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Abstract 

The work described in this paper investigates the fault diagnosis of water hydraulic motor by the optimization and 
automatic classification of the feature values. The second generation wavelet for the vibration signals analysis of the 
water hydraulic motor was proposed to extract the feature values. The new optimization method by bi-classification 
support vector machine (SVM) was proposed to select the optimal feature values based on a rank criterion and the algo-
rithm was developed here. In order to classify the conditions of the pistons used in the hydraulic motor, a two-level 
structure based on the multi-classification was developed in this work. The multi-classification method of SVM for the 
fault diagnosis of a piston crack was investigated. The winner-takes-all scheme was studied. The results of the classifi-
cation were found to be successful. 
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1 Introduction 

Water hydraulics was overtaken by oil hydraulics in 
the early part of the 19th century in terms of research 
effort and industrial applications (Krutz and Chua, 
2004; Lim et al., 2002). In recent years, due to the 
growing concern about environmental, safety and 
health issues, there was renewed interest in water hy-
draulics. As water is nontoxic, environmentally 
friendly, and readily available, many industries are 
turning to water hydraulic systems to replace the oil 
hydraulic counterparts. Water hydraulic systems have 
been increasingly used in the farming, forestry, food, 
pharmaceutical and paper industries (Sorensen, 1999; 
Trostmann, 1995; Simon, 1996). Thus the increasing 
use of water hydraulic systems will result in a greater 
need to maintain the systems. The water hydraulic mo-
tor is commonly used to provide high torque. Pistons 
are the principal operating elements of piston-type ma-
chines and their performance invariably depends on the 
smooth and efficient motion of pistons in the cylinder 
bore. Any crack in a piston will affect the leakage and 
friction between the sliding surfaces in the cylinder 
bore. This crack will propagate and gradually cause the 
motor’s performance to deteriorate. It will eventually 
lead to dangerous situations such as severe vibration 
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or sudden shutdown during operation.  
Water hydraulic systems have gained momentum in 

recent years. There is an increasing amount of research 
published on axial piston machines (Ivantysynova et 
al., 2005, Ivantysynova and Lasaar, 2004; Chen, 2006). 
Research work has been done on fault diagnosis of oil 
hydraulics and other mechanical systems and this pro-
vides a useful reference for condition monitoring and 
fault diagnosis of water hydraulic systems (Lim, 2003; 
Crowther, 1998). The approach using rule-based con-
cepts was presented for a number of faults in the typical 
hydraulic circuits (Watton, 1994). The algorithm for 
fault detection based on mathematical models is a pow-
erful method for many fluid power systems. The 
nonlinear model based on neural network was pre-
sented and applied to a simulated electro-hydraulic 
rotary drive system (Daley et al., 1996). Rule-based 
systems were designed for the on-line fault diagnosis of 
fluid power system (Stewart, 1994). 

Artificial Neural Networks (ANN) have demon-
strated great potential for application in machine learn-
ing, computer vision and pattern recognition, and the 
fault diagnosis and classification of fluid power sys-
tems (Precetti and Krutz, 1993; Haney et al., 1994; Le 
et al., 1998; Samanta et al., 2001; Lott and Griffiths, 
1997). However, the traditional neural network ap-
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proaches have limitations. Support vector machines 
(SVMs) are a comparatively recent development. The 
principle of SVMs is risk minimization that is different 
from ANN whose principle is traditional empirical risk 
minimization. Empirical risk minimization is used to 
minimize the error on the training data. SVMs (Vapnik, 
1995) are based on the statistical learning theory and 
are appropriate for dealing with classification and re-
gression problems. Recently, there is application of 
SVM in machine condition monitoring (Nandi, 2000). 

2 Water Hydraulic Motor and Experi-
mental Set-Up 

The actuator studied here was a five-piston axial 
piston motor used in a water hydraulic system. An ac-
celerometer mounted on the casing of the Danfoss 
MAH 12.5 water hydraulic motor was used to obtain 
the vibration signal from the motor. The complete wa-
ter hydraulic system was provided by Danfoss. Figure 1 
shows the general structure of the water hydraulic mo-
tor. An axial piston motor consists mainly of a valve 
port plate with inlet and outlet ports, a swash-plate, an 
outer shell, a cylinder block, pistons with shoes, a bias 
spring, a port flange and a shaft. Pistons fit within the 
bores of the cylinder barrel and are parallel to the out-
put shaft. The swash-plate is positioned at an angle and 
acts as a surface on which the piston shoes travel. The 
shoes are held in contact with the swash-plate by the 
retaining rings and the bias spring. The port plate sepa-
rates the incoming fluid from the discharging fluid. The 
output shaft is connected to the cylinder barrel. 

As the water enters the inlet and exits at the outlet 
of the hydraulic motor, the pressure in the cylinder 
chamber alternates from high pressure to low pressure 
(Ivantysyn et al., 2002). This causes pressure pulsation 
to occur. The total cylinder area inside a supply port is 
variable as a result of the cyclic variations of the piston 
passing through the supply port. It generates the varia-
tions of the axial output moment. The variations of the 
forces are applied from the piston to the swash plate 
and the valve cover. The force between the support for 
the swash plate and the valve cover is opposite in direc-
tion. The hydraulic motor body vibrates as a result. 

