The diagrams of Fig. 12 and 13 refer to the values 
of the average fluid dynamic angle υ2 (see Fig. 1); only 
the case relative to the greater spool velocity shows an 
appreciable difference. In particular the angles com-
puted in the case of faster spool movement are lower 
(i.e. more axial) than the angle values provided by the 
steady simulations. This behaviour can be easily physi-
cally explained: the axial flow in the channel tends to 
preserve, because of its inertia, the axial direction in 
spite of the radial deviation caused by the spool wall.  

The last results show that, with a 20 ms spool open-
ing time, the pseudo-steadiness hypothesis is perfectly 
confirmed while non-negligible differences in the ef-
flux angle values arise when the spool velocity is 
greater. 
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Fig. 12: Average fluid dynamic angles (case 30 bar, 20 ms) 



A Review Analysis of Unsteady Forces in Hydraulic Valves 

International Journal of Fluid Power 7 (2006) No. 3 pp. 29-39 35 

50

52

54

56

58
60

62

64

66

68

70

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Axial spool displacement (mm)

A
ng

le
 (°

) 

teta2_non_staz
teta2_staz
θ 2_unsteady
θ 2_steady

 
Fig. 13: Average fluid dynamic angles (case 30 bar, 2 ms) 

In order to understand the influence of pressure 
drop, another simulation, with 80 bar pressure drop and 
20 ms spool opening time, has been realized. The iner-
tial term changes in the range 2.5 - 6 N while the peak 
value is 220 N (refer to Fig. 14 and 15); it can be no-
ticed from the diagram of Fig. 8 that the inertial term in 
the case of 30 bar pressure drop is in the range 1.5 - 4 
N while the peak flow force value equals approxi-
mately 75 N. 

 
Fig.14: flow force (case 80 bar, 20 ms) 
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Fig.15: Unsteady corrections (case 80 bar, 20 ms) 

The numerical results show that the percentage im-
portance of the inertial term decays rapidly with the in-
creasing pressure drop. 

To better explain the last results the average axial 
velocity values in the INLET and OUTLET sections 
can be considered and the Eq. 17 can be expressed in 
the following alternative formulation: 

 ( )spool 2ax 1ax sleeveF Q v v LQ Fρ ρ= − + +  (24) 

or in a more explicit form: 

 2
spool sleeve

2 2 1 1

1 1F F Q LQ
A tg A tg

ρ ρ
ϑ ϑ

⎡ ⎤
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⎣ ⎦
 (25) 

Considering the orifice equation (Eq. 22) the flow 
force can be, finally, expressed as follows: 
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 (26) 

In the Eq. 26, it is evident that the inertial compo-
nent is proportional to the square root of the pressure 
drop while the other terms, connected with the momen-
tum flow values, are linearly proportional to the pres-
sure drop. 

For the last reason the percentage importance of the 
inertial term decreases with the increasing pressure 
drop enforced on the valve. 

5 Pressure Ripple with a Fixed Spool 
Opening 

In order to analyze the effects of the variable 
boundary conditions on the fluid dynamic behaviour of 
the valve, this section will present the preliminary re-
sults dealing with a pressure ripple enforced on a fixed 
axial opening metering section.  

The generic pressure ripple has the following ex-
pression: 
 ( )0 A sinp p p tωΔ = Δ +  (27) 

Different cases have been realized at a fixed spool 
opening with different ripple frequencies.  

The flow rates and the flow forces have been com-
pared with the results obtained at the same instantane-
ous pressure drop but in steady conditions. 

As far as the mass flow rate diagram is concerned 
(Fig. 16), an evident phase lag and an amplitude at-
tenuation can be noticed when the pulsation reaches 
1 kHz value.  

It is obvious that above the last pulsation value the 
quasi-static assumption fails. 

Any evident difference between unsteady and 
steady cases is clearly notable if the pulsation value is 
lower than 100 Hz. 

The amplitude attenuation can be physically ex-
plained: the inertial forces, needed to accelerate the 
mass of the fluid upstream and downstream of the me-
tering section, require additional pressure drops.  

It is evident that if the global pressure drop on the 
computational domain is kept at a constant value, the 
last phenomenon reduces the pressure drop on the me-
tering section so reducing the flow rate values crossing 
the valve. 
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Fig. 16: Mass flow rate profiles at different pressure ripple 

pulsations 

 
Fig. 17: Flow force profiles at different pressure ripple pul-

sations 

With reference to the diagram of the Fig. 17, the 
global flow force values increase with the increasing 
pulsation value and this phenomenon is evident only 
when the pulsation value is greater than 1 kHz.  

The unsteady flow force profiles are easily ex-
plained because the inertial components of the unsteady 
forces increase with the increasing acceleration of the 
fluid that is directly connected to the pressure ripple 
frequency. 

6 Pressure Damped Oscillations During 
the Spool Travel 

This section will show the fluid dynamic behaviour 
of the valve when the spool is subjected to a pressure 
inlet oscillation during its travel.  

It must be considered that these oscillations can be 
derived from the dynamic response of the hydraulic 
circuit connected to the valve. 

In particular a damped pressure oscillation has been 
enforced on the Inlet section during the spool travel us-
ing the expression of the dynamic response of a generic 
under damped 2nd order system i.e.: 

 ( )n
2

0 A n2
sin 1

1

tep p p t
δω

ω δ
δ

−

Δ = Δ + − −
−

 (28) 

The natural pulsation and the damping factor have 
been computed enforcing a certain number of oscilla-
tions during the spool travel and a fixed value of the 
attenuation of the final amplitude (2%).  

