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Zoufiné Lauer-Baré1,∗, Erich Gaertig1, Johannes Krebs1,
Christian Arndt1, Christian Sleziona1 and André Gensel2
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Abstract

The proper modelling of fluid flow through annular gaps is of great interest
in leakage calculations for many applications in fluid power technology.
However, while detailed numerical simulations are certainly possible, they
are very time consuming, in various cases prone to numerical instabilities
and may not even include all physically relevant effects. This is an issue
especially in system simulations, where a large set of computations is needed
in order to prepare the lookup-tables for the required input fields. In this
work, an analytical approximation for the shear force, which is induced by
viscous flow between two eccentric cylinders, is presented. This relation,
and its derivation, mimics and enhances the well-known Piercy-relation for
the corresponding volume flow that is utilized in state-of-the-art system
simulation tools. To determine its range of validity, the analytical relation for
the shear force is compared to 3D-simulations. Additionally, an application
of this approximation for creating digital twins of hydraulic valves is also
discussed in this work.
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1 Introduction

The flow through annular gaps is of great interest in all areas of fluid power
technology, see for instance [10, 5, 16], where the flow is caused by internal
leakage of valves. Other applications of this kind can be found in petroleum
engineering; see e.g. [6, 9], or in the nuclear sciences (see [1]) in the context
of two-phase flows. It is also utilized for hemodynamic studies in medical
appliances; see for instance [24] for a study of the blood flow in arteries.
In general, the fluid flow through an annular domain between two cylinders
is viscous and induces shear forces (leakage jet forces, viscous flow forces)
that act upon the surface of the inner cylinder; see [21] or [4]. These forces
can either be computed numerically, which requires detailed meshing and
is time consuming, or in certain simple cases analytically, which then yield
results that are as accurate as equivalent numerical findings from full 3D-
simulations.

For further reference and as the general setup for the following discussion,
Figure 1 shows two concentric cylinders of length l, inner radius R1 and
outer radius R2, oriented along the positive z-axis. The annular flow domain
mentioned above is contained in the region between these two cylinders.

Figure 1 General setup of fluid flow in a cylindrical gap.
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Figure 2 Cross sections of the cylinders of Figure 1, concentric case (a) and eccentric
case (b).

The following Figure 2 shows the corresponding cylinder cross sections
in the xy-plane both without and with eccentricity. The latter case is included
here since it is conceptually the most challenging and interesting one; it is
also very common in practice as perfect concentricity is rarely obtained in
realistic applications.

In the eccentric case, Figure 2(b), the inner cylinder is displaced vertically
from the common symmetry axis by a value of −b, where b > 0 is called the
absolute eccentricity. On the other hand, the relative eccentricity ε is defined
by ε = b/δ, where δ = R2 − R1 is the difference between outer and inner
radius (see Figure 2(a)).

In this work we will establish a connection between the shear force Fe,
that is induced by the viscous flow in between two eccentric cylinders, and
its corresponding concentric counterpart Fc by a relation of the form

Fe ≈ Fc(1 + a(κ) ε2), (1)

where a(κ) is a scale-invariant correction term that only depends on the
intrinsic geometry of the system, i.e. the ratio of inner to outer radius,
κ = R1/R2. In particular, Fc is the leading term in a 2nd-order Taylor-
expansion of Fe around ε = 0. As far as we can tell, this relation was
unknown previously.

Simplifying even further, since the correction term a(κ) is a rather com-
plicated expression in κ, using its derivative to obtain a linear approximation
around κ = 1 leads to a very convenient recipe for jet forces in many
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applications where R1 ≈ R2, i.e.

Fe ≈ Fc
(

1 +
(κ− 1)

6
ε2
)

for κ ≈ 1. (2)

Following this derivation, we will demonstrate an application of relation
(1) in the context of assembling look-up tables for jet forces, which can be
used to create a digital twin of hydraulic valves. The concept of a digital twin
in this article consists of a complex system-simulation model which includes
data from all relevant sub-systems (e.g. fluid forces, magnetic forces, stresses,
. . . ). This component is then utilized as a digital twin of hydraulic valves in
an automotive system modelling software like Simcenter Amesim.

When implementing the currently available analytical relations for Fe and
Fc, due to singular terms the expression for Fe the eccentric case does not
reduce easily to the concentric one for ε = 0. It has to be evaluated either by
a limiting process or one would need to switch between Fe and Fc depending
on the actual geometry. A similar and well-known situation occurs for the
corresponding flow rates Qe and Qc. However, in this case a relation like
Equation (2) is known in the form of (see [21])

Qe ≈ Qc(1 + 1.5 ε2). (3)

This approximation is very popular (see for instance [10] or [26]) and
is used as state-of-the-art leakage flow model in modern system simula-
tion tools. The proposed Equation (1) is a universal relation for the shear
forces and either this expression or its more manageable limit (2) could be
implemented as part of the Simcenter Amesim component “BRF01”.

