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Abstract 

Flow and pressure transients in fluid transmission lines can be analysed starting from a modal approximation of the 
frequency domain irrational transfer matrix, relating pressure and flow rate at the line ends in Laplace transform. The 
obtained rational approximation can be converted in a state space representation and used in variable time step simula-
tors to evaluate the influence of the line on fluid servosystems dynamics. Particular attention must be given to the cau-
sality, to the stability and to the energy passivity of the resulting line model. 

In this paper the application of a numerical approximation technique (Vector Fitting) to the frequency dependent 
transfer matrix describing the pipeline dynamics is proposed. The admittance matrix formulation is chosen, introducing 
an effective passivity enforcing technique, to ensure the energy passivity of the approximated matrix, thus preserving in 
the model the physical meaning of the real system. 

The rational approximation of the transfer matrix, combined with the passivity enforcement methodology, is applied 
to the study of the transient response of a single uniform line and of compound hydraulic line systems, showing the 
agreement between the simulation and the solution obtained with inverse fast Fourier transform. 
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1 Introduction 

An accurate prediction of the transient behaviour of 
pneumatic and hydraulic servosystems is of great im-
portance in the choice of the system components, in the 
design of the control strategy and in the optimisation of 
the circuit. To this end it is necessary to realise time 
domain simulators, capable of describing the system 
dynamic response. 

Usually in circuit models the actuator and control 
valve dynamics are considered, but the fluid transmis-
sion line´s effect is neglected. In high dynamics appli-
cations or with long pipes, however, fluid line influence 
should be taken into account, its effect on the system 
response should not be neglected. Moreover, the 
evaluation of overpressures and flow pulsations can be 
useful in the analysis of pipeline vibrations and fluid 
borne noise generation. 

The fluid dynamics can be analysed starting from 
the partial derivative differential fundamental equa-
tions, i.e. state, continuity, motion and energy equa- 
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tions, and using different degrees of approximation, 
thus obtaining frequency domain solutions (D’Souza 
and Oldenberger, 1964; Stecki and Davies, 1986a, 
1986b). A transfer matrix formulation, relating input 
and output pressure and volume flow rate, can be writ-
ten. This matrix, in its general formulation, involves 
hyperbolic and Bessel functions, able to describe 
propagation effects and frequency dependent viscous 
friction. 

In time domain description, an analogous analytical 
solution can’t be found. Different approaches have been 
applied to obtain an approximated description of the fluid 
behaviour in transient conditions. Lumped parameters 
models can be applied for a first evaluation of the fluid 
transients, but give a very approximated description of 
the line behaviour in high dynamics. The method of the 
characteristics (Wylie and Streeter, 1978) gives a good 
line model but requires fixed step integration, that is not 
easy to implement in a variable time step simulation of 
the whole system or in the simulation of complicated 
pipelines, composed by several line elements of different 
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length and dimensions. A numerically efficient develop-
ment of the method of the characteristics has been pro-
posed by Krus et al (1990; 1994). In this model, applied 
to a uniform length of line, only the pressures and flows 
at the ends are computed. It is based on time delays, due 
to the signal propagation finite speed, and on an ap-
proximated description of the frequency dependent fric-
tion losses. This approach has a great potential in simpli-
fying the simulation of complex systems, permitting a 
decoupled numerical description of different subsystems 
connected by transmission lines, and is particularly inter-
esting for real time simulations (Krus, 1999). On the 
other hand, when the attention is focused on the fluid 
behaviour in complex pipelines and the influence of 
friction losses and boundary conditions, the modal 
method gives useful information. The modal method 
approximates the line dynamics with a rational expres-
sion of the transfer matrix that describes the transmission 
line in the frequency domain. This expression can be 
transformed in a state space formulation and numerically 
integrated in ODE based time simulation models. This 
approach introduces some approximations, considering 
constant fluid properties during transients, but gives fast 
numerical integration and it can be easily implemented in 
standard simulation environments. The modal description 
of the line dynamics is then particularly favourable in 
modelling of the whole servosystem. 