The water hydraulic motor test rig is shown in 
Fig. 2. It consists of a MAH 5.12  Nessie water hydrau-
lic motor, a AB 34000 brushless servo motor, a digital 
torque meter and a water hydraulic supply system. The 
hydraulic circuit of the motor test rig was shown in 
Appendix A. The water hydraulic system allows axial 
piston motor operation in the range of 300-3000 
rev/min and 0-6 Nm. The operational display processes 
the signals and shows the results as the digital value of 
torques and rotational speeds. The brushless servo mo-
tor provides the precise torque in the range of 0-
10.2 Nm as resistive torque for the Nessie motor. A 
piezoelectric accelerometer (Bruel and Kjær type 4393) 
was mounted on the shell of a Nessie motor near the 
inlet of the water hydraulic motor. The sampling rate 
uses the Nyquist formula and was chosen to be 2 kHz 
which is sufficient for the type of signals considered in 
this work. 2000 data points were taken in each experi-
mental run. The rotational speed of Nessie motor was 
630 rev/min. The output axis torque of Nessie motor 
was 5 Nm.  

 
Fig. 1: Swash plate water hydraulic motor with five pistons (Danfoss)
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Fig. 2: The water hydraulic motor test rig 
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Fig. 3: Lifting step and inverse lifting step 

 

 

+

+

d[n] 

c[n] +

+

 
Odd/
even 
split 

)(~ zt )(~ zs )(zs )(zt

 
 
merge

X 
 

)(~ zP  
 

 
)(zP

 

 
Fig. 4: The low-pass subband is lifted with the help of the high-pass subband (predict) and  

the high-pass subband is lifted with the help of the low-pass subband (update) 

Piston crack was created in the axial piston of the Nes-
sie motor by using electro-discharge machine. The intro-
duced crack is 0.1 mm wide. There were five operational 
conditions in this research work: one normal condition 
and four faulty conditions with four different kinds of 
piston cracks. In order to detect the different piston crack 
locations and piston crack lengths in the Nessie motor, 
four kinds of piston cracks were introduced as follows: (1) 
Back long crack (BLC): the crack is 10 mm long and lo-
cated in the back section of the piston. (2) Back short 
crack (BSC): the crack is 5 mm long and located in back 
section of the piston. (3) Front long crack (FLC): the crack 
is 10 mm long and located in the front section of the pis-
ton. (4) Front short crack (FSC): the crack is 5 mm long 
and located in the front section of the piston. There were 
49 vibration signals under NC and 50 vibration signals for 
BLC, BSC, FLC and FSC operating condition respec-
tively. The number of the raw vibration signals was 249. 

3 Feature Extraction 

3.1  Second Generation Wavelet  

Wavelet represents the general functions as data 
building blocks, which can obtain the important data 
sets with a small number of coefficients. The second-
generation wavelet transform is constructed by the lift-
ing scheme. The lifting scheme is a spatial or time do-
main construction of biorthogonal wavelets (Sweldens, 
1996; Daubechies and Sweldens, 1998). The basic idea 
behind lifting is that it provides a simple relationship 
between all multi-resolution analyses that share the 
same low-pass filter or high-pass filter. The low-pass 
filter gives the coefficients of the refinement relation, 
which entirely determines the scaling functions where 
the coefficients are given by the high-pass filter. 

The lifting scheme consists of iterations of the fol-
lowing three basic operations as shown in Fig. 3. 
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Firstly, the split divides the original data into two sub-
sets. The original signal is split to the even indexed 
points and the odd indexed points, that is xe[n] = x[2n] 
and xo[n] = x[2n+1]. This generates the wavelet coeffi-
cients d[n] as the error by the predicting operator Ρ : 
 o e[ ] [ ] ( [ ])n n n= − Ρd x x  (1) 

The process of computing a prediction and re-
cording it is called a lifting step. The original signal is 
transformed from (xo,xe) to (xo,d). There is aliasing in 
the even samples due to the subsample. The second 
lifting step is introduced to solve this problem. The 
update combines xe[n] and d[n] to obtain the scaling 
coefficients c[n] that represents the coarse approxima-
tion in the original signal. The update operator U is 
used with the wavelet coefficients for xe[n]. 
 e[ ] [ ] U( [ ])n n n= +c x d  (2) 

These three steps form the lifting stage. The itera-
tions of the lifting stage on the output samples create 
the complete set of discrete wavelet transform scaling 
and wavelet coefficients cj[n] and dj[n] at each scale j. 

Figure 4 shows that the low-pass subband is lifted 
with the help of the high-pass subband (predict) and the 
high-pass subband is lifted with the help of the low-
pass subband (update). The lifting steps are easily in-
verted. The following equations for invertible lifting is 
derived: 
 e o e[ ] [ ] U( [ ]) [ ] [ ] ( [ ])n n n n n n= − = + Ρx c d x d x  (3) 

The lifting theory shows that any other new finite 
filter g1complementary to h(z) is of the form that is 
called the update step. 

 )()()()( 2l zszhzgzg +=         (4) 

where ( )zP  and ( )zP~  are the polyphase matrix. 

)( 2zs is a Laurent polynomial, ( )zg is high-pass filter, 
and ( )zh is low-pass filter.  

