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Abstract 

The topic of condition monitoring has been a growing area of research in both academia and industry for much of 
the last two decades. Condition monitoring of fluid power equipment has been no exception to this trend. Much of the 
research work associated with monitoring the condition of fluid power equipment has centered on pump and motor 
components due to their relatively high cost and complexity. The work in this paper focuses on the lesser expensive, but 
more common components of valves and linear actuators. The primary focus of the work presented here pertains to as-
sessing the independent component condition of a valve-controlled linear actuator circuit. The paper first presents simu-
lation studies to establish techniques for proper data collection, neural network training and output interpretation. The 
neural network approach is then applied to a valve and linear actuator of a John Deere 410E Backhoe Loader. The re-
sults indicate that the concept can be applied to a commercial system and is feasible for implementation. 

Keywords: condition monitoring, neural network, valve, cylinder, actuator 

1 Introduction 

A significant amount of research has been con-
ducted towards using parameter estimation techniques 
to monitor the condition of fluid power components. 
Several research projects on this topic have been pur-
sued at the University of Saskatchewan in Canada. Cao 
(2001) uses the Extended Kalman Filter (EKF) algo-
rithm to estimate parameters for both the swash plate 
assembly and control piston in a load-sensing pump. In 
this study, the damping coefficient, spring constant, and 
spring pretension in the assembly were estimated. 
Wright (2001) discusses using the EKF to estimate 
spring coefficients and precompressions, viscous fric-
tion, Coulomb friction, deadband and equivalent flow 
force spring coefficient in a proportional solenoid 
valve. Rosa (2001) utilizes an Artificial Neural Net-
work (ANN) in estimating working parameters of the 
same proportional solenoid valve used by Wright 
(2001). The approach taken by Rosa utilized individual 
neuron structures to estimate each valve parameter. The 
main spool friction characteristics, orifice area gradient, 
main spool spring constant, and steady state flow force 
were all estimated using an ANN.  

This manuscript was received on 16 August 2005 and was accepted 
after revision for publication on 25 January 2006 

 

Watton et al. (1997) show the effectiveness of an 
ANN applied to detecting the leakages through an elec-
tro-hydraulic cylinder drive. A Multi-Layer Perceptron 
network architecture was adopted with six inputs, 50 
nodes in the hidden layer and 31 outputs.  

The 31 outputs were grouped into 4 separate cate-
gories. The first category was “Non-Leak”. The other 
three categories corresponded to either internal cylinder 
leakage, external cylinder leakage or both. There were 
10 outputs for each of the latter three categories and 
one for the “Non-Leak” category. The 10 outputs for 
each of the leakage categories corresponded to a speci-
fied level of leakage.  

Crowther et al. (1998) describe a network designed 
to detect three main actuator faults. The faults to be 
detected were a sudden decrease in supply pressure, an 
increase in external leakage, and an increase in the fric-
tional characteristics of the load. Yunbo et al. (2001) 
discuss the results of using the root mean square of the 
vibration as measured from accelerometers to monitor 
the condition of an actuator and motor used in water 
hydraulic applications. A definite increase was seen in 
the vibration of the actuator as the piston seals wear. 
This was attributed to an increase in the rattling effect 
of the piston during extension and retraction as the 
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seals wear. Liang and Sepheri (2005) use the Extended 
Kalman Filter to successfully detect internal and exter-
nal leakage in hydraulic actuators. A more detailed 
summary of the pertinent literature on this topic can be 
found in Hindman (2002). More general work on the 
topic can be found in Darling et al. (1993), Watton et 
al. (1996), Andrews et al. (1997), and Watton et al. 
(1994). 