This article is structured as follows: In the following Section 2 the
utilization of relation (1) is motivated within the context of generating input
data for a digital twin (as defined above). Furthermore, it is reviewed how
the current analytical approximations for Fe, Fc, Qe and Qc can be derived
from the incompressible, steady-state Navier-Stokes equations and why the
currently available relation for Fe does not easily reduce to Fc.

In Section 3 the motivation for the approach chosen here is briefly
demonstrated for an already known case. Afterwards, the main result of this
work, relation (1) along with the expression for the coefficient a(κ), is derived
by a Taylor-expansion around ε = 0. In addition the domain of validity of (1)
is discussed, also with regard to approximation (2).

In Section 4 the general setup for the corresponding 3D-simulations of
leakage jet forces with Ansys CFX is described. The analytical relation for
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the jet force Fe is then compared to its proposed approximation as well as
to the numerical value obtained in a post-processing step from CFX. This
will show the high accuracy of the analytical approximation if the necessary
conditions for its application are met.

Finally, in Section 5 the flow rate-curves of the digital twin described
in Section 2 are compared to testing results. The good agreement between
system simulation and actual measurements motivates the inclusion of 3D-
effects into digital twins for hydraulic components. They can be used for
the development of hydraulic products that incorporate these components as
sub-models.

2 Hydraulic Valves and Digital Twin Technology

The motivation for deriving relation (1) originates from the necessity to
create digital twins for magneto-hydraulic proportional valves as shown in
the following Figure 3. The interplay between magnetic and hydraulic forces
is harnessed here in order to control the flow of oil to and from the various
ports labelled T, B, P and A in the figure below.

There are several different ways, the notion of a digital twin is used in
current literature. An approach similar to the one presented here describes a
digital twin as a component in a system simulation environment; see e.g. [14].
However, simulation based digital twins may also interact with their hardware
surroundings as described in [27]. Additionally they can even continuously
evaluate testing data obtained from appropriate sensors; see for instance [12].

In our case the digital twin is a virtual Amesim representation of the valve
depicted in Figure 3 (an Amesim component). The necessary input fields

Figure 3 Cross section of a typical magneto-hydraulic proportional valve.
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Figure 4 Linking input fields as lookup-tables into a complex, multi-domain system simu-
lation model.

of the magnetic force are computed by axisymmetric 2D-FEM-simulations
while the results for the flow forces are based on 3D-FVM-models. The
generated data can be incorporated as a parametrized righthand-side for
the equation of motion in a system simulation tool such as Amesim. In
particular, the relevant CFD-fields which depend on pressure drop, stroke
position and fluid temperature can be included in the digital twin by utilizing
Amesim’s Signal and Control library. When using this component in a system
simulation model of the test rig, the digital twin picks the temperature from
the oil property component (labelled “FP04” in the Amesim library) and
the corresponding CFD data is used. This general idea is sketched in the
following Figure 4.

The details of the method described here are not relevant for the main goal
of this article; the interested reader is referred to [8] for the magnetic field
simulations and to [7, 11] for additional information on the CFD-methods
and system simulation. Concerning the flow rate- and jet force-modelling,
numerical, analytical and hybrid techniques are available; see for instance [3,
2, 15]. In particular, a contribution modelling flow rates in valves analytically
with an orifice equation approach was presented in [23]. There is vibrant
activity both in the industrial and academic sector concerning these topics,
hence this reference list is not exhaustive at all.

The flow rate and the force that act on the spool of a magneto-hydraulic
valve can be computed in a postprocessing step once the velocity distribution
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v = (vx, vy, vz)
T is obtained as solution to the incompressible, steady-state

Navier-Stokes equation (gravity is neglected here)

ρ (v · ∇)v − µ∆v +∇p = 0 (4)

∇ · v = 0. (5)

Equation (4) is the momentum equation for a fluid with density ρ,
dynamic viscosity µ and pressure p; the subsequent Equation (5) ensures
conservation of mass in the time-independent and constant-density case
considered here.

The PDEs of (4), (5) need to be supplied by proper boundary conditions;
in our case these are given by

v = 0 on inner and outer walls

p = p0 at inlet

p = pl at outlet

However, when compiling the necessary jet force-fields for the digital
twin, the question emerges which values for the forces should be included
especially in the overlap area of the stroke. A detailed numerical leakage-
simulation of system (4)–(5) for this type of geometry is very time consuming
and just setting the fluid force to zero there by brute-force will neglect
physical effects and may lead to numerical instabilities; see [18] or [17].
This artificial commitment to vanishing jet-forces when feasible is depicted
in Figure 5; numerically computed values are available in a range between
0 mm and 0.1 mm.

The jet forces shown in this figure are negative because the BT fluid
flow is directed towards the negative z-direction in the coordinate system of
Figure 3 and laminar flows induced by a pressure drop lead to jet forces in
direction of the flow (see [4] and the following Equations (7)–(9)).

The search for an effective and accurate way of dealing with the regions
indicated by question marks in Figure 5 is the main motivation in this article
for taking a closer look at analytic relations for the shear force induced by an
annular flow between two cylinders.