In update step, the low-pass subband is lifted with 
the high-pass subband. The new filter )(~new zh com-
plementary to )(~ zg is indicated as: 

 )(~)(~)(~)(~ 2l zszgzhzh +=  (5) 

where )(~ 2zs is a Laurent polynomial, ( )zg~ is high-

pass filter, and ( )zh~ is low-pass filter.  
The high-pass subband is lifted with the help of the 

low-pass subband. The dual lifting equations (the pre-
dict step) are given as  

  )(~)(~)(~)(~ 2l ztzhzgzg +=  (6) 

 )()()()( 2l ztzgzhzh +=  (7) 

Some wavelet filters such as Haar, Daubechies, [9-
7] and Cubic B-splines wavelet function can be used to 
build the second-generation wavelet transform into 
lifting steps. Haar wavelet was used in this research to 
generate the lifting step. Haar wavelet has the follow-
ing filters: 
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The multi-decomposition consists of the following 
implementation: 
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The wavelet transform can be used to represent ef-
ficiently the localized features of the signals. It was an 
ideal tool for the extraction of features. Especially, the 
vibration was induced by the fluid, which was charac-
teristic of the impulse signal. The impulse component 
in the vibration signals was an important feature to di-
agnose the mechanical condition. Figure 5 shows the 
multi-decomposition based on the lifting scheme, 
which was shown in Fig. 4. The original signal was 
decomposed into the scaling coefficients c1[n] and 
wavelet coefficients d1[n]. The multi-decomposition 
based on the lifting scheme split the scaling coefficients 
into two parts using the same scheme to produce c2[n] 
and d2[n] in the next step. Hence the wavelet decompo-
sition of the signal at scale j had the structure 
[cj[n],d1[n], . . . ,dj[n]].  

][1 nd

S 

][1 nc

][2 nd][2 nc

][3 nc ][3 nd

Experimental 
vibration signal

First level

Second level

Third level 
 

Fig. 5: Wavelet multi-decomposition tree based on lifting 
scheme 

Figure 6 shows the typical wavelet multi-
decomposition of the experimental vibration signals, 
which was obtained from water hydraulic motor. Fig-
ure 6 (a) shows the original signals, which was col-
lected from the hydraulic motor. Figure 6 (b) shows the 
scaling coefficient at first scale (c1[n]). Figure 6 (c) 
shows the wavelet coefficient dj[n] that was character-
istic of the impulse signal. The impulse pressure signal 
was produced by the pumping mechanism when the 
piston rotates from the return line to supply line, which 
results in the overshoot of the piston pressure. Figures 6 
(d) and (e) show the scaling coefficients c2[n] and 
wavelet coefficients d2[n] at second scale. 
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Fig. 6: The multi-decomposition based on the lifting scheme of the experimental housing vibration signal of motor 
 

    

     

 
Fig. 7: Intermittency indices at the first wavelet scale for the vibration signal  

under five conditions (a) BLC (b) BSC (c) FLC(d) FSC (e) NC
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The wavelet scaling coefficients in the multi-
decomposition of the vibration signal were the impor-
tant information in the impulse vibration signals. In 
order to diagnose the different conditions, the wavelet 
scaling coefficients at first scale were used to extract 
the features. 

The intermittency index was used to determine the 
wavelet scaling coefficients at first scale. The intermit-
tency at each scale can be viewed directly using the inter-
mittency index defined as: 

 [ ]m2
nm,

2
nm,

nm,
)(

T

T
I =  (10) 

Here nm,T were the wavelet coefficients at scale in-

dex m. 
m

2
nm,T was the second order statistical moment 

of the wavelet coefficients at scale index m. For exam-
ple, a constant value of 1nm, =I for all m and n meant 
that there was no flow variation. A value of 10 at a spe-
cific set of indices m and n meant that there was ten 
times more energy contained within the coefficients at 
that location than for the temporal mean for the scale at 
that location in the signal. Figure 7 showed the intermit-
tency indices at the first wavelet scale for the vibration 
signals under the five conditions. There were different 
amplitudes and number of the intermittency indices. 

3.2 Statistics of the Coefficients 

In order to extract the feature value for condition 
classification, a number of the different statistical fea-
tures were used based on the moments of the wavelet 
coefficients and scale coefficients of the vibration 
wavelet decomposition. The discrete wavelet transform 
coefficients Tm,n generated from the full decomposition 
using the second generation wavelet were considered. 
The wavelet statistics such as the variance, skewness 
and flatness were applied as the feature values.  

The pth order statistical moment of the wavelet coef-
ficients nm,T at the scale index m is defined as: 

 [ ] ( ) nM
12

1n

p
nm,m

p
nm, 2

nM

−
−

=
∑

−

= TT  (11) 

where the coefficients at scale m were used in the 
summation. The brackets denoted the average on the 
number of the coefficients at scale m. The 2nd order to 
7th order statistical moments of the wavelet coefficients 
and scale coefficients at each level were used as the 
feature values for the classification. There were twelve 
feature values at each level. As shown in section 3.1, 
the multi-decomposition by the second generation 
wavelet had three levels. These thirty-six feature values 
were included in the input feature set. That was 

[ ] [ ] A,1
7
n,1A,1

2
n,1 TT for the scale coefficients C1[n] of the 

first level, [ ] [ ] D,1
7
n,1D,1

2
n,1 TT for the wavelet coeffi-

cients D1[n] of the first level, [ ] [ ] A2,
7
n2,A,2

2
n,2 TT for the 

scale coefficients C2[n] of the second level. 