The modal approximation was first presented by 
Hullender (Hsue and Hullender, 1983; Hullender, 
1985) in the simulation of individual fluid and gas 
lines, with a numerical approach. Watton (1988) 
showed the application of the modal approximation to 
the evaluation of the line influence on the dynamics of 
hydraulic systems and Tahmeen et al (2001) extended 
the modal description to tapered fluid lines. Yang and 
Tobler (1991) proposed an analytical expression of the 
modal approximation of a uniform line transfer matrix, 
taking into account the frequency dependent viscous 
friction, while a variational approach to the same prob-
lem was presented by Mäkinen, Pichè and Ellman 
(2000). In a preceeding work (Franco and Sorli, 2004), 
the variational model was used in the study of the tran-
sient response of pneumatic lines. 

Considerations about the application of the modal 
approximation to compound fluid lines, composed by 
segments of different geometry, were furnished by 
Book and Watson (2000) and by Kojima and Shinada 
(2002; 2003). They showed that a frequency domain 
combination of the transfer matrices of all the line seg-
ments and a following transformation in time domain 
with a numerical modal approximation give improved 
efficiency and accuracy if compared with results fur-
nished by time domain combination of the models of 
individual line elements.  

In this work some theoretical considerations will be 
presented, regarding the rational approximation of 
frequency domain transfer matrices, in terms of physi-
cal causality and model stability and analysing the 
energy meaning of the obtained model. An effective 
numerical technique for the modal approximation of the 
transfer matrix and a method to ensure the energy pas-
sivity of the model will be proposed. Finally, the model 

application to pressure transients simulation in individ-
ual and compound fluid lines will be shown. 

2 Transmission Line Model 

For a single line with uniform properties (Fig. 1), 
the frequency domain cascade transfer function, ex-
pressing the relationship in Laplace domain among the 
upstream and downstream pressure and volume flow 
rate, can be obtained from the state, continuity and 
momentum equations, with an axis-symmetrical vis-
cous compressible two-dimensional flow model (Stecki 
and Davies, 1986a). Laminar flow, negligible thermal 
effects, constant fluid properties and rigid pipe walls 
are hypothesised. 
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Fig. 1: Uniform transmission line 
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In Eq. 1, Γ is the propagation operator 
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Zc is the characteristic impedance 
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and c is the sound speed, function of the fluid bulk 
modulus and density. 

 
0ρ

β=c  (4) 

The expressions of Γ, Zc and c can be modified ap-
propriately to take into account the thermal effects 
(significant in gas lines) and the elasticity and internal 
damping of the pipe wall. 

The transfer matrix formulation, involving irrational 
functions, i.e. hyperbolic and Bessel functions, is not 
directly integrable in time domain. The aim is to obtain 
an approximating formulation, given by a polynomial 
expression of each matrix element. This approximation 
can be obtained starting from some considerations, 
regarding causality, stability, passivity and time domain 
conversion of the polynomial model. 
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2.1 Causality 

The transfer matrix formulation of Eq. 1 does not 
represent a causal physical system. In fact, the vector 
on the right is the system input and it is clear that pres-
sure and flow at the same pipe end cannot be fixed 
independently at the same time. Reorganising Eq. 1, 
four possible causal forms can be found. Here the four 
causalities are presented in the canonical form 
(Eq. 5-8), in which the flow is assumed to be positive 
when entering the pipeline. This convention is helpful 
when the energy meaning of each model is studied. 

Impedance form: 
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Admittance form: 
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First hybrid form: 
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Second hybrid form: 
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The impedance, admittance and hybrid models are 
all suited for analysis and simulation models. The pres-
sure input can be favourable when the pipe end is con-
nected to a volume, while the flow input can be favor-
able when the pipe end is connected to a valve. On the 
other hand, it should be underlined that this isn’t a 
forced choice, because the dynamic model of each 
component can be reorganised in order to permit the 
use of pressure or flow rate input for the pipe model, 
according to the assumed formulation. 