When the path BT is about to close, the relevant flow domain can be mod-
elled as an annular gap as depicted schematically in Figure 1 and Figure 2.
This domain is also depicted in the following Figure 6 for the actual valve
used here.

Since in this case the flow is dominated by the axial component, the
original Navier-Stokes equation reduces to the linear Stokes problem, i.e.
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Figure 5 Jet force acting on the spool when the path BT is closed by the spool in Figure 3.

Figure 6 Cross-section view of bushing and spool and zoomed metering edge, where the
spool is in a stroke position that closes BT.

an ordinary differential equation; see [21] for example. Using cylindrical
coordinates and the divergence constraint (5), the PDE-system (4) can be
recast into

− µ
(

1

r

d

dr
+

d2

dr2

)
u =

∆p

l
, R1 < r < R2 (6)

with boundary conditions

u(R2) = 0

u(R1) = 0.
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Here, u = vz denotes the axial component of the velocity vector v
and ∆p = p0 − pl indicates the pressure drop. The advantage of this type
of equation is that for certain flow domains it can be solved analytically.
After obtaining the velocity distribution, it is a simple post-processing step
to compute the corresponding jet force. The solutions of (6) depend only on
the distance to the symmetry axis of the outer cylinder (with Radius R2) and
integrating them leads straight to flow rates and shear forces. Hence, in cases
where the flow is almost purely axial, the Stokes equation already contains
the full information of the original system (4)–(5); no time-consuming CFD
needed. It is also worth mentioning, that in these cases there is no need for
any additional calibration or fitting of the flow rate or flow force as in the
case of an analytical orifice equation approach. There, an auxiliary parameter,
the so-called discharge or contraction coefficient, is introduced which is
not uniquely determined by the Navier-Stokes equations. This coefficient
re-implements viscosity-driven effects that are neglected in the Euler- and
Bernoulli-equations and are therefore also missing in the resulting orifice
equation (see [25] or [13]).

When the relevant shear stresses are integrated over the surface of the
inner cylinder, one obtains two different flow force relations, depending on
eccentricity. For instance from [4] it is known that in the concentric case,
ε = 0, the jet force acting on the inner cylinder is given by

Fc = −π∆p

(
R1

2 −
(
R2

2 −R1
2
)

2 ln (R2/R1)

)
. (7)

As described above, this relation is obtained by integrating the corre-
sponding shear stress over the surface of the inner cylinder, i.e.

Fc =

∫ l

0

∫ 2π

0

(
µ r

d

dr
u(r)

)
r=R1

dϕdz, (8)

where the axial velocity component ist given by

u(r) =
∆p

4µl

(
R2

2 − r2 −
(
R2

2 −R1
2
) ln (R2/r)

ln (R2/R1)

)
. (9)

Analogously, for the “strict” eccentric case 0 < ε < 1 it is known from
e.g. [21] that again by integrating the shear stress, the force acting on the
surface of the inner cylinder is given by

Fe = −π∆p

(
R1

2 − bA

β − α

)
, (10)
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where

A =

√
B2 −R2

2, B =
1

2b

(
R2

2 −R1
2 + b2

)
(11)

and

α =
1

2
ln

(
B +A

B −A

)
, β =

1

2
ln

(
B − b+A

B − b−A

)
. (12)

An implementable formulation of the corresponding velocity distribution
can be found for instance in [22].

Unfortunately as one can see from Equation (10), it is not immediately
clear what happens in the concentric case, i.e. for ε = b = 0. Simply
evaluating this expression for b = 0 is not allowed since one would divide by
0. Of course one could compute Fe in a limiting process for ever decreasing
values of b but this procedure does not at all shed a light on how exactly
Equation (10) reduces to Equation (7) in the concentric case.

In the following Section 3 we will therefore derive a practical relation that
unites the jet forces for all relative eccentricities, e.g. Equation (1).

3 Analytical Modelling of Leakage Jet Forces

As motivation for our approach, let us start again by considering the different
flow rates obtained by solving the Stokes problem for the geometries shown
in Figure 2. As already mentioned in the introduction, the flow rate for
the eccentric case, Qe, is related to its concentric counterpart Qc by the
approximate relation (3), where (see e.g. [21, 26])

Qc =
π∆p

8µl

(
R2

4 −R1
4 −

(
R2

2 −R1
2
)2

ln (R2/R1)

)
. (13)

Similar to the flow force computation leading to (7), (13) is obtained in
a post-processing step by integrating the very same velocity distribution (9),
which solves the Stokes Equation (6) within a concentric annulus,

Qc =

∫ R2

R1

∫ 2π

0
ru(r)dϕ dr. (14)

There is also an expression for the corresponding flow rate in the eccentric
case, albeit as an infinite series representation (see [21]), given by

Qe =
π∆p

8µl

(
R2

4 −R1
4 − 4b2A2

β − α
− 8b2A2

∞∑
k=1

ke−k(β+α)

sinh (k(β − α))

)
. (15)
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Relation (3) seems to be a truncated Taylor-expansion of Equation (15)
in the relative eccentricity around ε = 0, although to the best of our
knowledge, the expansion itself is never made explicit in current literature.
Now an obvious question related to this discussion is, whether there exists an
approximation, relating the jet force Fe of the eccentric case to its concentric
counterpart Fc in a similar manner as relation (3) does for the flow rates.