[ ] [ ] D2,
7
n2,D2,

2
n2, TT for the wavelet coefficients D2[n] of 

the second level, [ ] [ ] A3,
7
n3,A3,

2
n3, TT for the scale coef-

ficients C3[n] of the third level, and 

[ ] [ ] D3,
7
n3,,3

2
n3, TT D for D3[n]. Here there were thirty-six 

features chosen in the input feature set. 
The general dimensionless moment function is de-

fined as: 

 2
p

m
2

nm,
p

nm,
p

m ⎥⎦
⎤

⎢⎣
⎡= TTF  (12) 

where the pth order moment was normalized by the re-
scaled variance. The scale-dependent coefficient skew-
ness factor was defined as the 3rd order moment 3

mF . 
The scale–dependent coefficient flatness factor was de-
fined as the 4th order moment 4

mF . The 3rd order to 6th 
order statistical moments of the detail coefficients and 
approximation coefficients at the first and second level 
were used as the feature values for the classification. 
They are 6

D1,
3
D1, FF for the detail coefficients of the 

first level, 6
A1,

3
A1, FF for the approximation coefficients 

of the first level, 6
D2,

3
D2, FF for the detail coefficients 

of the second level, and 6
A2,

3
A2, FF for the approxima-

tion coefficients of the second level. At the third level, 
the 3rd order to 6th order statistical moments of the ap-
proximation coefficients were used. They are the 

6
A3,

3
A3, FF for the approximation coefficients of the 

third level. Here there were twenty features chosen in the 
input feature set. 

In Section 3, the intermittency index was used to 
analyze the vibration signals. The mean IM , variance 

IV  and sum IS  of the intermittency index were used as 
the feature values in the input feature set for the classi-
fication. 

In the sum, there are 59 feature values to be input 
for the optimization and classification by the SVMs as 
discussed in the following section. 

4 Support Vector Machine 

In the late 1960s, SVMs were introduced (Vapnik, 
1995), based on the foundation of statistical learning 
theory. The algorithm for the numerous practical appli-
cations by SVMs emerged following greater availabil-
ity of computing power from the middle of 1990s 
(Schlkopf, 1998; Burges, 1998; Gunn, 1998; 
Scholkopf, 1990). SVM for separating two classes is 
used to create a line or hyperplane, which is defined by 
support vectors. The margin between both planes is 
maximized. The SVMs orient the boundary such that 
the distance between the boundary and the nearest data 
point in the class is maximal. The line or boundary is in 
the middle of the margin between two kinds of data. 
The nearest data points are known as support vectors.  

There are two finite subsets of vectors from a train-
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ing set, 
 ( ) ( ) ( ),,,,,, LL2211 yxyxyx  (13) 

where n
i Rx ∈  and { }1,1i −∈y , for .,...,2,1 Ni =   

One subset Ι  for which 1=y , and another subset 
Π for which 1−=y  are separable by the hyperplane 
( ) cx =ϕ∗ , where ϕ is one vector. A unit vector 

( )1=ϕϕ  and a constant c exist. So the following 
inequalities hold true. 
 ( ) cx >ϕ∗

i
      if  Ι∈ix  (14) 

 ( ) cx <ϕ∗j       if  Π∈jx  (15) 

where ϕ∗x is the inner product between vectors x and 
ϕ . 

The vector 0ϕ  and the constant 0c exist and deter-
mine the hyperplane. This hyperplane is called the 
maximal margin hyperplane or the optimal hyperplane, 
as shown in Fig. 8. 

The following equations can be obtained: 
Maximizing 

 α+αα−=α TT
d 5.0)( fHL  (16) 

subject to 

 
0

0T

≥α
=αy  (17) 

where ( ) ii α=α , H denotes the Hessian matrix 

( )j
T
ijijijiij )( xxyyxxyyH == , and f is a unit vec-

tor ( )][ 1111=f . 
The parameters 0ζ and 0b of the optimal hyperplane 

are obtained as: 

 0 0i i i
i 1

, i 1,
L

y x Lζ α
=

= =∑  (18) 

 sv
1s

0
T
s

ssv
0 ,1),)1((1 sv

Nsx
yN

b
N

=ζ−= ∑
=

 (19) 

where svN is the number of the support vectors and L 
is the number of the training data. The optimal weights 
vector 0ζ and the bias term 0b are calculated by sup-
port vectors. 

The decision hyperplane )(xD and the indicator 
function Fi are defined as: 

 
( )

T
i i i 0

i 1

F
1

sign( ) sign ,

L

l

i i s k
s

y

i y

α

α

=

=

= +

⎡ ⎤= = +⎢ ⎥
⎣ ⎦

∑

∑

D(x) x x b

D(x) K x x b
 (20) 

Where ( )sxxk , was Kernel function. Kernel func-
tion maps the training data nonlinearly into a higher-
dimensional feature space, and constructs a separating 
hyperplane with a maximum margin. It yielded a 
nonlinear decision boundary in input space. It was pos-
sible to compute the separating hyperplane without 
explicitly carrying out the map into the feature space. It 
was used to map the data into some other dot product 
space (called the feature space) via a nonlinear map. It 
required the evaluation of dot products, that was 

 ( ) ( ) ( )( ), :k x y x y= Φ ⋅Φ  (21) 

In some cases, however, there was a simple kernel k 
that can be evaluated efficiently. The polynomial kernel 
can be shown to correspond to the space spanned by all 
products of exactly d dimensions of Nℜ . 