The valve controlled linear actuator is a very com-
mon circuit in modern hydraulic systems. These cir-
cuits are used in a variety of industries and applications 
ranging from off-highway construction equipment to 
control surface actuation in aerospace applications. 
Assessing the condition of the valve and actuator com-
ponents that make up the circuit is a difficult task to 
accomplish. A critical component in monitoring the 
condition of these components is to determine the 
amount of internal leakage present within the compo-
nents. This is a valid concern since internal leakage is 
related to the amount of wear present in the component. 
External leakage was not investigated in this research 
because external leakage is easily detectable through 
visual inspection of the mobile hydraulic system. The 
approach utilized in this research is to estimate the fail-
ure of each component due to the amount of internal 
leakage occurring in each component using a minimum 
of sensed information. In this research, the overall ob-
jective is to use pressure and temperature information 
to assess the condition of the valve and actuator by ul-
timately correlating that information to component 
wear by inference of internal leakage. This paper will 
first introduce the feasibility of the methodology to 
infer the wear from leakage information (via pressure) 
using simulation studies and an ANN. The second part 
of the paper will consider the experimental verification 
of the feasibility study. It should be noted that ANN’s 
are not discussed in this paper as their usage is becom-
ing commonplace in fluid power research and applica-
tions. 

2 Simulation Study 

2.1 Methodology 

The method developed from this research work was 
derived from examining the behaviour of a direct oper-
ated, proportional, closed-center, over-lapped valve 
controlling a single linear actuator driven by a load 
sensing axial piston pump modeled in the Matlab Simu-
link® simulation environment. It should be noted here 
that the values of pressure, flow, clearances etc used in 
the simulation study, are those which typically can be 
found in off-road mobile equipment. Two distinct in-
ternal leakage paths were modeled in this simulation 
study (Hindman 2001). The first leakage path occurred 
between the valve spool and bore. The second leakage 
path occurred between the actuator seals and bore. 
These leakage paths can be seen in Fig. 1.  

The annular leakage path produced by the geometry 
of these two components can be seen in Fig. 2. Due to 
the small magnitude of the clearances involved with the 
leakage paths, the flow around the annulus leakage path 

was assumed to be laminar. This assumption was vali-
dated by calculating the Reynold’s number for the 
maximum leakage condition during the simulation. The 
laminar flow equation for the assumed leakage path is 
given in Eq. 1. 

 

Fig. 1: Modelled Leakage Paths 

 

Fig. 2: Annular Leakage Cross Section 
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where: r = Radius of bore (mm) 
•  c = Radial clearance between rod and bore (mm) 
•  µ = Absolute fluid viscosity (N-s/m2) 
•  P1 = Upstream pressure (Pa) 
•  P2 = Downstream pressure (Pa) 
• L = Length of leakage passage (mm) 

The linear actuator was assumed to be fully re-
tracted and pressurized to 245 bar on the rod side prior 
to the valve spool being shifted to its null position. This 
operating condition was chosen because the end of 
stroke condition is easily repeatable and is tractable to 
off-highway mobile equipment systems. It should be 
noted that in systems with circuit relief valves on the 
head and rod side (A and B port respectively) of the 
actuator, this condition should be repeatable with the 
maximum pressure roughly equivalent to the circuit 
relief pressure setting. The pressure behavior on both 
the head and rod side of the actuator was monitored 
during the simulation for a range of assumed radial 
clearance values. Leakage through the assumed circuit 
relief valve was assumed to be negligible. The results 
of this effort defined four different leakage regimes as 
illustrated in Fig. 3. 

For the assumed actuator and valve, if the behavior 
of the rod and head side pressures is monitored for a 
sixty-second time interval, three critical pieces of in-
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formation that assist in determining the magnitude and 
location (i.e. valve or actuator) of the internal leakage 
can be extracted. These three values are shown in Fig. 
4. The three values shown in Fig. 4 are defined as: 

1 Δt1 =  Time to achieve maximum change in 
 rod-side pressure ± 35 kPa. 

2 ΔP1 =  Maximum change in rod-side pressure 
 over 60 second time interval. 

3 ΔP2 = Maximum change in head-side pressure  
 over 60 second time interval. 