2.2 Rational Polynomials Approximation 

When a particular causality form has been chosen, 
the model must be transformed in a set of state space 
equations in order to perform a time integration. The 
state space model can be easily obtained if each transfer 
function of the transfer matrix is approximated with a 
rational transfer function having a number of poles 
equal to or greater than the number of zeros. A way to 
obtain the polynomial rational formulation is the modal 
approximation of each transfer function G(s) (Hullen-
der, 1985). With this approach, G(s) is approximated 
by the sum of a finite number of first and second order 
modes, with the addition of a constant term: 
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where the second order modes are given by couples of 
complex conjugated poles.  

The same approximation can be also expressed as 
the ratio of two rational polynomials: 
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Modal terms can be analytically derived, using a se-
ries expansion of the transcendental transfer function or 
a variational approach, as proposed by Mäkinen et al 
(2000), or using a numerical fitting. 

This last solution is particularly favourable because 
it can be applied to numerical values of transfer func-
tions, without any simplification of the frequency do-
main model, both to theoretical and experimentally 
obtained transfer matrices. Moreover, it can be directly 
applied to the transfer matrix that models all the com-
pound line, giving an improvement of the model accu-
racy in time simulation. 

2.3 Stability and Passivity 

It is not sufficient that the approximated rational 
model has frequency responses that match the exact 
ones, but the model must also preserve the stability and 
passivity properties of the physical system it represents. 

Firstly, it is necessary that each approximating frac-
tional polynomial is stable, i.e. it does not contain poles 
with positive real part. This condition is necessary but 
not sufficient. To assure the model stability, the passiv-
ity of the approximation must be checked. 

Passivity is an important property of certain physi-
cal systems. A passive system can store or consume 
energy, but can not generate energy. Transmission lines 
are a typical example of passive system. Interconnected 
passive systems are passive and are guaranteed to be 
stable. Stable but unpassive systems do not possess this 
property and can lead to unstable simulations, depend-
ing on the imposed boundary conditions. This impor-
tant fact underlines the need to take into account the 
passivity properties of the fluid line model. 

It can be shown (Khalil, 1996) that the admittance, 
impedance and hybrid transfer matrices, expressed in a 
canonical form, represent a passive system if they are 
positive real. A transfer matrix is positive and real if the 
following conditions are satisfied: 

• poles of all elements of the matrix G(s) are in 
Re(s) ≤0, 

• any pure imaginary pole jω of any element of 
G(s) is a simple pole and the residue matrix 
lims→jω(s- jω) ·G(s) is positive semidefinite 
Hermitian, 

• for all real ω for which jω is not a pole of any 
element G(s), the matrix G(jω)+GT(-jω) is 
positive semidefinite. 

As seen, the stability of the approximation requires 
that each obtained fractional polynomial has no poles 
with real parts, so the first condition is satisfied for a 
stable interpolation.  

As highlighted by Manhartsgruber (2004), the only 
purely imaginary pole possible in a viscous flow model 
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is s=0, due to the stationary integrating behaviour of 
the line when flow inputs are imposed (impedance 
form). In this case it can be shown that the second con-
dition is satisfied. 

So the passivity of the line model can be verified 
from the third condition, by computing the eigenvalues 
of ( ) ( )Tj jω ω+ −G G  in all the frequency range of 

interest, checking their positive realness. 
Some considerations were proposed by Manharts-

gruber about the passivity check on fluid line models. 
In this paper a method to impose the model passivity 
when a violation is found will be shown. 

3 Numerical Algorithms  

In the following paragraphs the problem of finding 
a rational approximation of the transfer matrix and of 
assuring the model stability and passivity will be ana-
lysed. Two numerical methods will be presented, easily 
implementable in a computer code for automatic model 
generation. 

3.1 Rational Approximation by Vector Fitting 

The approximating polynomial transfer function can 
be obtained by numerical interpolation starting from the 
computation of the exact transfer function G(s) in the 
frequency range of interest. The choice of the fre-
quency range implies the research a certain number of 
vibration modes among the infinite pipeline modes. In 
principle, an approximation could be found by fitting in 
the least square sense the irrational function with the 
ratio of two polynomials in the form of Eq. 10, but the 
numerical problem can be ill conditioned and there is 
no control on the stability of the obtained poles. 