 ( ) ( ), dk x y x y= ⋅  (22) 

 

 

( ) ,100i −≤+ζ∗ bx
( ) 100i ≥+ζ∗ bx

( ) 11 =+ζ∗ bx  
( ) 12 −=+ζ∗ bx  
( ) 2)( 21 =ζ∗− xx  

ζ
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

ζ
ζ∗− 2)( 21 xx  

( ) 0=+ζ∗ bx

Optimal hyperplane 

ζ

 
Fig. 8: The optimal separating hyperplane separates the data with the maximal margin 
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When 1=d , the kernel function ( )yxk , was linear. 

When 2≥d and 2, ℜ∈yx , the kernel 
function ( )yxk , was nonlinear. In the work, the 
parameter d equalled to 1 and 2 for linear and 
nonlinear kernel function respectively. The following 
equation was derived as: 

( )

( ) ( )( )

2 2
1 12

2 1 1
1 2 1 2

2 2 2 2
2 2

2 2

x y
x y

x y x x y y
x y

x y

x y

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞⎛ ⎞ ⎛ ⎞

⋅ = ⋅ = ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

= Φ ⋅Φ

(23) 

5 SVM-RFE for Feature Optimization 

A known challenge in the classification and ma-
chine learning in general is to find ways to reduce the 
dimensionality of the feature space to overcome the 
risk of “overfitting”. Data overfitting arises when the 
number of features is large and the number of training 
patterns is comparatively small. A decision function 
can be easily found to separate the training data but will 
perform poorly on the test data. The new pruning 
method is investigated to eliminate some of the original 
input features and retain a minimum subset of the fea-
tures that yield best classification performance. The 
method using the ranking features with the magnitude 
of the weights in a linear discriminant classifier is im-
portant in optimizing the features. However a good 
feature ranking criterion is not necessarily a good rank-
ing criterion for subsets. The criteria overcome the ef-
fect of removing one feature at a time on the objective 
function. They become the sub-optimal set when it re-
moves several features at a time. The problem can be 
solved by using the following iterative procedure, 
which is Recursive Feature Elimination (RFE). 

SVMs can handle the linear or non-linear decision 
boundaries of the arbitrary complexity. The linear 
SVMs are particular linear discriminant classifiers. It 
can extend to non-linear discriminant classifiers. The 
training data set is linearly separable and the linear 
SVMs is a maximum margin classifier. The decision 
boundary is positioned to leave the largest possible 
margin on either side. The SVMs and SVMs-RFE algo-
rithm was programmed in Matlab. The SVMs algo-
rithm procedure was described as follow: 
(a) Input the training examples 

},,,,,{ 21 lk XXXX and class labels 
},,,,{ 21 lk YYYY . 

(b) Maximize Eq. 16 subject to Eq. 17 and output the 
optimal coefficients kα . 

(c) The optimization of SVMs is typical of a quadratic 
program. Genetic Algorithm (GA) is applied to op-
timize the SVMs to obtain the optimal parameters. 
GA is described in the following section. 

(d) Calculate the parameters 0ζ and 0b of the optimal 
hyperplane according to Eq. 18 and 19, output the 
decision function by Eq. 20. 

The new ranking criterion was proposed in SVM-
RFE according to the data characteristics.  

The SVMs-RFE algorithm procedure was: 
(a) Input the training data 

},,,,,{ Lk21 XXXX and class labels 
},,,,{ Lk21 YYYY . Initialize the subset of the 

surviving features and feature ranked list. 
(b) Training the classifier train( , )α = −SVM X Y . 

Compute the weight vector ζ  

(c) Compute the ranking criteria 2
ii )/(1 ζ=c  for all i .  

(d) Find the feature with the smallest ranking criteria. 
Update the feature ranked list and eliminate the 
feature with the smallest ranking criterion. 

(e) Output the ranked list and repeat steps (b) to (e). 

6 Genetic Algorithm 

Genetic algorithms (GAs) are applied in a wide va-
riety of areas with increasing interest (Goldberg, 1999). 
GA is used to search the optimal solution space through 
simulated evolution of ‘survival of the fittest’ that is 
analogy with natural behavior of species. The GA con-
siders six basic issues: chromosome representation, 
selection function, genetic operator such as crossover 
and mutation for reproduction function, creation of 
initial population, termination criteria and the evalua-
tion function. The real value encoding is applied in the 
chromosome representation because of the closeness of 
the representation to the problem space, better average 
performance and more efficient numerical implementa-
tion. The chromosome (C) contains the real value of the 
features, which represents the coefficients in Eq. 16 and 
17. Every chromosome represents a solution to the 
problem. The fitness of each chromosome can be calcu-
lated and determined by the objective function. The 
reproduction operator is implemented by using a rou-
lette wheel with slots sized according to fitness. The 
chromosomes with higher fitness are given opportuni-
ties to reproduce by mating with other individuals in 
the population. The chromosomes with smaller fitness 
are less likely to get selected for reproduction and 
gradually disappear. In the cross phase, strings are cho-
sen by pairs. For each random pair, two random num-
bers are generated to decide which pieces of the strings 
are to be interchanged. The crossover operator is ap-
plied by probability pc. In the mutation phase, the bits 
in the string in the population will be chosen with prob-
ability pm. 