The fourth and final piece of information necessary 
to completely characterize the magnitude and location 
of the internal leakage is the oil temperature (T). In this 

study, temperature is assumed constant but appears 
indirectly in the calculation of viscosity. The values of 
ΔP1, ΔP2, and Δt1 were calculated using the simulated 
closed center, over-lapped valve and actuator circuit for 
a range of radial valve and actuator clearances via Eq. 
1. An external force was applied to the actuator when 
fully closed that held the actuator closed. This elimi-
nated the actuator from drifting that may occur due to 
both cylinder and spool leakage when no force or a 
force of the opposite direction is applied (extension 
force). The results of this simulation effort are seen in 
Fig. 5.  

 

 

Fig. 3: Leakage Regimes 

 

Fig. 4: Critical Parameters 

Valve Leakage > 0 
Actuator Leakage == 0 Valve Leakage == 0 

Actuator Leakage > 0 

Valve Leakage << Actuator Leakage 

Valve Leakage >> Actuator Leakage 
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Fig. 5: ΔP1, ΔP2, and Δt1 as a Function of Actuator and Valve Clearance 

2.2 Simulation Results 

Limits were imposed on the amount of internal 
leakage in the actuator and valve by limiting the 
amount of radial clearance allowed in each component. 
The limits are based on the typical machining and wear 
tolerances for these components in the mobile hydrau-
lic application.  

A linear mapping was then imposed that prescribed 
a percentage of actuator or valve “failure” to the 
amount of leakage as dictated by the radial clearance in 
each component. The 100% failure condition for the 
valve was equivalent to the largest radial clearance 
simulated in the valve. The 100% failure condition for 
the actuator was equivalent to the largest radial clear-
ance simulated for the actuator. Zero radial clearance 
was equivalent to 0% failure with a linear rule applied 
between these two points. The three inputs of ΔP1, ΔP2, 
and Δt1 at each data point were then mapped to these 
“failure” values through the use of a four layer 
(2x20x20x2) artificial neural network (ANN) assuming 
that temperature (T) was constant. This network was 
capable of mapping the input/output relationship to a 
high degree of accuracy and was trained using the 
Levenberg-Marquardt method (Hagan 1994). The re-
sults of the training process for the condition of the 

actuator and valve can be seen in Fig. 6. 
By using the results of the 2000th epoch, the ANN 

was capable of learning the training data well enough 
to predict actuator failure within ± 0.68% damage and 
the valve failure (not shown) within ±0.41% damage 
assuming a 95% confidence interval (±2σ). This as-
sumes that the inputs are known exactly with 100% 
confidence, which is a good assumption for the simula-
tion results but will need to be revisited in the experi-
mental work. Four input/output pairings were left out 
of the training data in order to test the trained network. 
These four conditions and the output of the trained 
ANN for these conditions are given in Table 1. 

Using these four test cases, the trained ANN ap-
pears to be able to map the input pressure and time in-
formation to the expert data well. The average error in 
determining the actuator condition for these four cases 
is 2.0% of the known condition. The average error in 
determining the valve condition is 1.1% of the known 
condition. The ANN topology was determined by start-
ing with training a very simple network and incremen-
tally increasing network complexity until good gener-
alization and accuracy were achieved. This provided 
the smallest network capable of generalizing well. 
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Fig. 6: ANN Training using ΔP1, ΔP2, and Δt1 as Inputs and Percentage Failure as Output 

Table 1: ANN Testing Results 
 

ANN Input 
Actuator 

Clearance 
(mm) 

Desired 
Actuator 
Output 

ANN 
Actuator 
Output 

Actuator 
Error 

Valve 
Clearance 

(mm) 