A general rational fitting methodology has been in-
troduced in the study of electromagnetic transients by 
Gustavsen and Semlyen (1999). It is very robust and 
easy to implement in a computer program with standard 
software packages. 

The algorithm, named Vector Fitting, searches a ra-
tional approximating function in the form of Eq. 9 
where the poles pk are real or come in complex conju-
gate pairs, while d is real. The problem is solved by 
hypothesising a set of starting poles kp~  and using an 

additional unknown function f(s). A rational approxi-
mation is introduced also for the function f(s), with the 
same starting poles. An auxiliary system is then writ-
ten: 
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From the system of Eq. 11, multiplying the second 
row for ( )sG , the following expression can be ob-

tained: 
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which is linear in the unknowns ck, kc%  and d. The prob-

lem can be written for several values of s= jω in the 
fitting range, obtaining an overdetermined system that 
can be solved in the least square sense obtaining the 
unknowns. 

So a rational approximation of the functions 
f(s)·G(s) and f(s) is given. Writing the ratio: 
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it can be observed that the zeros of the auxiliary func-
tion f(s) become the poles of Gfit(s), that is a first ra-
tional approximation of G(s). So a new set of starting 
poles is obtained. When unstable poles are found in a 
fitting step, the sign of the real part is inverted, to force 
the stability of the rational approximation. By repeating 
the computation iteratively a fast convergence can be 
found.  

When the set of poles is identified, the residues ck 
and the constant d are obtained from Eq. 9 with a new 
least square fitting of the theoretical transfer function in 
the frequency range of interpolation. 

Moreover, this method, in a vector formulation 
(Vector Fitting), permits to fit simultaneously, with the 
same poles, all the matrix elements, stacked in a single 
column. A rational approximation Gfit(s) of the full 
transfer matrix is then obtained. The correspondence of 
the poles of all the matrix elements gives increased 
efficiency in time domain integration. 

3.2 Passivity enforcement 

As highlighted, the passivity of the matrix rational 
approximation can be checked by computing the value 
of Gfit(jω)+ GT

fit(-jω). This is done in a frequency 
range including also the possible poles located out of 
the fitting range. When a passivity violation is found, a 
passivity enforcement must be applied, i.e. a non nega-
tive value of the eigenvalue must be imposed to ensure 
the model stability. A simple passivity enforcement 
technique has been proposed by Gustavsen and Sem-
lyen (2001), applicable to the admittance formulation. 
This method is based on the property of symmetry of 
the admittance formulation. It is possible to observe 
that, for a symmetrical matrix, the passivity can be 
checked by computing the eigenvalues of its real part 
GRfit(jω)=Re[GRfit(jω)] in the frequency range of inter-
est. The passivity enforcement technique here proposed 
is based on the linearization of the relation between the 
coefficients of the rational approximation GRfit(jω) and 
its eigenvalues.  

Placing the coefficients in a single vector x and the 
columns of Gfit(jω) in a vector y, the following incre-
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mental relation can be found: 

 xMy Δ=Δ  (14) 

and thus a linear relation between the vector g, contain-
ing the elements of GRfit(jω) and x, can be written: 

 xPg Δ=Δ  (15) 

A linear relation can be found also between g and 
the vector of its eigenvalues λ and, then, between λ and 
the coefficients vector x: 

 gQλ Δ=Δ  (16) 

 xRxQPλ Δ=Δ=Δ  (17) 

When negative eigenvalues are found, they are 
forced to be positive, imposing a perturbation to the 
eigenvalues vector: 

 λxRλ −≥Δ=Δ  (18) 

and, in the same time, minimising the perturbation yΔ  

of the rational approximation: 

 0→Δ=Δ xMy  (19) 

Equations 18 and 19 can be written in a standard 
form: 

 
cxB

xA

≤Δ
→Δ 0

 (20) 

leading to a problem whose least square solution is 
calculated using the Quadratic Programming algorithm 
(QP). 

Details on the calculation of the linear expressions 
and on the solution of the problem can be found in 
(Gustavsen and Semlyen, 2001).  