Table 1 illustrates the values of the natural pulsation 
and of the damping factors. The spool opening time is 
kept at a constant value of 12 ms. 

The diagrams of Fig. 18, 19 and 20 will show the 
flow rate and the flow forces profiles in the following 
cases: 
• 6 oscillations  
• 30 oscillations 
• 60 oscillations 

compared with the steady state conditions. 
 
 

     Table 1: Damped pressure oscillations parameters 
 6 oscillations 30 oscillations 60 oscillations 
Natural pulsations (Hz) 500 2500 5000 
Damping factor 0.1 0.02 0.01 
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Fig. 18a: 6 damped oscillations during the spool opening (mass flow rate and flow force) 
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Fig. 18b: 6 damped oscillations, zoomed images (mass flow rate and flow force) 
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Fig. 19a: 30 damped oscillations during the spool opening (mass flow rate and flow force) 
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Fig. 19b: 30 damped oscillations, zoomed images (mass flow rate and flow force) 
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Fig. 20a: 60 damped oscillations during the spool opening (mass flow rate and flow force) 
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Fig. 20b: 60 damped oscillations, zoomed images (mass flow rate and flow force) 

 
The zoomed images show a phase lag and an ampli-

tude attenuation of the flow rate increasing with the 
pulsation frequency. The flow force profiles show a no-
table amplitude amplification due to the inertial effects 
when the natural pulsation equals 5 kHz . 

A general conclusion from the last two sections is 
that the pseudo-steadiness hypothesis fails if the pres-
sure oscillation frequency reaches values around 1 kHz 
in the case of pressure ripple either at a fixed spool 
opening or during the axial spool opening. 

In fact in these cases the flow rate computed in 
steady state conditions at the same pressure drop and 
spool opening values is not valid in the transient phases 
because a non-negligible phase lag and amplitude at-
tenuation must be considered.  

As far as the flow forces are concerned an addi-
tional term increasing with the pressure pulsation is al-
ways present and its percentage importance increases 
with the increasing pressure pulsation. It is obvious that 
in a design phase of the driving system such amplifica-
tion of the flow forces must be considered if the hy-
draulic circuit dynamic response could produce pres-
sure ripple pulsation above 1 kHz.  

6 Conclusions 

This paper shows, by means of a complete numeri-
cal unsteady analysis, the limitations of the efflux con-
ditions pseudo-steadiness hypothesis for hydraulic 
spool valves used in fluid power applications.  

The hypothesis can be considered absolutely valid 
in the case of typical spool velocity values (around 
0.1 m/s) and for constant pressure boundary conditions. 
In the last conditions the steady numerical simulations 
can offer a good estimation of the flow rate and flow 
force trends during the spool opening.  

The flow rate profile, computed by means of steady 
state investigations, can be considered valid in the un-
steady state conditions because the fluid dynamic phe-
nomena evolve with time scales that are always much 
lower than the spool movement ones. 

As far as the flow forces are concerned, the inertial 
component must be added to the steady flow force 
value and can be analytically evaluated by assuming 
simplifying theoretical hypotheses.  

This analysis has shown that the percentage impor-

tance of the inertial component decreases with the in-
creasing pressure drop and can be neglected if the pres-
sure drops reach the usual values of fluid power appli-
cations. 

The last conclusions are valid in the case of com-
mercial traditional valves. ON-OFF or proportional 
valves with higher dynamics (velocity around 1 m/s) 
certainly require a rigorous unsteady numerical analy-
sis. In fact, the efflux conditions can change signifi-
cantly in unsteady conditions and moreover the inertial 
term becomes important if compared to the global flow 
force value. 

In particular, the inertial term has a remarkable im-
portance if the pressure drop on the metering section 
decreases. Moreover, in the case of higher dynamics, 
the difference between steady and unsteady average 
efflux angles can produce a non-negligible error in the 
estimation of the flow rate profile during the axial 
spool opening. 

When the pressure boundary conditions are not con-
stant the pseudo-steadiness hypothesis can be consid-
ered valid if the pressure dynamics is characterized by 
frequency values below a magnitude order of 1 kHz. In 
fact, above this value, the flow rate profile presents a 
remarkable phase lag and an amplitude attenuation; 
moreover the inertial term of the flow force (propor-
tional to the pressure pulsation value) could have a 
relevant percentage importance increasing the ampli-
tude of the flow force ripple during the opening phase. 

Nomenclature  

Ar metering section area 
aspool spool acceleration 
CV control volume 
Cd  discharge coefficient 
D spool external diameter 
d spool internal diameter 
f  body forces per unit mass 

Fsleeve force acting on the sleeve 
Fspool flow force on spool 
L length of the control volume 
L1 damping length  
Q flow rate 
p  average pressure value in the metering section 

pA amplitude of pressure ripple 
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pinlet enforced inlet total pressure 
poutlet enforced outlet static pressure 
r  radial distance from spool axis 
vr normal velocity in the restricted section 
vspool spool velocity 
w pulsation of pressure ripple 
x spool axial travel 
v  average velocity value in the metering section 
β bulk modulus 
δ damping factor 
Δp pressure drop  
Δp0 average value of pressure ripple 
σ  stress vector 
Πc unsteady terms ratio 
Πi unsteady terms ratio 
Πv unsteady terms ratio 
ρ fluid density 
ωn natural pulsation 
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