Desired 
Valve 

Output 

ANN 
Valve 

Output 

Valve 
Error 

ΔP1=138 bar 
ΔP2=115 bar 
Δt1=60.0 sec 

 
.028 

 
22% 

 
20.6% 

 
1.4% 

 
.028 

 
22% 

 
21.6% 

 
.4% 

ΔP1=230 bar 
ΔP2=153 bar 
Δt1=60.0 sec 

 
.083 

 
66% 

 
62.3% 

 
3.7% 

 
.048 

 
38% 

 
37.8% 

 
.2% 

ΔP1=245 bar 
ΔP2=.2 bar 
Δt1=15.9 sec 

 
.008 

 
6% 

 
7.1% 

 
1.1% 

 
.104 

 
82% 

 
79.6% 

 
2.4% 

ΔP1=263 bar 
ΔP2=115 bar 
Δt1=57.4 sec 

 
.064 

 
50% 

 
48.4% 

 
1.6% 

 
.064 

 
50% 

 
48.6% 

 
1.4% 

 
2.3 Simulation Discussion 

The results of this study using simulated data indicate 
that the use of the ANN, with inputs of ΔP1, ΔP2, and Δt1 
can be used to predict the fault location (i.e. valve or 
actuator) and progression of leakage in a closed center 
valve and actuator. Due to the promise demonstrated by 
training an ANN with simulated data to characterize the 
leakage within the valve and actuator, it is now neces-
sary to implement the concept using experimental data. It 
is expected that the complexity of the ANN topology for 
experimental implementation will be significantly 
greater than that for the simulation. This is due to the 
simulation assumption of constant fluid temperature. 
This assumption will be relaxed in the experimental im-
plementation and thus the temperature becomes another 
input to the ANN. In addition, the experimental data will 

be subject to measurement and process noise that will 
lead to increased uncertainty in the ANN training data. 
The experimental results will be presented in Section 3. 

As a final comment, the implementation of the re-
quired sensors to collect the input data is quite tractable. 
For every valve and actuator combination in the circuit, 
two pressure transducers and a single thermal sensor are 
required to be located between the valve and actuator. 
Depending upon the observed hydraulic oil temperature 
variation in the circuit, a single temperature measure-
ment may suffice for several valve and actuator combi-
nations. These sensors may be in addition to existing 
system sensors, or perhaps may already be implemented 
for system control purposes. This enables the economics 
of system implementation to be reasonable. The size of 
the machine utilizing this system and the machine’s sen-
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sitivity to down time and safety considerations assist in 
determining whether the system is implemented with on-
board or off-board computational resources. 

3 Experimental Considerations 

Original Equipment Manufacturer (OEM) interest 
in condition monitoring of off-highway equipment 
(mining, construction and forestry) has increased sig-
nificantly in the last several years due to increased cus-
tomer focus on machine reliability and “uptime”. The 
introduction of on-board computational ability has also 
enabled the implementation of condition monitoring 
algorithms to become a reality in these types of ma-
chines. 

3.1  Methodology 

The method developed from this research work was 
derived from examining the behaviour of a closed-center 
valve controlling a single linear actuator driven by a load 
sensing axial piston pump modeled in the Matlab Simu-
link® simulation environment. Two distinct internal 
leakage paths were modeled in this simulation study 
(Hindman 2001). The first leakage path occurred be-
tween the valve spool and bore. The second leakage path 
occurred between the actuator seals and bore. These 
leakage paths were illustrated in Fig. 1. The methodol-
ogy developed from the simulation study in Section 1 
was implemented experimentally on the boom cylinder 
and boom valve section in a John Deere 410E Backhoe 
Loader as seen in Fig. 7.  

 

Fig. 7: Backhoe Loader 

This machine utilizes the same direct operated, 
closed center, over lapped valve and load sensing pump 
as assumed in the simulation efforts. Several attempts 
were made to artificially introduce controlled leakage 
paths into the system for the internal and external leak-
age. The first attempt utilized small capacity variable 
needle valves. Two valves were located on the rod and 
head-side of the actuator (A) and the other was located 
in a line that shorted the head and rod-side actuator 
ports (B). This is illustrated in Fig. 8. 

 

Fig. 8: Valve Placement 

The cross-port valve simulates actuator seal leak-
age. The rod and head port valves simulate leakage 
occurring across the valve. These head and rod port 
valves are always set to the same opening assuming the 
valve spool wears similarly on the meter-in side as the 
meter-out side.  