In order to illustrate this point further, let us recall that this approach is
already very common in oil hydraulics. The popular approximation (see [10])
for the flow rate in the concentric case

Q1 =
π∆pR1

6µl
δ3, (16)

which is also used in the Simcenter Amesim 16.1 component “BAF01” and
in DSHPlus (see [20]), is simply the leading term in a Taylor-expansion of
Equation (13) around δ = 0 (R1 is kept fixed there and R2 is replaced by
R1 + δ). In [26] one can even find the next term (of fourth order) in this
expansion, which is not widely used in fluid power literature though, i.e.

Q2 =
π∆pR1

6µl

(
δ3 +

1

2R1
δ4
)
. (17)

As a sidenote, it is also rather straightforward to calculate higher-
order corrections for this truncated Taylor-series. For example including
the fifth order term (not seen by the authors in the literature by now), the
corresponding expansion now reads as

Q3 =
π∆pR1

6µl

(
δ3 +

1

2R1
δ4 +

1

60R1
2 δ

5

)
. (18)

Following this idea, Equation (10) for the jet force is regarded as a
function of the relative eccentricity ε and a Taylor-expansion around ε = 0 is
carried out. Assuming analyticity of Fe (that is, the Taylor-expansion of (10)
is identical to Fe within its convergence radius), we can write

Fe(ε) = Fe(0) +
dFe(ε)

dε

∣∣∣∣
ε=0

ε+
1

2

d2Fe(ε)

dε2

∣∣∣∣
ε=0

ε2 +O(ε3) (19)

and truncate the expression after the quadratic term. For practical calculations
it is actually more convenient to work with the absolute eccentricity b as
dependent variable since (10) is already expressed in that way. After eval-
uating the required derivatives, it is an easy application of the ordinary chain
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rule to switch to ε as expansion parameter, i.e. dF/dε = dF/db · db/dε =
(R2 −R1)dF/db.

As a simple example for this approach, let us derive the constant term
in (19) which is identical to Fe(b = 0) in (10) and does not include
any derivatives at all. The only non-trivial part there is the second term in
parentheses; we will consider numerator and denominator separately.

From the Definitions (11), (12) it is clear that

bA = b

√
B2 −R2

2 = b

√
1

4b2
(
R2

2 −R1
2 + b2

)2 −R2
2

=

√
1

4

(
R2

2 −R1
2 + b2

)2 − b2R2
2

and therefore

lim
b→0

(bA) =
1

2

(
R2

2 −R1
2
)
. (20)

For the denominator we write

β − α =
1

2
ln

[
(B − b+A)(B −A)

(B − b−A)(B +A)

]
=

1

2
ln

[
B2 −A2 − bB + bA

B2 −A2 − bB − bA

]
.

Now, from (11) we know that for the first two terms in this fraction

B2 −A2 = R2
2

and for the third summand

bB =
1

2
(R2

2 −R1
2 + b2),

that is (using (20))

lim
b→0

(bB) =
1

2

(
R2

2 −R1
2
)

= lim
b→0

(bA).

Due to continuity of the natural logarithm, putting all this together leads to

lim
b→0

(β − α) =
1

2
lim
b→0

(
ln

[
R2

2 − bB + bA

R2
2 − bB − bA

])
=

1

2
ln

(
R2

2

R1
2

)
= ln

(
R2

R1

)
. (21)
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Since all limits exist, one can then safely divide (20) by (21) and we
straightforwardly arrive at

Fe(0) = lim
b→0

Fe(b) = Fc. (22)

Similar but more tedious calculations involving the first- and second-
order derivatives of Fe show that

dFe(ε)

dε

∣∣∣∣
ε=0

= 0 (23)

and finally

d2Fe(ε)

dε2

∣∣∣∣
ε=0

= π∆p(R2 −R1)

(
R2

2 −R1
2
)
− ln (R2/R1)

(
R2

2 +R1
2
)

ln2 (R2/R1) (R2 +R1)
.

(24)
Substituting (22)–(24) into Equation (19) and omitting cubic and higher

order terms leads to

Fe ≈ Fc+
1

2

(
π∆p(R2 −R1)

(R2
2 −R1

2)− ln(R2/R1)(R2
2 +R1

2)

ln2(R2/R1)(R2 +R1)

)
ε2.

(25)
Replacing Fc in the above expression with Equation (7), factoring out this

contribution as well as another term R2
3 in both numerator and denominator,

one finally arrives at relation (1), i.e.

Fe ≈ Fc(1 + a(κ) ε2),

with

a(κ) = −(1− κ)
(1− κ2) + (1 + κ2) lnκ

2

(
κ2 +

(1− κ2)
2 lnκ

)
(1 + κ) ln2 κ

, where κ =
R1

R2
. (26)

This is the main result of this article; a relation that approximates the
eccentric shear force by its concentric counterpart and a correction term that
depends on the relative eccentricity and the ratio of the radii involved.