The real number encoding, fitness scaling, stochas-
tic universal selection, single-point crossover and non-
uniform mutation are employed for the optimization of 
parameter in SVM. The size of the population is 60. 
GA is used to optimize the parameter α in SVM. So 
the length of each string equals to the number of the 
training data. The number of the string in a population 
equals to the number of testing data, which is 119. The 
simulation runs are 2000. The crossover rate is set to 
the typical values of 0.6. It is typical to use the rela-
tively higher mutation value such as 0.14 when the real 
number encoding is used. The population can converge 



Feature Extraction, Optimization and Classification by Second Generation Wavelet and Support Vector Machine for  
Fault Diagnosis of Water Hydraulic Power System 

International Journal of Fluid Power 7 (2006) No. 2 pp. 39-52 47 

more rapidly by increasing the crossover and mutation 
rate to introduce more variation into the population. 
The mutation and crossover rates are set to be 0.2633 
and 0.6, respectively, to obtain better classification suc-
cess rate and increase the speed of convergence for this 
experiment as shown in Fig. 9.  

Figure 9 shows the relation between the generation 
and the average fitness and optimal fitness. Here GA is 
used to optimize the parameters in SVM, which is sim-
ple linear optimization to classify two classes of data. 
The classification results also deeply depend on the 
clusters of feature values in two classes. When the clus-
ters of feature values are better, the convergence speed 
of classification is shorter. Therefore, based on the 
good feature values and linear SVM with good parame-
ters in GA, the speed of GA convergence and SVM 
classification are faster, which is especially suitable for 
on-line machinery fault diagnosis. 

 
Fig. 9: The relation between the fitness and generation (a) 

Average fitness, (b) Optimal fitness 

7 Results and Discussion 

The extension from the binary two-class to multi-
class is an important question for the support vector 
machine approach. The winner-takes-all scheme is pro-
posed for multi-class classification. The two-class deci-
sion function is extended to multi-class by constructing 
binary decision functions for all classes as follows: 

 
⎩
⎨
⎧

−
+

±→
1
1

}1{: N
k Rf  (24) 

Figure 10 shows the winner-takes-all scheme for the 
three classes. The three lines can separate one class 
from the both others correctly. However in the middle 
of the picture all the decision functions suggest that this 
region belongs to none of the three classes. Similar 
question arises for the three outer triangles with the 
shaded region that in each case where two decision 
functions are 1+  simultaneously. 

To solve the problem, the tie situation is broken to 
neglect the sign operation in the decision functions as 
shown in equation 20 and to use the real input values. 
The classification results can be viewed as the discrimi-
nant vector where the largest component is chosen as the 
class decision. The tie breaking is shown in Fig. 11. 

 
Class II 

 
Class I 

 
Class III 

 
Fig. 10: Winner-takes-all for three classes 

 

 
Class I 

Class III 

 
Class II 

 
Fig. 11: Tie breaking by “winner-takes-all” for three 

classes 

In order to classify the five piston conditions, the 
two-level classification structure by the multi-
classification is proposed. Figure 12 shows the struc-
ture of the two-level classification. In the first level, the 
multi-classification is applied to classify the BLC, BSC 
and other condition. In the second level, the FLC, FSC 
and NC are classified.  

 
Fig. 12: The structure of the two-level classification based 

on “one-against-all” multi-classification 

There are 47 experimental vibration signals of the 
water hydraulic motor under BSC and 48 vibration 
signals for BLC, FLC, FSC and NC operating condi-
tions. The training data consists of 23 vibration signals 
under BSC and 24 vibration signals under BLC, FLC, 
FSC and NC operating conditions. The testing data 
consists of another 24 vibration signals under BSC and 
another 96 vibration signals under BLC, FLC, FSC and 
NC operating conditions. 

As shown in section, there are 59 feature values to 
be used for classification, which 

are [ ] [ ] ,A,1
7
n,1A,1

2
n,1 TT [ ] [ ] ,D,1

7
n,1D,1

2
n,1 TT
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[ ] [ ] ,A2,
7
n2,A,2

2
n,2 TT [ ] [ ] ,D2,

7
n2,D2,

2
n2, TT  

[ ] A3,
2
n3,T [ ] [ ] ,A3,

7
n3,A3,

2
n3, TT [ ] [ ] ,D3,

7
n3,,3

2
n3, TT D

,6
D1,

3
D1, FF ,6

A1,
3
A1, FF ,6

D2,
3
D2, FF  

6
A2,

3
A2, FF , 6

A3,
3
A3, FF , IM , IV , and IS . The corre-

sponding input item number of the classifier is from 
1 to 59. These feature values are optimized by the 
SVMs-RFE algorithm and two-level classification 
based on “one-against-all” multi-classification in Fig. 
12.  

