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Abstract 

A load sensing (LS) system is one in which the pump flow is regulated to keep the pressure drop across an orifice 

constant and independent of any variation in the load pressure. This ensures that the pressure loss across the orifice is 

kept to a minimum, thereby increasing efficiency. An LS regulator spool is used to sense the pressure drop across the 

orifice to control pump delivery. The spool can be underlapped, critically lapped or overlapped. As a trade-off between 

efficiency and dynamic response, the LS spool is usually critically lapped. This results in a nonlinear model that is sen-

sitive to operating regions.  

In this paper, a review of published literature on LS systems is briefly summarized. An LS system model is devel-

oped and linearized. Procedures to solve these very complex equations are introduced. Because load sensing systems 

require pressure feedback, stability can often be an issue. Analysis of these systems to determine the steady state and 

dynamic performance is very difficult to do because of the dependency of the models on the operating point. Linearized 

models which reflect a methodology to account for changing operating conditions have been developed and have estab-

lished three distinct regions of operation (labeled “Conditions I, II, and III”). This paper presents the experimental na-

ture of these conditions and provides experimental evidence that the models so derived are valid over certain frequency 

ranges. The objective of this paper, then, was to establish confidence in the models by examining frequency response 

performance under these three distinct conditions. The results show that good agreement does exist between the models 

and their physical counterparts and establishes limitations thereof. 

This research can assist in the design or optimization of an LS system and help in the development of advanced con-

trol strategies for obtaining further efficiency within certain dynamic performance constraints. 
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1 Introduction 

A load sensing (LS) system is one in which the 

pump flow is regulated to keep the pressure drop across 

an orifice constant independent of the load pressure. 

This regulation process is achieved by feeding back the 

pressure drop across the orifice to a control valve (usu-

ally denoted as a LS regulator) at the LS pump. This 

ensures that the pressure loss across the orifice is kept 

to a minimum. In order to reduce the energy loss on the 

LS regulator and to further improve the overall effi-

ciency of the LS system, the LS regulator is usually 

designed with a critically lapped spool. However, sta-

bility problems and undesirable interactions amongst  
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loads have been reported (Lantto et al, 1990 and Lantto 

et al, 1991). 

Considerable research has been conducted into un-

derstanding and compensating for stability problems. 

Bitner and Burton, (1984(1)) and Bitner (1984(2)) ad-

dressed the measurement technique of load sensing 

pump parameters for a LS system. This research indi-

cated that two factors, fluid temperature and the system 

operating point, greatly affected the flow gain and 

flow-pressure coefficient of the orifice, the leakage of 

the pump, and the frequency response. Palmberg et al 

(1985) provided a model of a pressure-control pump 

that is used in most LS simulations. It was found that 

the dynamic performance of the pressure-control pump 

was mainly influenced by the pump inductance, and to 
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a lesser degree, by the break frequency and leakage 

coefficient of the pump.  

Kim et al (1988) developed linearized frequency 

domain models that included a stability analysis using 

the Routh-Hurwitz criterion. The model did not consid-

er the damping of the load sensing line and the LS 

pump was only considered as a simple 2
nd

 order sys-

tem. Krus (1988) provided a detailed model of a LS 

system. A general transfer function was presented, 

composed of three subsystems (the pump and pump 

regulator, valve systems, and loads). A stability criteri-

on was established for a simple inertia load. Two main 

instabilities (pump high-frequency instability for small 

valve openings and pump-load low-frequency at large 

valve openings) were described qualitatively. In addi-

tion, two other instabilities (load low-frequency insta-

bility at small valve openings and pump-load high-

frequency instability at large valve openings) were also 

mentioned. 

In the study by Lantto et al (1991) and indeed oth-

ers (Bitner, 1986; Kim and Cho, 1988), the complete 

LS system has been observed to enter into limit cycle 

conditions (a stability problem). Sakurai and Takahashi 

(1997) used a bond-graph model of the LS system to 

investigate overall efficiency taking into consideration 

the dynamic characteristics of the system. It was found 

that there was a point of maximum overall efficiency. 

Simulations by Book and Goering (1997) verified that 

instabilities caused by the inertia load could be elimi-

nated with the addition of damping in the feedback line.  

Erkkila (1999) provided a block diagram of an LS 

system to assist in the dynamic analysis of LS systems. 

An analogue-mechanical model and an analogue-

electrical model for a LS system were also provided. 

Kappl (2001) used experimental methods to obtain a 

semi-empirical model for the variable displacement 

pump with a load sensing regulator and power restric-

tor. Zarotti and Nervegna (1988) addressed the “non-

standard” operation of LS systems. Three-dimensional 

plots of output flow of a single load LS system showed 

the favorable operating range that would be expected.  