While expression (26) is valid for all values of κ, in many practical
applications R1 is close to R2 and therefore κ ≈ 1. In this case a(κ) is
already specified sufficiently enough by its linear contribution and evaluating
the relevant derivative then leads to relation (2), i.e.

Fe ≈ Fc
(

1 +
(κ− 1)

6
ε2
)

for κ ≈ 1.
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Figure 7 Variation of the correction term a(κ) and its linear approximation at κ = 1 when
increasing the ratio of inner to outer radius.

This approximation mimics the well-known Piercy-relation for the flow
rate and extends it in a similar fashion to jet forces as well.

In order to work out the similarities and differences between the different
approaches, we define

Qεc := Qc(1 + 1.5 ε2) (27)

and
F εc := Fc(1 + a(κ) ε2). (28)

Both definitions can be understood as expressions mainly dominated by
the concentric part but modified by a smaller contribution that depends on
eccentricity. This will avoid confusion when we want to compare (15) with
its approximation (27) and (10) with (28) respectively.

It’s immediately obvious that the constant coefficient of the quadratic
correction term in Equation (27) does trivially not include any information
about the actual geometry (e.g. the radius of bushing and/or housing in
Figure 6). In contrast, the corresponding factor in (28) depends in a rather
intricate way on κ, i.e. the ratio of inner to outer radius; see (26). It is also
depicted in the following Figure 7.

In addition, the linear approximation of a at κ = 1 is shown there as well.
As one can see there is a reasonable agreement between these two graphs for
κ ≥ 0.6.

It is worth pointing out, that [21] were well aware of the fact, that
their prefactor is not constant at all, but also depends on the ratio of the
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Figure 8 (a) Ratio of eccentric to concentric flow rates and (b) corresponding jet forces
(solid), as well as their proposed approximations which are valid for κ ≥ 0.6 (dotted).

radii involved. This is depicted in the following Figure 8(a) which compares
Qe/Qc obtained from (15) on the one hand (solid) with corresponding values
computed from (27) on the other hand (dotted); in both cases Qc is evaluated
using (13). This figure already appeared in the aforementioned paper and
clearly shows that the Piercy-relation (27) is valid only for κ ≥ 0.6.

Figure 8(b) shows a similar comparison for the jet forces, i.e. (10) vs. (2);
Fc is obtained from (7). One can clearly see that the simple relation (2) is a
very good approximation as long as κ ≥ 0.6 and can therefore be regarded as
equivalent to the Piercy-relation for the flow rate.

However, in addition to Equation (2) we also derived the entire corre-
sponding 2nd-order approximation (in relative eccentricity ε); see relation
(28). It should adequately describe the behaviour of the jet forces for an
even wider range of possible κ. This is indeed the case as can be seen in
the following Figure 9.

In contrast to the previous case it is obvious that Equation (28) proposed
in this paper is a suitable approximation for all values of κ. Only when
considering large eccentricities and huge differences between inner and outer
radius, higher-order corrections to (28) become relevant. But as already
mentioned before, in the same regime where the Piercy-relation holds, (28)
could easily be replaced by its much simpler version (2).



128 Z. Lauer-Baré et al.

Figure 9 Comparison of relative jet forces, exact (solid) vs. full 2nd-order approximation
(dotted).

In order to further check the accuracy of both Fe and its suggested alter-
native F εc , the following Section 4 will compare them with results obtained
from 3D CFD-simulations.

4 Numerical Modelling and Comparison of Leakage Jet
Forces

In order to evaluate whether the assumption of a purely axial flow is in fact
justified in the cases studied here, a 3D-simulation is performed in the leakage
flow domain between bushing and spool as depicted in Figure 6.

The initial overlap in our example valve was 0.6 mm, however different
designs might also lead to different overlaps so as a second test case, a
value of 1.55 mm was chosen as well. The task is then to solve the laminar
and incompressible, steady-state Navier-Stokes system (4),(5) for prescribed
geometries and boundary conditions.

Ansys CFX was used to carry out FVM-simulations for the general
setup described in Section 1 and depicted in Figures 1, 2. The following
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Figure 10 Half symmetric computational domain and corresponding boundary conditions
for 1.55 mm overlap; only the inner cylinder surface is visible.

Table 1 Summary of parameters for numerical leakage simulation
Data Value Unit

∆p = p0 − pl 10 & 40 bar

R1 3.29 mm

R2 3.3 mm

κ 0.997 –

µ 10.11 mPa s

ρ 805 kg/m3

b ε(R2 −R1) mm

l 0.6 & 1.55 mm

no. of nodes (overlap 0.6 mm) 1,012,112 –

no. of elements (overlap 0.6 mm) 932,400 –

no. of nodes (overlap 1.55 mm) 2,588,352 –

no. of elements (overlap 1.55 mm) 2,408,700 –

Figure 10 illustrates in more detail the computational domain and the
boundary conditions chosen here.