The Matlab-based packages for the Vector Fitting 
rational approximation and Passivity enforcement are 
available for download, by courtesy of Bjørn Gus-
tavsen and Adam Semlyen, at the web site: 

www.energy.sintef.no/Produkt/VECTFIT/index.asp 

4 Model Calculation Procedure 

As seen, the aim of the proposed approach is to find 
a rational expression of the admittance transfer matrix, 
modelling the dynamic behaviour of the pipeline to be 
analysed with sufficient accuracy and preserving its 
energy passivity. The model development can be sub-
divided in seven distinct steps, described in the follow-
ing parts: 

The line geometry, the fluid and pipe wall proper-
ties and the frequency range of interest in simulation 
are given as an input to the model calculation algo-
rithm. 

With regard to the frequency range, the lower con-
sidered frequency is usually close to zero, to preserve 
the static value of the transfer matrix. The highest fre-
quency is determined by the largest of either the fre-
quency content of the input signals, the inverse of the 
time delay introduced by the line, or the inverse of the 
lowest time constant of the connected components. As 
an example, a line connected to a small tank through a 

large orifice is characterised by pressure transients with 
very low time constants. In this case a model with an 
high bandwidth is required, thus increasing the compu-
tational cost of the simulation. 

Compound pipelines are subdivided in segments 
with uniform geometrical, fluid and wall properties. For 
each line element the cascade transfer matrix in form of 
Eq. 1 can be written and its numerical value can be 
computed for a certain number of frequencies in the 
range of interest, at defined intervals Δω (Δω=2π rad /s 
in the following examples). 

From the transfer matrices of the single elements, 
the global transfer matrix can be obtained, imposing the 
continuity equation of flow rate and pressure equiva-
lence at the junctions of different branches and taking 
into account the parallel or series connection between 
different branches. 

Then, an impedance matrix can be written, express-
ing the dynamic relation between the flow rates vector 
and the pressures vector for the multiport fluid line: 
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 (21) 

Assuming a canonical form, the flow rate is positive 
when entering a pipeline port. 

Steps 1) and 2) can be substituted by an experimen-
tal measure of the admittance matrix on the real pipe-
line. 

For each transfer function Gij the number Nij of sec-
ond order modes in the analysed frequency range is 
estimated by searching the frequencies where the abso-
lute value of Gij(jω) has an extreme value. The starting 
number of poles will be: 

 p ij2 2 max( )N N= + ⋅  (22) 

where two poles have been added to take into account 
the presence of first order modes, necessary to give a 
better approximation at low frequencies. 

The rational approximation of all the admittance 
matrix is obtained by VF, using a starting set of Np 
complex conjugated poles, with imaginary parts line-
arly spaced in the frequency fitting range and weak 
attenuation factor (small real part), obtaining a fast 
convergence after few iterations. Then, if the relative 
RMS error between the exact and the fitted transfer 
functions is higher than 10-4, Np is increased by two and 
the VF is repeated. 

A correction is applied to each transfer function ap-
proximation to eliminate the steady state error due to 
the fitting. The numerator of each rational transfer 
function is rescaled to satisfy the zero frequency value 
given by the exact irrational expression, in accordance 
to what is suggested by Yang and Tobler (1991). 

The passivity of the obtained rational matrix is 
checked in a frequency range from 0 rad/s to 1.5·ωmax, 
where ωmax is the maximum frequency of the second 
order modes furnished by VF. If a passivity violation, 
i.e. a negative eigenvalue of Gfit(jω)+ GT

fit(-jω), is 
found in the frequency range of interest, the passivity 
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enforcement technique is applied and the passivity 
check is repeated. 

The rational approximated and passivity enforced 
admittance matrix is then available for implementation 
in ODE simulators. A block diagram representation of 
the model is shown in Fig. 2, for a two port pipeline. 