A common objective of the aforementioned re-

search using linearization was to generate an under-

standing of the relationship between the LS hydraulic 

circuit parameters (component structure parameters and 

adjustable parameters) and the dynamic response of LS 

systems leading to a design that demonstrated control-

lability and energy efficiency. For example, it is essen-

tial that the LS system be stable over the full range of 

the flow orifice opening. This is difficult to achieve due 

to non-linearities of LS systems. 

Analysis using the various models’ linearization 

operating point had limited effectiveness. The transfer 

function of LS systems and the stability criterion so 

developed include the flow gain and the flow-pressure 

coefficient that are strongly affected by the operating 

point. In reality, the main parameters used in the stabil-

ity analysis (flow gain, Kq, and flow-pressure coeffi-

cient, Kc, of valves) were a function of state variables 

of the system, such as the spool displacement and sys-

tem pressure. Thus, any stability criterion developed 

from transfer functions could only be considered mean-

ingful if all the linearized parameters (Kc, Kq) had “rea-

sonable” values. 

Wu et al (2002(1)) identified three different steady 

state operating regions and their transition regions for a 

typical LS system with an LS regulator made up of a 

critically lapped spool, and presented a set of steady 

state models for solving the operating point locations in 

different operating regions. A precise model of the LS 

system was developed for these regions. 

In order to develop a valid model (i.e. transfer func-

tion) to identify stability in each operating region, it is 

essential that the linearized parameters (flow gain Kcr, 

and flow-pressure coefficient Kqr) of the LS regulator 

be evaluated. The flow gain Kc and flow-pressure coef-

ficient Kq of orifices are usually computed by the well-

known flow equation Merritt (1967): 

  Lsd

2
PPwxCQ 


  

Because the leakage flow through the LS regulator 

is small, (due to a critically lapped spool), and hence 

laminar, the discharge coefficient Cd in the above equa-

tion becomes a function of the Reynolds number and 

hence a function of the flow rate, i.e. 

    Lsd

2
PPwxQCQ 


. 

Therefore, the traditional formulas 
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are invalid for the LS regulator. Wu et al (2002(2)) 

developed an empirical model of the discharge coeffi-

cient Cd(Q) which was used in the calculation of flow 

through the LS regulator. Wu et al (2003) further 

solved the discontinuity problem when applying the 

equation to the null position (x = 0).  

The objective of this paper is to introduce a com-

prehensive nonlinear model of the LS system. Three 

different steady state operating conditions defined as 

“Conditions I, II and III” are discussed. A procedure 

for solving the many nonlinear equations is presented, 

and the governing equations are validated experimen-

tally. Because of the number of equations that are re-

quired to complete the models, only the final transfer 

function forms are presented in this paper. Detailed 

derivations of the transfer functions can be found in 

Wu (2003).  

2 LS System and Component Model 

Figure 1 is a schematic of an LS system with a criti-

cally lapped spool in the LS regulator. The system con-

sists of an axial piston pump with an LS regulator and a 

control piston, an adjustable flow orifice, an LS line 

with a damping orifice and a motor with a load at-

tached. The system operation is governed by three dy-
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namic displacement equations associated with the dis-

placement of the LS spool, xr, the swash plate angle, 

sp, and the rotary speed of the motor, , and four con-

tinuity equations associated with the pump pressure, Ps, 

the control pressure, Py, the load pressure, PL, and the 

load pressure sensed at the LS regulator, PLs. 
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Fig. 1: Schematic of the load sensing system 

2.1 Displacement of the LS Regulator Spool 

Because the flow rates, Qr1 and Qr2, through the LS 

regulator are very small, the steady state and transient 

flow forces can be neglected. The transfer function 

relating the regulator spool position to the Ps –PLs: 
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2.2 Swash Plate Angle 

Kavanagh et al (1987) developed a dynamic model 

that reflects the “back pressure” on the pump due to the 

pump pressure acting on the pistons. The transfer func-

tion based on the non-linear model is found to be: 
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It is noted that sp, sp, Ksps and Kspy ,depend on the 

steady state operating point, sp0 and Ps0. 