 
Fig. 13: The feature value optimization at first level 

Figure 13 shows the optimization results of the fea-
ture values for BLC, BSC and others by SVMs-RFE, 
which were shown at first level in Fig. 12. The x axis 
represents the number of the features with the optimiza-
tion algorithm. The y axis represents the classification 
success rate. With the process of the SVMs-RFE, the 
number of the feature values decreased and the success 
rate of the optimal feature values increased. The first 36 
feature values were selected as the optimal features and 
its success rate was optimal. Table 1 shows the 36 op-
timal features at first level of Fig. 12.  

Figure 14 shows the optimization results of the fea-
ture values for FLC, FSC and NC by SVMs-EFE, 
which were shown at second level in Fig. 12. The first 
36 feature values were selected as the optimal feature 
values. The success rate was optimal and constant. Ta-
ble 2 shows the 36 optimal features at second level of 
Fig. 12. 

 
Fig. 14: The feature value optimization at second level 

Table 3 shows the classification success rate by the 
multi-classification success rate by two level multi-
classification structure in Fig. 12. The linear and 
nonlinear classifiers as described in section 4 were used 
to detect the piston conditions. The “winner-takes-all” 
method by tie breaking was also used for the nonlinear 
classifier to improve the classification success rate.  

At first level, the classification success rates of the 
training data by the linear and nonlinear kernel of the 
multi-classification under BLC, BSC and Other (FLC, 
BSC, NC) piston conditions were 80.7%, 79.8%, 
60.5% and 80.67%, 79.8%, 60.5%. The classification 
success rates of the training data by the nonlinear ker-
nel of Winner-takes-all (Tie-breaking) under BLC, 
BSC and Other (FLC, BSC, NC) were 80.7%, 79.8%, 
60.5%. Compared with the classification success rate of 
the training data, the classification success rates of the 
testing data by the linear and nonlinear kernel of the 
multi-classification under BLC, BSC and Other (FLC, 
BSC, NC) piston conditions were 80%, 80%, 60% and 
80%, 80%, 60%. The classification success rates of the 
training data by the nonlinear kernel of Winner-takes-
all (Tie-breaking) under BLC, BSC and Other (FLC, 
BSC, NC) were 80%, 80%, 60%.  

At second level, the classification success rates of 
the training data by the linear and nonlinear kernel of 
the multi-classification under FLC, FSC and NC piston 
conditions were 66.7%, 66.7%, 66.7% and 66.7%, 
66.7%, 66.7%. The classification success rates of the 
training data by the nonlinear kernel of Winner-takes-
all (Tie-breaking) under BLC, BSC and NC were 
72.2%, 69.4%, 72.2%.  

The classification success rates of the testing data 
by the linear and nonlinear kernel of the multi-
classification under BLC, BSC and NC piston condi-
tions were 66.7%, 66.7%, 66.7% and 66.7%, 66.7%, 
66.7%. The classification success rates of the training 
data by the nonlinear kernel of Winner-takes-all (Tie-
breaking) under BLC, BSC and Other (FLC, BSC, NC) 
were 66.7%, 33.3%, 66.7%.  

The classification success rate showed that the clas-
sification of the five piston conditions was successful. 
The classification success rate of the testing data was as 
good as the training data under the all the piston condi-
tions and different classifiers. The classification suc-
cess rate of tie-breaking was better than the multi-
classification without tie-breaking except the testing 
data under FSC piston condition. This is because the 
classification success rate of the piston conditions has a 
close relation to the input feature values.  
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Table 1: The 36 optimal features at first level 
Piston condition 

(One-Against-All) The corresponding item number of the 36 optimal features 

BLC 1     2     3     7     8    13    14    15    19    20    25    26    31    37    38    39    40    41   42    43
44   45    46    47    48    49    50    51    52    53    54    55    56    57    58    59 

BSC 1     2     3     7     8     9    13    14    16    19    20    25    26    31    37    38    39    40    41    42    43
44    45    46    47    48    49    50    51    52    53    54    55    56    57    58 

Second level 
(FLC, FSC and NC) 

1     2     3     7     8     9    13    14    15    16    19    25    26    31    37    38    39    40    41    42    43
44    45    46    47    48    49    50    51    52    53    54    55    56    57    58 

 

Table 2: The 36 optimal features at second level 
Piston condition 

(One-Against-All) The corresponding item number of the 36 optimal features 

FLC 1     2     3     7     8     9    13    14    15    19   20    25    31    37    38    39    40    41    42    43    44 
45    46    47    48    49    50    51    52    53    54    55    56    57    58    59 

FSC 1     2     3     7     8     9    13    14    15    16    19    20    25    26    31    32    37    38    39    40    41
42    43    44    45    46    47    48    49    50    51    52    53    54    55    56 

NC  1     2     3     7     8     9    13    14    15    19    20    25    31    37    38    39    40    41    42    43    44
45    46    47    48    49    50    51    52    53    54    55    56    57    58    59 

 

Table 3: The results of the two-level classification success rate 

Multi-classification Winner-takes-all 
(Tie breaking) 

  
Piston condition

Linear Non-linear Non-linear 
BLC 80.7 80.67 80.7 
BSC 79.8 79.8 79.8 

 

Training data 
Others 60.5 60.5 60.5 

BLC 80 80 80 
BSC 80 80 80 

 
 