 

Fig 2: Block diagram of the pipeline model 

When the rational approximation of the transfer ma-
trix in admittance formulation is known, it can be used 
in the development of the whole system model to be 
simulated. The only condition is given by the necessity 
to impose the value of the pressure at each pipeline port 
as an input. This can be done with an appropriate for-
mulation of the models of the components connected to 
the line. The final system model can then be integrated 
in time domain obtaining its transient behaviour. In 
fact, a rational polynomial transfer function can be 
easily translated in a linear ordinary differential equa-
tion and integrated by an ODE based simulator. 

It must be observed that this line model is inde-
pendent from the imposed boundary conditions, that 
can be changed in different simulations and can be 
described both with linear and non linear models. As 
with Kojima’s method, the line model here proposed 
can be applicable also when neither the pressure, nor 
the flow rate are individually known, but the mathe-
matical relationship between them is given. This per-
mits one to study nonlinear boundary conditions such 
as orifice flow or column separation.  

The main advantage of the numerical fitting approach 
is that it can be applied to any multi-port fluid compo-
nent, also with a complex geometry, when its transfer 
matrix formulation is known in admittance form. It does 
not introduce new approximations in the physical model 
description, therefore frequency dependent phenomena 
can be described starting from a model of their behaviour 
in the frequency domain. Examples are given by the 
frequency dependent fluid friction, damping effect of 
viscoelastic pipe walls, fluid-wall dynamic interaction 
and fluid flow in tapered pipes. 

Moreover, the transfer matrix rational approxima-
tion can also be obtained from an experimental identifi-
cation of the frequency response of the two port com-
ponent in the frequency range of interest, thus permit-
ting the integration between experimental dynamic 
analysis and numerical simulation. 

The substantial differences between Kojima’s 
method and this method consist in the application of a 
different numerical fitting technique and in the intro-
duction of a check on the energy meaning of the ob-
tained model. The proposed modelling procedure per-
forms the rational fitting with a robust and efficient 
technique (Vector Fitting) and introduces energy con-
siderations in the evaluation of the obtained model. The 
passivity enforcement imposes the physical coherence 
of the model, ensuring the model stability independ-
ently of the assumed boundary conditions. 

5 Model Application 

To check its accuracy in simulating fluid line tran-
sients, the model has been applied to the description of 
the dynamics of single and compound hydraulic pipe-
lines. 

A pressure step is imposed to one end of the pipe-
line and the other ends (one or more) are blocked. The 
pressure transients are studied at these closed ends.  

In these conditions a theoretical transfer function 
between input and output pressure can be written and 
the time response can be obtained by inverse fast Fou-
rier transform (IFFT). Because of the periodic nature of 
the Fourier transform, the pressure input must be given 
as a periodic wave. In this work, the input pressure step 
is described with an opportune square wave with a 
period of 1 second and subdivided in 8192 points. The 
assumed wave period is chosen in order to allow the 
transient oscillations to die away sufficiently between a 
pressure step and the one following. For the IFFT solu-
tion only the first two steps of the model calculation 
procedure are required, but this solution can be applied 
only when the complete time history of the input pres-
sure is known in advance and it is not influenced by the 
line behaviour. 

The pressure response obtained with IFFT can be 
considered as the “theoretical” solution and will be 
compared with the results furnished by the rational 
approximation model. 

5.1 Single Line Transient Simulation 

Firstly, the rational approximation method has been 
applied to the study of a single hydraulic line with 
uniform properties (Fig. 1). Used parameters are: line 
length l = 5 m, internal radius r0 = 4 mm, fluid density 
ρ0 = 860 kg/m3, fluid dynamic viscosity μ0 = 30·10-3 
Pa·s and bulk modulus β = 1.4·109 Pa. 

The exact admittance transfer matrix, calculated 
from Eq. 6, has been interpolated in the frequency 
range from 0 to 2000 Hz, with 48 poles rational poly-
nomials. It can be observed that in the single line ad-
mittance formulation only two different irrational func-
tions have to be interpolated, i.e. 11 c1/( tanh )G Z= Γ  

and 12 c1/( sinh )G Z= − Γ . The comparison between the 

exact and approximated frequency responses, in 
modulus and phase, of the transfer functions is graphed 
in Fig. 3, showing the accuracy of the approximation in 
the fitting range. 
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a) 

 
 

b) 

 

Fig. 3: Rational approximation of the admittance matrix 
for a 5 meter long hydraulic line. Exact and fitted 
frequency response comparison: a) modulus; b) 
phase 

The passivity of the interpolated matrix has been 
checked in the range between 0 and 4000 Hz, finding a 
small passivity violation in the low frequency range, 
evidenced by a negative value of the first eigenvalue of 
Gfit(jω)+ GT

fit(-jω).  