2.3 Control Pressure in the Control Piston 

The relationship between the control piston pressure 

Py, the supply pressure Ps, regulator spool position xr 

and the swash plate angle sp is found to be (Wu, 

2003): 

          y y yr r ys s ysp spP s G s K X s K P s K s s    (3) 

where: 
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and (Wu, 2003) 
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2.4 Pump Pressure 

The transfer function relating the pump pressure Ps 

to the swash plate anglesp, regulator spool position xr, 

the control piston pressure Py and the load flow QL is: 

            s s p sp qr1 r cr1 y LP s G s C s K X s K P s Q s    (4) 

where 
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The flow rate through the flow orifice, QL(s), can be 

expressed by the standard linearized formula of the 

orifice equation (Merritt, 1967), since the load flow 

through the adjustable orifice is assumed turbulent. 
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2.5 Load Pressure and Rotary Speed of the Motor 

The transfer functions relating the load pressure PL 

to the load flow QL and the rotary speed of the load  

to the load flow QL are found to be: 
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2.6 Load Sensing Line 

It is assumed that the movement of the LS spool at 

the LS regulator has a negligible effect on the sensed 

load pressure, PLs: thus the transfer function relating 

PLs to the load pressure PL is given by 
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It is now necessary to discuss the nonlinear models, 

linearization of the models and transfer functions of the 

components in the LS system. The linearized equations 

and transfer functions of these components are steady 

state operating point dependent involving sp0, Ps0, xr0, 

Py0, sp0, Ps0 and PL0. The transfer functions generated 

in this section are only valid at a particular steady state 

operating point if and only if the value of these varia-

bles exist at the operating point and are defined. The 

following section will discuss the steady state operating 

conditions, which make these transfer functions valid, 

and will demonstrate the procedure for the calculation 

of the operating point. 

3 Steady State Operating Conditions 

In order to determine if the operating point exists 

and to calculate the value of state variables at the oper-

ating point, the different operating regions must be 

considered to take into account the complete range of 

system operation. For example, when the LS pump is 

fully stroked, Eq. 2 does not apply and the operating 

point sp0 becomes spmax. The pump becomes fully 

stroked because the spool of the critically lapped LS 

regulator in Fig. 1 moves to the right side. The control 

chamber (Py) is exposed to tank (PT) and, consequently, 

control pressure (Py) becomes zero. Therefore, the dif-

ferent operating conditions of the LS system depend on 

the operation of the LS regulator. 

The critically lapped spool design of the LS regula-

tor requires special consideration when evaluating the 

operating point. For the LS system under steady state 

conditions, the time derivatives of the state variables 

are zero. It was shown by Wu that  
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Under steady state the equation for Qr in its func-

tional form becomes 

    r1 r0 s0 y0 r2 r0 y0, , ,Q x P P Q x P  (11) 

Figure 2 shows three possible positions of the spool. 

For a critically lapped LS regulator, one of the orifices 
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or both are always lapped. If the leakage flow through 

either orifice under lapped status is neglected, Eq. 11 

gives rise to the identities 
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Fig. 2: Three operating conditions of the LS spool (I) criti-

cally lapped (II) control chamber charged (III) con-

trol chamber discharged 

  r1 r01 s01 y01, , 0Q x P P   (12) 

  r2 r02 y02, 0Q x P   (13) 

where the subscript “01” in Eq. 12 represents the operat-

ing point with xr0 > 0 (i.e. the “charge” orifice is open). 

The subscript “02” in Eq. 13 represents the operating 

point with xr0 < 0 (i.e. the “discharge” orifice is open). 

Wu et al (2002(1)) described the operation of an LS sys-

tem with a critically lapped LS regulator under three 

different conditions (Condition I, II and III). 

For Condition I: xr0 = 0 (Qr1= 0 and Qr2 = 0); this 

condition is obvious because the valve is critically 

lapped. 

For Condition II: xr0 > 0 (Qr1 = 0); this only occurs if 

Py0 = Ps0. 

For Condition III: xr0 < 0 (Qr2 = 0); this can only oc-

cur if Py0 = 0 and PT = 0.  

The three conditions describe “possible” scenarios of 

the LS regulator with a critically lapped spool under 

steady state conditions in which the flow rates are zero. 

Whether the operating point exists or is stable for each 

condition depends upon equations describing other parts 

of the LS system (i.e. the control piston, pressure control 

pump and the load in Fig. 1), and in particular, the steady 

state control characteristic of the pressure control pump. 

Figure 3, in which the control pressure, Py, is plotted as a 

function of the pump pressure, Ps, and swash plate angle, 

sp identifies the operating region where Condition II or 

III apply. The minimum swash plate angle,spmin, is zero 

and the maximum, spmax, is 0.32 radians for the pump 

studied.  

Condition I cannot be shown in Fig. 3 as there is no 

explicit relationship between Py and Ps for xr = 0. Thus, 

Py0 and Ps0 must be mathematically derived from other 

steady state equations. It is reasonable to expect that the 

solution may be any point in regions (A) and (B) which 

represent steady state operating regions permitted by the 

pressure control pump. However, any solution in region 

(A) does not make physical sense in the LS mode be-

cause Py cannot be greater than Ps under steady state 

conditions. Therefore, only solutions in region (B) can 

be considered for xr = 0. 