The large pressure drop (~ 28MPa ) across the nee-
dle valves that occurred when the rod-side was fully 
pressurized prevented these valves from being used. 
This was due to the requirements for actuator and valve 
leakage to be extremely small in magnitude and the 
flow gain of the small needle valves being too large. 
Actuator drift of 3.05 mm per minute at an oil tempera-
ture of 60°C is used as the maximum allowable drift 
within this circuit. The drift requirement has been fixed 
from expert knowledge of what is allowable in the con-
struction equipment marketplace. This actuator drift 
requirement translates to very small amounts of leak-
age, which were impossible to achieve with the needle 
valves in any repeatable manner due to the large pres-
sure drop across the valve. It should be noted a signifi-
cant distinction exists between the simulated model 
assuming a large force prohibiting the actuator from 
drifting and the actual backhoe boom cylinder which 
exhibits an extending force at all times due to the mass 
of the linkage always acting to extend the cylinder. 

The second attempt at introducing controlled leak-
age to the system was to install very small (.33mm di-
ameter) orifices downstream from the needle valves in 
an attempt to reduce the pressure drop across the needle 
valves. A smaller pressure drop across the needle 
valves increased their flow sensitivity, but was not suf-
ficient in metering the required flow rates in a repeat-
able fashion.  

The final configuration used to introduce the re-
quired leakage paths was a series of fixed diameter 
micro-orifices. The orifices ranged from .025 to .25 
mm in diameter in increments of .025 mm. Three sets 
of these micro-orifices replaced the needle valves. This 
approach provided two advantages over using the nee-
dle valves. The first was the orifices in this size range 
were capable of metering the very small flow rates re-
quired for this experiment. The second advantage was 
that since the orifice size was fixed, the measurements 
were highly repeatable. The disadvantage of using 
these fixed orifices was that a different orifice needed 
to be used for every successive increment in leakage 
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rate compared to simply adjusting (though not repeat-
edly) the needle valve in the previous configuration.  

To expedite the data collection phase, the small ori-
fices simulating external leakage were installed in a 
manifold. A system schematic of the 410E boom circuit 
with these manifolds installed is shown in Fig. 10. Each 
orifice was turned on and off by means of a needle 
valve. This eliminated the need to disassemble the hy-
draulic lines to replace an orifice when a different leak-
age flow rate was desired. Fig. 9 shows the experimen-
tal configuration of the manifolds and orifices. The 
additional oil volume added by the manifolds and test 
plumbing was designed to be less than .5% of the dead 
volume of the head side of the actuator. 

3.2 Experimental Procedure 

The procedure described in Section 2.2 was used to 
obtain the experimental data necessary for training the 
ANN. Data was collected at oil temperatures in the 
range of 25°C to 45°C. The data collection process 
started with no artificial leakage present within the sys-
tem (no artificially induced leakage paths). This condi-
tion represents “perfect” component health. This condi-
tion was repeated at the end of the experiment as well 
to ensure no significant unknown leakage was intro-
duced during the experiment. The smallest orifice (.025 
mm) was then used on the external leakage path, while 
no artificial leakage was introduced via the cross-port 
leakage path. The rod side of the actuator was pressur-
ized with the main system pump, the spool returned to 
neutral, and the head and rod side pressure data ac-
quired for sixty seconds. After the data was acquired, 
the orifice was replaced with the next larger size (.05 
mm) and the procedure repeated. This continued until 
data was acquired with the largest orifice installed (.25 
mm). At this point, the smallest orifice (.025 mm) was 
installed to provide an artificial cross-port leakage path. 
Data was again acquired for the complete range of ori-
fices installed on the rod port. This process continued 
until data was acquired for all combinations of orifice 
sizes between the cross-port leakage and rod port leak-
age. There are 121 possible combinations of orifices 
(0 to .25mm in steps of .025mm = 11 sizes). 

 

Fig. 9: Orifice Configuration 

Since the temperature could not be maintained at a 
constant value, every effort was made to acquire data 
for a particular external/internal orifice configuration at 
different temperatures within the 25°C to 45°C tem-
perature range. This was accomplished by taking four 
complete sets of data (for all orifice combinations) at 
various temperatures within the desired range. This 
provides ΔP1, ΔP2, Δt1 and the amount of actuator drift 
at different oil temperatures for a given combination of 
external and internal leakage. 