Some relevant information about the geometrical and numerical specifi-
cations for the simulations is summarized in Table 1.
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Figure 11 Mesh for the expected laminar fluid flow, dominated by the axial component.

Figure 12 Comparison of numerically and analytically obtained jet forces for 10 bar and 40
bar pressure drops and an overlap of 0.6 mm.

Particular care has to be taken of an appropriate meshing of the computa-
tional domain. For cases in which the flow is dominated mainly by the axial
velocity component and varies smoothly with distance from the symmetry
axis, a sweep meshing method with radial boundary refinement is used; see
the following Figure 11 as an example.

In order to compare the analytical expression for Fe, i.e. relation (10),
and its proposed approximation F εc (which by contrast trivially includes
the concentric case, see Equation (28)) to numerical results, the jet force
FFVM obtained from the 3D-simulations is evaluated for eccentricities ε =
0.1, 0.2, . . . , 0.9.

In the following Figure 12 one can see, how well our relation for the jet
force performs when benchmarked against both numerically obtained forces
and the original analytical relation for Fe.

For the comparison shown in Figure 12, an overlap of 0.6 mm was used.
However, results are identical for the second test case considered here, i.e.
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Figure 13 Comparison of numerically and analytically obtained jet forces for 10 bar and 40
bar pressure drops and an overlap of 1.55 mm.

an overlap of 1.55 mm; see the following Figure 13. As expected from the
analytic expressions, there is no noticeable influence of the overlap on the jet
forces; they are virtually identical for both values considered here.

The relative difference between the proposed relation (28) and the numer-
ical results is less than 0.6 % which emphasizes the good accuracy of our
approximation for Fe. The reason for this agreement is partly because the
requirements for its application are met in this case, i.e. a clearly laminar
behaviour of the fluid flow as highlighted in the following Figure 14 (see also
Figure 10).

Even though it is not apparent from Figures 12, 13, the quality of the
approximation proposed in this article depends on the correctness of its
underlying assumptions, one of them being that the resulting flow can be
described by the linear Stokes equation, therefore neglecting turbulence. The
following Table 2 summarizes Reynolds number (Re) and maximum values
of the velocity components (vx, vy, vz) in the Cartesian system used for the
simulation. Keep in mind, that vz = u in the nomenclature developed in
Sections 2 and 3.

It’s obvious from the data presented in Table 2, that the simulation with a
pressure difference of 10 bar and an overlap of 1.55 mm leads to the smallest
Reynolds number as well as the largest ratio of axial to radial velocity
components, that is vz/(v2x + v2y)

1/2 ≥ 23. This would signal both a laminar
and an axially dominated flow, i.e. the two assumptions that are prerequisites
for applying the proposed relation (28). On the other hand, based on the same
reasoning one would expect the largest deviation from our approximation in
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Figure 14 Linear pressure distribution for an overlap of 1.55 mm, relative eccentricity of
0.8 and a 10 bar pressure-drop.

Table 2 Reynolds number and component-wise speed maxima obtained from the CFD-
simulations, velocities are given in m s−1.

10 bar, 0.6 mm 10 bar, 1.55 mm 40 bar, 0.6 mm 40 bar, 1.55 mm

Re 66.61 35.53 262.02 141.77

(vx)max 0.18 0.04 0.96 0.32

(vy)max 0.40 0.1 1.91 0.71

(vz)max 6.59 2.55 25.7 10.3

the corresponding simulation of a 40 bar-pressure drop and an overlap of
0.6 mm.

These predictions are corroborated by the following Figures 15 and 16,
which are zoomed-in versions of the relevant curves already depicted in
Figures 12, 13.

Although the differences are minuscule from a practical point of view, the
figures still show vividly how good relation (28) approximates the analytical
solution (10) of the linear Stokes equation and how both approaches, strictly
speaking, fail once the corresponding fluid flow gets more turbulent and less
axially dominated.
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Figure 15 Comparison of numerical and analytical forces for a 10 bar pressure drop and an
overlap of 1.55 mm (scaled-up from Figure 13).

Figure 16 Comparison of numerical and analytical forces for a 40 bar pressure drop and an
overlap of 0.6 mm (scaled-up from Figure 12).

On the other hand, especially Figures 12 and 13 show that apart from
this rather academic discussion, even stronger violations of the assumptions
required for applying (28) still lead to a good estimate of the jet forces for
all practical purposes. A rigorous study of the sensitivity of the proposed
approximation with respect to the ratio δ/l (annular gap divided by overlap)
with methods from asymptotic analysis (as used in [19]) could be the content
of future work.

The following Figure 17 finally answers the question of how the jet forces
can be modelled when the path BT is closed. For geometries like concentric
or eccentric gaps, analytical approximations like relation (28) are applicable.
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Figure 17 Completion of numerically obtained shear forces by analytically computed shear
forces; compare with Figure 5.

The last Section 5 will describe an experimental setup to gauge the
accuracy of the combined numerical/analytical model of the jet forces for
usage in a digital twin.