 

Fig. 4: Effect of the passivity enforcement on the first ei-
genvalue of Gfit(jω)+ GT

fit(-jω) 

The application of the passivity enforcement en-
sured the model passivity with a minimal fitting pertur-
bation (relative RMS error lower than 10-6). In Fig. 5 
the eigenvalues of Gfit(jω)+ GT

fit(-jω) obtained from 
the polynomial interpolated matrix, after the passivity 

enforcement, are shown and compared with the eigen-
values obtained for the exact matrix. The positiveness 
of the eigenvalues ensures the model passivity. 

 

Fig. 5: Eigenvalues of Gfit(jω)+ GT
fit(-jω) 

The obtained rational model has finally been used 
in the simulation of the closed line response to a pres-
sure transient. To this end a pressure step has been 
imposed as an input to line port 1 and a load impedance 
has been imposed to port 2, in the form: 

 2
L2

2

( )

( )

P s
Z

Q s
=  (23) 

To simulate the closed end a very high resistive im-
pedance (ZL2=1040 [Pa·s/m3]) has been considered in 
ODE integration. 

The model organisation is shown in Fig. 6. 

p1

q1

p2

q2

Z_L2

Load impedance

p1

p2

q1

q2

Line model

 

Fig 6: Simulink realization of the closed single line model 
with pressure step as an input 

The pressure response at the closed end is represented 
in Fig. 7, for a pressure step of 106 Pa at the other end. 
The simulation accuracy is confirmed by the comparison 
with the theoretical IFFT solution, both in the first oscil-
lations and in the following damped oscillations. 
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a) 

 

b) 

 

Fig 7: Single line simulation: pressure response at the 
blocked end: first (a) and following (b) oscillations 

5.2 Compound Line Transient Simulation 

The rational approximation method accuracy in 
predicting fluid lines transients has been tested on 
complex systems composed of several line elements 
with different dimension and series, branched or closed 
loop connection.  

The same three compound systems used by Kojima 
and Shinada (2003) have been used in model valida-
tion. 

  

Line 1   Line 2 Line 3   

0   1

Line 1   Line 2   Line 3   

0   1

Line 4   Line 5   
2

Line 1   Line 2   Line 3   

0   1

Line 4   Line 5   

 1) 

 2) 

 3) 

1 2 

1

1 2 

2 

3

 

Fig 8: Compound fluid line systems used in simulation 

Their layout is shown in Fig. 8, and the geometrical 
data (length and inner radius) of each line element are 
listed below: 

• System 1: l1=1.6 m, l2=2.1 m, l3=0.5 m; 
r01=9.2 mm, r02=3.9 mm, r03=7.5 mm. 

• System 2: l1=1.6 m, l2=2.1 m, l3=0.5 m, l4=1.1 
m, l5=2 m; r01=9.2 mm, r02=3.9 mm, r03=7.5 
mm, r04=9.2 mm, r05=3.9 mm. 

• System 3: l1=1.6 m, l2=2.1 m, l3=0.5 m, l4=1.5 
m, l5=1.2 m; r01=9.2 mm, r02=3.9 mm, r03=7.5 
mm, r04=3.9 mm, r05=9.2 mm. 

The assumed fluid properties are: fluid density 
ρ0 = 867 kg/m3, fluid dynamic viscosity μ0 = 60·10-3 
Pa·s and bulk modulus β = 1.58·109 Pa. 