 

Fig. 10: Experimental System Schematic 
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3.3 Experimental Results 

Once ΔP1, ΔP2, Δt1 and the amount of actuator drift 
were acquired, the data was examined for spurious 
points and noise content. The measurements were quite 
clean as evidenced by the pressure trace shown in 
Fig. 11 

 

Fig. 11: Sample Data  

In order to smooth the data and resolve any spurious 
points, a moving average filter was designed and im-
plemented. The filter averaged ten time samples and 
used the average of the samples as the value for that 
time period. The length of the filter in this case was ten 
samples multiplied by the sampling rate of .01 seconds. 
The ten samples taken every .1 seconds were averaged. 
This filtering operation can be observed from Fig. 11 as 
well.  

After filtering, ΔP1, ΔP2, Δt1, oil temperature and 
the amount of actuator drift were extracted in order to 
train a neural network. The four inputs (ΔP1, ΔP2, Δt1, 
oil temperature) are shown in Fig. 12. 

 

Fig. 12: Typical Experimental Neural Network Inputs  

The outputs to the ANN were determined by com-
paring the measured actuator drift to the maximum drift 
allowed and determining the percentage of failure for 
each component (valve and actuator) based upon the 
orifice diameters that produced the actuator drift. It is 
worthwhile to clarify that the output of the ANN was 
not actuator drift, but an indicator of the progression of 

a fault based on a ratio of the measured and allowable 
drift. The maximum drift allowed is a function of oil 
viscosity (and thus temperature) and was determined 
from Eq. 2. 

 ( )ref
T

T

.12D
μ
μ

=  (2) 

where: µref = oil viscosity at 60°C 
 µT = oil viscosity at desired oil temperature 

 DT = allowable actuator drift (cm/min) 

This equation is derived from expert system data 
that defines the maximum allowable actuator drift at 
15.6 °C to be .35 cm/min. 

The actuator drift obtained from the acquired data 
was then compared to the allowable actuator drift at the 
measured temperature for a complete set of all orifice 
combinations. This produces the data seen in Fig. 13, 
which will aid in the explanation of the how the neural 
network training outputs were arrived at.  

 

Fig. 13: Actual and Allowable Actuator Drift, after 60 Sec-
onds 

 

Fig. 14: Top View Actual and Allowable Actuator Drift 

The output is determined by assuming a linear pro-
portional damage “rule” within the area where the ac-
tual actuator drift is less than the allowable drift. This 
area is constrained by the intersection of the two sur-
faces shown in Fig. 13. If the actual actuator drift is 
greater than the allowable drift along either the internal 
or external orifice axis, the damage is 100% for the 
related component. It is important to remember that 
external leakage orifices correspond to valve failure 
and internal leakage orifices correspond to actuator 

Region of Linear Pro-
portional Rule 
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failure. The outputs of the ANN were trained to pro-
duce a measure of the degree of fault. Determination of 
the output is better illustrated by viewing Fig. 13 along 
the z-direction looking down on the two surfaces. This 
is illustrated in Fig. 14 in which the surfaces shown are 
not “flat” but contoured as in Fig. 13. 

It is important to illustrate the method of determin-
ing the failure percentage based upon Fig. 13 with sev-
eral examples. First consider the scenario where the 
external orifice diameter is .025 mm and the internal 
orifice diameter is .05 mm. Using this example, the 
valve failure is 30% (.025/.084). It is important not to 
forget that the external orifice is simulating the valve 
leakage. The failure attributed to the actuator is 50% 
(.05/.01). The internal orifice is simulating the actuator 
leakage. This same proportionality is used throughout 
Region #1 where the actual drift is less than the maxi-
mum allowable drift. 