 

First level 
 

Testing data 
Others 60 60 60 
FLC 66.7 66.7 72.2 
FSC 66.7 66.7 69.4 

 
Training data 

NC 66.7 66.7 72.2 
FLC 66.7 66.7 66.7 
FSC 66.7 66.7 33.3 

 
 

Second level 
 

Testing data 
NC 66.7 66.7 66.7 

 
 

8 Conclusion 

The second-generation wavelet was proposed here 
as a novel method for the feature extraction from the 
vibration signals of the water hydraulic motor. The 
statistical feature values of the vibration signals were 
used as the features for the classification of the me-
chanical condition. Due to the large number of feature 
values, the features should be optimized to extract the 
optimal features. The new optimization method by bi-
classification SVM to extract the optimal features was 
developed in this work. The new rank criterion was 
proposed to reduce the dimension of the feature values 
and obtain the optimal feature value for the fault diag-
nosis of water hydraulic motor. The optimal 36 features 
were obtained by the proposed SVMs-RFE algorithm. 
The optimal feature values were selected successfully. 

In order to classify the five piston conditions, the two-
level structure based on the multi-classification was 
developed. The multi-classification method of SVM for 
the fault diagnosis of the piston crack was investigated. 
The winner-takes-all scheme was studied. At the first 
level, the success rate of the classification for BLC, 
BSC, and others were 80%, 80% and 60%. At second 
level, the success rate of the classification for FLC, 
FSC and NC were 66.7%, 66.7% and 66.7%. The re-
sults of the classification showed the applicability of 
the proposed method.  
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Nomenclature 

BLC crack is 10 mm long and located 
in the back section of the piston  

 

BSC crack is 5 mm long and located 
in back section of the piston 

 

FLC crack is 10 mm long and located 
in the front section of the piston  

 

FSC crack is 5 mm long and located 
in the front section of the piston 

 

Ρ  predict operator  
U update operator  

( )zP , ( )zP~   polyphase matrix  

)( 2zs , ( )2~ zs  Laurent polynomial  

( )zg , ( )zg~  high-pass filter  

( )zh , ( )zh~  low-pass filter.   

nm,T  wavelet coefficients at scale 
index m. 

 

xe[n] even indexed point   
xo[n]  odd indexed point  
d[n] wavelet coefficient  
cj[n]  discrete wavelet transform scal-

ing at each scale j . 
 

dj[n]  discrete wavelet transform 
wavelet coefficients at each 
scale j . 

 

nm,T  discrete wavelet transform coef-
ficient  

 

[ ]mT p
nm,  pth order statistical moment of 

coefficients nm,T at scale index 
m 

 

[ ] [ ] A,1
7
n,1A,1

2
n,1 TT

 

2nd to 7th order statistical mo-
ment of scale coefficients 

nm,T at first level 

 

[ ] [ ] D,1
7
n,1D,1

2
n,1 TT

 

2nd to 7th order statistical mo-
ment of wavelet coefficients 

nm,T at first level 

 

[ ] [ ] A2,
7
n2,A,2

2
n,2 TT

 

2nd to 7th order statistical mo-
ment of scale coefficients 

nm,T at second level 

 

[ ] [ ] D2,
7
n2,D2,

2
n2, TT

  

2nd to 7th order statistical mo-
ment of wavelet coefficients 

nm,T at second level 

 

[ ] [ ] A3,
7
n3,A3,

2
n3, TT

  

2nd to 7th order statistical mo-
ment of scale coefficients 

nm,T at third level 

 

[ ] [ ] D3,
7
n3,,3

2
n3, TT D

 

2nd to 7th order statistical mo-
ment of wavelet coefficients 

nm,T at third level 

 

p
mF  general dimensionless moment 

function 
 

6
D1,

3
D1, FF  3rd to 6th order general dimen-

sionless moments of detail coef-
ficients at first level 

 

6
A1,

3
A1, FF  3rd to 6th order general dimen-

sionless moments of approxima-
tion coefficients at first level 

 

6
D2,

3
D2, FF  3rd to 6th order general dimen-

sionless moments of detail coef-
ficients at second level 

 

6
A2,

3
A2, FF  3rd to 6th order general dimen-

sionless moments of approxima-
tion coefficients at second level 

 

6
A3,

3
A3, FF  3rd to 6th order general dimen-

sionless moments of approxima-
tion coefficients at third level 

 

IM , IV  , IS   mean, variance and sum of the 
intermittency index 

 

3
mF  skewness factor  

4
mF  flatness factor  

nm,I  intermittency index  
ϕ  unit vector  
c  constant  
H  Hessian matrix  

svN  number of the support vectors  
l  number of the training data in 

support vectors 
 

0ζ  optimal weights vector in sup-
port vectors 

 

0b  bias term  in support vectors  
)(xD  decision hyperplane  

Fi  indicator function  
( )sxxk ,  Kernel function  

RFE Recursive Feature Elimination  
α  classifier in SVMs  
ζ   weight vector in SVMs  

ic   ranking criteria in SVMs-RFE  

cp  crossover probability in GA  
mp  mutation probability in GA  
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Appendix A 

Schematic hydraulic circuit of the modern water 
hydraulic motor test rig 
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