5 Experimental Testing and Validation of the Combined
Model

In order to illustrate the accuracy of the response from the digital twin
schematically depicted in Figure 4, numerical and analytical input fields were
generated by post-processing 3D-simulations as well as utilizing relations
like (27) and (28). The digital twin described in Section 2 is then included in
an Amesim model of the hardware test rig. The oil temperature (determined
by the ambient temperature of the climate chamber), which dictates the
relevant CFD-fields for the system simulation model, can be set via the
Amesim component ”FP04”; see also [7] or [11] for further details on using
input data with Amesim. Finally, the numerically obtained flow rates are
compared to corresponding measurements from the test rig, including the
hardware twin of the valve.

The following Figure 18 depicts the Hilite test rig used for hydraulic
measurements of a flow regulating valve. Since the test bench is employed
for other measurements as well, the overall setup shown here is slightly larger
than required.
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Figure 18 Test rig used for measuring flow rates; the red arrow points to the actual valve
within this setup.

Figure 19 Reduced hydraulic scheme; the valve to be measured is outlined in red.

The reduced hydraulic scheme corresponding to this setup is depicted in
Figure 19; the actual valve that is marked by an arrow in previous Figure 18
is outlined in red here.

A direct acting servo valve by Moog is used for adjusting the supply
pressure. It features a very short response time and is used in our test benches
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Figure 20 Interior view of the CTS temperature test chamber.

for facilitating static supply pressures and to eliminate pressure differences
during each single test. The built-in accumulator prevents undesired pressure
oscillations. Prior to the inlet a VSI gear flow meter is employed for mea-
suring the flow rate. In this type of device gear rotation is monitored by a
non-contacting signal pickup system. This allows for a precise determination
of the fluid volume that is enclosed in the measuring chambers between the
gear teeth. The VSI is a pre-amplifier that greatly improves signal quality,
leading to measurement errors below 0.3% within a temperature range from
−40◦ C to 120◦C.

A Kulite pressure sensor placed between gear flow meter and valve is
used in a feedback-loop with the Moog controller to monitor and adjust the
pressure on the inlet of the valve. The sensor is calibrated for all specified
temperatures before starting any flow measurements in order to achieve a
high accuracy.

For measurements at different temperatures the entire test rig can be put
into a CTS conditioning chamber; see the following Figure 20.

In this way, it is possible to simulate and adjust for environmental influ-
ences on the valve as well as attached transmission components. This is
a standard test procedure for automotive testing and it allows for separate
heating/cooling of fluid and environment. The CTS chamber is set to the
required temperature and in addition, the fluid (oil in this case) is also cooled
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Figure 21 Fluid circuit diagram of the valve used for testing.

or heated. When the chamber has reached the necessary temperature there is
an auxiliary holding time of about 6 hours so that chamber, fluid and test rig
can achieve thermal equilibrium.

A schematic diagram of the measured valve is depicted in the following
Figure 21.

In this case, it is a 4/4 proportional valve with an adjustable solenoid
acting from the left (as indicated by the corresponding symbol, see also
Figure 3). In its neutral position, a floating condition is achieved while
blocking the connection to the pump and no fluid flow will occur. Once
energized, the solenoid will move the spool inside the bushing so that with
increasing stroke fluid is passing from pressure inlet P (a supply pressure of
10 bar is applied here) to port A and from port B back to the reservoir T
respectively. Moving further, another floating position with zero volume flow
is reached before the high pressure inlet P is connected to B and accordingly
port A back to the reservoir T.

For measurements the solenoid contained within the valve is subjected to
a current ramp. After a brief currentless activation at the start of this routine
(automated postprocessing of data is initiated here), the electric current is
increased with a ramp speed of 33 mA/s before reaching its final value
of 1000 mA after roughly 30 seconds. From this maximum the current is
decreased to 0 A at the same speed. In addition to this current ramp there is
also a harmonic dither-signal with a frequency of 125 Hz and an amplitude
of 250 mA which is superimposed to the carrier current.

The following Figure 22 depicts the time-dependent current variation
outlined above.

All signals are recorded with an initial sampling frequency of 30 kHz and
are then subsequently downsampled to 10 kHz in order to reduce the amount
of data to be processed. As required by most of the customers, the signals are
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Figure 22 The variation of electric current with time used for the flow rate measurements;
dither-signal not included here.

Figure 23 Comparison between simulated and measured flow rate (average of rising and
falling segments) at a temperature of 60◦ C.

filtered afterwards with a 4th-order Bessel filter employing a cutoff-frequency
of 10 Hz and separated into rising and falling segments according to the
current ramp of Figure 22.

The following Figure 23 shows the characteristic flow curve obtained as
an average over rising and falling segments for the digital twin and compares
it to the corresponding measurements at an operating temperature of 60◦ C.
Due to required confidentiality, the y-axis needs to remain unlabelled.