In regions where the actual drift is greater than the 
maximum allowable, but either one of the components 
is not completely failed (Regions 2 & 3), the compo-
nent that is not completely failed is given a failure 
value proportional to the largest orifice that provided 
actuator drift less than the allowable drift in that com-
ponent’s direction. For example consider an external 
orifice diameter of .152 mm and an internal orifice di-
ameter of .052 mm. The failure attributed to the valve 
is 100% (.152/.0765=200%→100% Failure). The fail-
ure attributed to the actuator should not be 100% how-
ever, since the excessive leakage in the valve is what is 
causing the large amount of actuator drift. In this case, 
the failure attributed to the actuator is 50% (.052/.104). 
This is determined by dividing the internal leakage ori-
fice diameter by the largest internal orifice diameter 
that corresponds to the largest external orifice diameter 
that stays within the prescribed allowable drift 
(.104 mm).  

An example of this calculation from Region 3 
should be undertaken to assure understanding. Consider 
the external leakage orifice diameter of .051 mm and 
the internal leakage orifice diameter of .177 mm. This 
provides a valve failure of 66% (.051/.076) and an ac-
tuator failure of 100% (.177/.102=175%→100% Fail-
ure). All orifice combinations that fall within Region 
#4 are considered to be complete failure of both com-
ponents. 

This methodology to determine the predicted failure 
of the valve and actuator provides the outputs necessary 
to train an artificial neural network. The network that 
was chosen for training was a four layer feed-forward 
network with 10 neurons in the first layer, 15 in the 
second, 20 in the third, and two in the output layer 
(10x15x20x2). The four inputs of Fig. 12 were used to 
train the network coupled with the outputs generated by 
the methodology previously discussed. This network 
was batch1-trained with the Levenberg-Marquardt al-
gorithm using 3500 epochs of data. All activation func-
tions in this network were log-sigmoid functions. After 
training, the error was calculated by subtracting the 

                                                 
1 “Batch” training simply means that all of the input/output pairs are 

presented to the network before the error is calculated and the 
weights changed accordingly. 

desired output from the actual network output. The 
errors in the two outputs at the last iteration (3500) of 
batch training can be seen in Fig. 15. 

It can be seen from Fig. 14 that the network trained 
to the input/output pairs to a high degree of accuracy. 
The performance of this network was deemed good 
enough to determine how well the network generalized. 
In order to determine this, the network was tested using 
inputs from data that was not used in the training proc-
ess. It is important to remember that ΔP1, ΔP2, Δt1 and 
the oil temperature are the inputs to the network and 
not the installed orifice diameters. That said, it is easier 
to intuitively understand the network output when the 
orifice diameters are known. Table 2 contains this in-
formation. 

As can be seem from the table, the network general-
izes well with the maximum error of 7% being shown 
for the cylinder prediction and 6 % for the valve. Fur-
ther attempts could be made to construct a network that 
generalizes better, but that is not necessary for the 
“proof of concept” purposes outlined here. 

3.4 Statistical Considerations 

No experimental measurement is exact. Sensor 
resolution, signal noise and analog to digital conversion 
inaccuracy all play a part in diminishing the exactness 
of a measured signal. With this understood, it is impor-
tant to determine how the neural network, trained and 
validated, responds when subjected to a likely range of 
data that statistically incorporates the disturbances 
mentioned above.In order to accomplish this, the stan-
dard deviation of the measured inputs is calculated for 
all of the input data collected. This provides the infor-
mation seen in Table 3. 

 

Fig. 15: Neural Network Training Error (Experimental Data 
3500th Epoch) 

In order to investigate the effect that a variation in 
the measurement parameter values about the mean 
(±2σ) has on the output of the network, the maximum 
and minimum of each input was applied to one input 
while using the median value for the other three. The 
maximum and minimum values were determined by 
adding or subtracting two standard deviations to the 
median value. This provides 95% confidence that any 
succeeding measurement will fall within the range 
bounded by this maximum and minimum. This is 
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termed the 95% Confidence Interval (C.I.). The best 
and worst case scenarios are seen in Table 4 

It can be seen that the best accuracy that can be ex-
pected from the network with 95% confidence is ±1% 
(external orifice diameter of zero and internal orifice 
diameter of 9units) in addition to the ±6% network er-
ror shown in Table 2. The worst accuracy to be ex-
pected from the network is roughly ±8% in addition to 
the ±6% network error, as evidenced by the scenario 
where the external orifice diameter is .0762 mm and the 
internal orifice diameter is .2032 mm. 