System 1 

 

System 2 

 

 

System 3 

 

Fig. 9: Compound line systems: pressure response at the 
blocked ends for a pressure step input 

The admittance transfer matrix representing each 
system has been obtained from the frequency domain 
model and interpolated in the range between 0 and 
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2000 Hz. For an accurate fitting, 36 poles were used for 
the pipeline of System 1, 52 poles for System 2 and 48 
poles for System 3. As for the single line model, small 
passivity violations were found in the low frequency 
range and removed with the passivity enforcement 
technique, obtaining the final rational transfer matrix, 
that has been implemented in Matlab/Simulink in the 
same structure as shown in Fig. 6. 

A pressure step of 106 Pa has been given as an input 
at the port No.1 of each pipeline and a load impedance 
ZL = 1040 [Pa·s/m3] has been imposed at the other ports 
(port No. 2 in System 1 and 3; port No. 2 and No. 3 in 
System 2) to simulate the blocked condition. 

The results furnished by variable step integration in 
the Matlab/Simulink environment are compared with 
the solution obtained by IFFT in Fig. 9. These results 
are also in accordance to what has been obtained by 
Kojima and Shinada (2002) in their simulations and 
experimental tests. Thus, a good simulation accuracy is 
also evidenced in the case of complex pipelines. 

With regard to the computational cost of the model 
it can be observed that, on a desktop PC (CPU 2.8 
GHz, RAM 512 MB), the time required to the construc-
tion of the model (steps 1 to 7) can vary from 2 to 20 
seconds, depending on the considered bandwidth and 
on the presence of passivity violations. The ODE inte-
gration of the obtained rational model in Simulink 
environment, for the presented examples, has required 
less than one second. It must be highlighted that, for a 
given transmission line, the time costing model con-
struction must be done only once, while the time simu-
lations with different boundary and input conditions 
require a lower computational cost, depending on the 
line complexity and considered bandwidth. 

6 Conclusions 

In this work the transient response of fluid lines has 
been analysed, with a rational approximation of the 
transfer matrix formulation in frequency domain. This 
approach permits an easy combination of the line 
model in a more general system model and a fast nu-
merical integration with conventional ODE based simu-
lators. 

The identified model must have a frequency re-
sponse that agrees as closely as possible to the theoreti-
cal one in the fitting range and, in addition, is required 
to preserve the stability and energy passivity of the real 
fluid line. 

The transfer matrix numerical interpolation has 
been performed by the application of the Vector Fitting 
algorithm, that presents some advantages in terms of 
efficiency and robustness and permits the enforcement 
of stable poles.  

The energy passivity of the fluid line system can be 
preserved in the model by the application of passivity 
enforcement techniques. A simple technique, based on 
the admittance formulation has been described and 
implemented in the line model calculation. 

The line model has been applied to the study of 
pressure transients in single and compound pipelines, 

showing its simulation accuracy by comparing the 
obtained results with the theoretical IFFT solutions. 

The proposed simulation method will be applicable 
in various types of fluid networks, analysing, for exam-
ple, the interaction between the line and non linear or 
dynamic components. Interesting fields of application 
are also the study of the dynamic interaction of differ-
ent components connected to the same fluid line and 
the evaluation of the line influence on fluid servosys-
tems dynamics. Further applications are constituted by 
the study of fluid transients in automotive components, 
such as power steer and brake hydraulic lines, multiport 
fuel delivery systems and exhaust pipes. 

Nomenclature 

c Speed of sound [m/s] 

E Line Young modulus [Pa] 

G Transfer function  

G Transfer matrix  

j 1−   

J0, J2 Bessel functions  

l Line length [m] 

p Pressure  

P Pressure in Laplace domain [Pa] 

q Volume flow rate  

Q Volume flow rate in Laplace do-
main 

[m3/s] 

r0 Line inside radius [m] 

s Laplace variable  

t Time [s] 

x Spatial variable [m] 

Zc Line impedance [Pa·s/m3] 

ZL Load impedance [Pa·s/m3] 

β Equivalent bulk modulus [Pa] 

Γ Propagation operator  

μ0 Mean dynamic viscosity [Pa·s] 

ρ0 Mean density [kg/m3] 

ω Frequency [rad/s] 
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