As one can see, the agreement between simulation and measurement is
very good. The areas in which PA and PB are open are marked with point
and line patches respectively. The flow outside of the marked areas is due
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Figure 24 Same as Figure 23 but for −30◦ C and 120◦ C.

to partial openings due to the spool geometry (see Figure 3), the connection
of PB and AT and PA and BT respectively and internal leakage. This also
extends to other temperatures as well; see the following Figure 24.

As expected, mainly due to viscous effects which increase for lower
temperatures, the flow rates decrease significantly when dropping the tem-
perature; see also Equations (13), (15). While there are slightly larger
deviations between simulation and measurement, the overall agreement is
still satisfactory.

This comparison shows the usefulness of employing proper modelled
digital twins of valves in system simulations in order to optimize the per-
formance of these elements as components of larger transmission assemblies.

6 Conclusion

In this work an analytical approximation for the shear force, which is induced
by viscous flow between two cylinders, is presented. This relation, as well as
its derivation, mimics the well-known Piercy-approach for the corresponding
volume flow which involves the relative eccentricity as an expansion param-
eter for a Taylor-series. While the latter one is strictly valid only in a certain
limiting case (that is nevertheless mostly fulfilled in practical applications),
the approximation for the shear forces proposed here exhibits a much broader
range of validity. Its utilization is restricted only by the inherent limitation
of a truncated series expansion and the requirement of a laminar, axially
dominated fluid flow.
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These findings were corroborated by comparisons with 3D-simulations
of the complete Navier-Stokes equations. The detailed case studies not only
showed under which circumstances our approximation will fail to hold but
also how minute the observed discrepancies between analytical and numer-
ical results are. From this point of view, our statement about the suggested
domain of validity is rather a mathematical conclusion than something that
would severly limit the application of our relation for the jet forces in any real-
istic scenario. In fact, it could be implemented quite universally for example
in subsequent releases of the Simcenter Amesim component “BRF01”. This
would also neatly fit with other components, e.g. “HYDORG11”, that already
utilize similar analytical estimates.

As an application example, the proposed approximation for jet forces was
applied for the generation of input fields for a digital twin. These are needed
by system simulation software in order to accurately predict the behaviour
of actual, real devices on which the corresponding digital counterparts are
based upon. Proper modelled components also help to optimize preliminary
designs in a cost-effective manner. Of course, the success of this approach
stands and falls by the accuracy of the digital reproduction of a physical
object. The procedure presented here in case of a magneto-hydraulic valve
leads to a very good agreement between simulation and measurements. This
will undoubtedly encourage and foster the development of hydraulic systems
by exchanging digital twins between vendors and customers in a modern,
networked environment.

7 Nomenclature

R1 radius of inner cylinder
R2 radius of outer cylinder
δ annular gap/clearance between cylinders, i.e. R2 −R1

κ ratio of inner and outer cylinder radius, i.e. R1/R2

b absolute eccentricity/shift of inner cylinder
ε relative eccentricity/shift of inner cylinder, i.e. b/δ
p0 pressure at inlet
pl pressure at outlet

∆p pressure drop, i.e. p0 − pl
Fe flow force in the eccentric case
Fc flow force in the concentric case
Qe flow rate in the eccentric case
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Qc flow rate in the concentric case
Qεc known approximation of eccentric flow rate, as correction of Qc
F εc new approximation of eccentric jet force, a truncated expansion of Fe
Q1 leading term of Taylor-expansion of Qc in δ, around δ = 0
Q2 first two non zero terms of mentioned Taylor-expansion of Qc
Q3 first three terms of mentioned Taylor-expansion of Qc, not seen by

authors in literature
µ dynamic viscosity of fluid
ρ density of fluid
v fluid velocity field, whith radial components vx, vy and axial contribu-

tion vz = u
p pressure of fluid
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development engineer, working on novel numerical approaches, he joined the
simulation group at Hilite. There, he is mainly responsible for electromag-
netic field calculation of actuators. Other areas of interest include modelling
and numerical/analytical methods in physics and engineering.

Johannes Krebs currently works as a simulation manager at the simulation
department. He is responsible for the transmission simulation. After he fin-
ished his thesis in numerical fluid- and aerodynamics at the University of
Stuttgart (IAG) in 2014, he started at Hilite as a CFD-simulation specialist.
Other fields he is working on are system simulation and the modelling of
digital valve systems including DOE and robust design analysis.

Christian Arndt finished his study of Aerospace Engineering at the Univer-
sity of Stuttgart in 2008. After that he worked as simulation engineer in the
development of gasoline engines with focus on 1D- and 3D-CFD simulations.
He joined Hilite in 2016 where his field of work are system simulations as
well as 3D-CFD simulations in the development of hydraulic cam phaser
systems.



A Note on Leakage Jet Forces 145

Christian Sleziona received his Ph.D. in Plasma Propulsion at the University
of Stuttgart. He finished his postdoctoral thesis on Hypersonic Flows and
started as professor for Hypersonic Aerothermodynamics at Tohoku Univer-
sity in Japan. After working at the ITWM of the University of Kaiserslautern
and IHI Charging Systems International, he currently works as head of the
simulation department at Hilite.
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