It is worthwhile to note that if low fidelity sensors 
are used to capture this data, the accuracy of the net-
work will be diminished further than what is shown 
here due to the additional scatter induced by the sen-
sor(s). Conversely, if a higher fidelity suite of sensors 
is utilized, the accuracy of the network may improve 
provided the network was retrained using data from the 
higher fidelity sensors. The accuracy of the results as 
obtained is generally acceptable to the off-highway 
industry. 

4 Conclusions 

This paper has considered the feasibility of using a 
neural network to establish the percent failure rate of an 
actuator and valve of a John Deere 410E Backhoe 
Loader. The simulation study was used to set up the 
procedures necessary to implement the approach and to 
establish the feasibility under ideal conditions. 

The technique was applied to data collected from an 
actual unit and the data was then applied to a neural 
network. The results indicated that when testing data 
not used in the training process, the results were ac-
ceptable in terms of practical application. It was con-
cluded that the approach is feasible both from a theo-
retical and applied point of view. 

 
 

Table 2: Validation Information 

Cross-Port 
Orifice Di-

ameter (mm) 

Head/Rod 
Orifice Di-

ameter (mm) 

Spool Condition 
(% Failure) 

Predicted | Actual 

Cylinder Condition 
(% Failure) 

Predicted | Actual 

Spool 
Condition 
Difference 

Cylinder 
Condition 
Difference 

.2032 0 .9% | 0% 100% | 100% .9% 0% 

.2032 .0229 79% | 73% 100% | 100% 6% 0% 

.2032 .1016 94% | 95% 100% | 100% 1% 0% 

.2032 .1524 100% | 100% 100% | 100% 0% 0% 

.0508 .0508 2.2% | 5.1% .01% | 2.7% 2.9% 2.6% 

.0229 .0229 100% | 100% 82% | 76% 0% 6% 

.0508 .1270 100% | 100% 73% | 67% 0% 6% 

.1524 .0508 34% | 36% 100% | 100% 2% 0% 

Table 3: Measurement Statistics 

 ΔP1 (psi) ΔP2 (psi) Δt1 (sec) T (°C) 

Standard Deviation (σ) .66 bar .71 bar .63 sec .14° 

~95% C.I. (2σ) 1.31 bar 1.48 bar 1.26 sec .28° 

Table 4: Prediction Accuracy 

 External Ori-
fice Diameter 

(mm) 

Internal Ori-
fice Diameter 

(mm) 

Mean Value Prediction 
(Valve Failure | Cylin-

der Failure) 

Mean Value + 2σ 
Prediction 

Mean Value - 2σ 
Prediction 

ΔP1±2σ 0 .2286 .9% | 100% 1.9% | 100% .4% | 100% 

ΔP2±2σ 0 .2286 .9% | 100% .6% | 100% 1.2% | 100% 

Δt1±2σ 0 .2286 .9% | 100% .7% | 100% 1.1% | 100% 

T±2σ 0 .2286 .9% | 100% .7% | 100% 1.1% | 100% 

ΔP1±2σ .0762 .2032 79% | 100% 87% | 100% 72% | 100% 

ΔP2±2σ .0762 .2032 79% | 100% 75% | 100% 83% | 100% 

Δt1±2σ .0762 .2032 79% | 100% 87% | 100% 72% | 100% 

T±2σ .0762 .2032 79% | 100% 73% | 100% 85% | 100% 
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Nomenclature 

ΔP1 Change in Pressure Rod Side [bar] 
ΔP2 Change in Pressure Head Side [bar] 
Δt1 Time to reach minimum pressure [sec] 
c  Radial clearance  [mm] 
DT Allowable actuator drift  [cm/min] 
L Length of leakage passage  [mm] 
P1  Upstream pressure  [Pa] 
P2  Downstream pressure  [Pa] 
r  Radius of bore  [mm] 
µ  Absolute fluid viscosity  [N-s/m2] 
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