Under the critically lapped condition, the pressure 

differential across the flow control valve is equal to, Pd, 

due to xr0 being zero. The load pressure, PL0, the pump 

pressure, Ps0, the swash plate angle, θsp0, and the con-

trol pressure, Py0, can be derived to be 
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Consider Condition II. This condition requires that 

the control pressure, Py, be equal to the pump pressure, 

Ps (see Fig. 3). Possible operating points under Condi-

tion II must be on the line (Py = Ps) and within spmin 

and spmax; this line is also the boundary between re-

gions (A) and (B). Pressures Ps and Py at two terminal 

points can be determined by  
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The specific operating point under Condition II 

must also be mathematically determined by the follow-

ing equation set 
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Consider Condition III. This condition requires that 

the control pressure, Py, be zero. However, Fig. 3 indi-

cates that Condition III (Py = 0) is outside the normal 

steady state operating region (B) of the pressure control 

pump. In fact, Condition III represents the “fully 

stroked” status of the pressure control pump where the 

swash plate angle is limited to the maximum value.  
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Fig. 3: Steady state characteristics of the pressure control pump 

 

This often occurs if the pressure setting (such as Pd) of 

the LS system or the opening of the flow orifice (xv) is 

very large, or the load is overrunning requiring more 

flow than the pump can deliver. 

The load pressure and pump pressure under Condi-

tion III are determined by 

 
p p spmax m mf

L0 2
mm

ml

m

tan1 NA R D T
P

BD
c

B

 



 
  
   

 
 

 (23) 

 

2

p p spmax

s0 L0

d v

tan

2

NA R
P P

C A

 



 
   

 
 (24) 

4 Procedure for Solving for the Steady 

State Operating Point 

This section presents a flow chart of the steps in-

volved to solve for the steady state operating point of 

the LS system (Fig. 4). An operating condition must 

first be assumed - for example - the normal operating 

Condition I (Step (1) in Fig. 4). Equations 14 through 

17 give the steady state operating point directly (Step 

(2)). Then, Steps (3) and (4) determine if the result sat-

isfies the essential conditions. 

It is impossible in practice for the swash plate angle 

to be larger than the maximum value. If the calculation 

result gives this result, this indicates that the LS system 

cannot operate under Condition I. In this case, the LS 

system must operate under Condition III. Therefore, the 

steady state operating point should be calculated by Eq. 

23 and 24. It is noted that the solutions under Condi-

tions I and III do not require an iterative calculation.  

If the control pressure, Py0, computed by Eq. 17 in 

Step (2) is larger than the pump pressure, Ps0, then this 

situation results in a physically unrealizable steady 

state condition. In this case, the LS system must oper-

ate under Condition II. Equations 20 through 22 cannot 

give a direct expression of Ps0, PL0 and sp0 in the same 

way as Condition I and must be solved iteratively (thin 

line box in Fig. 4). 

5 The LS System and the Experiment 

Setup 

In order to validate these models, the experimental 

system shown in Fig. 5 was assembled. A load sensing 

pump and its regulator were connected to a controlled 

servo-valve. The supply to the servo valve was provided 

by a separate pressure source. The pump supplied flow 

to a hydraulic motor with a load that was artificially cre-

ated and controlled by a relief valve in the return line of 

the motor. A sinusoidal signal to the servo valve provid-

ed the required frequency input to the system. Appropri-

ate transducers were carefully calibrated before and after 

each test and provided the required information to the 

data acquisition system. Also included in the experi-

mental setup were a signal generator, a tachometer, a 

signal analyzer, and an oscilloscope. All tests were con-

ducted at a common fixed temperature (35  3
o
C) and 

were repeated several times on separate days to ensure 

data repeatability. Details of the system are provided. 

Since the equations were in transfer function form, 

and because the equations were operating point sensi-

tive, frequency responses were chosen as the form to 

validate the equations. For comparative frequency re-

sponse analysis, it was essential that the input signal  

(the opening of the adjustable orifice, x) be generated 

within a certain bandwidth. The valve chosen for this 

purpose was a two-stage servo valve (model: MOOG 

72-102) with the pilot stage connected to an external 

hydraulic power supply. The relief valve (1) was used 

to create a backpressure on the motor load that was used 
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Fig. 4: Flow chart of justifying steady state operating condition and calculating operating point 
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Fig. 5: Experimental system to determine the frequency response of the LS system 

to adjust the operating point of the LS system. A ta-

chometer (model: KEARFOTT CM-09608007) was 

used to measure the rotary speed of the motor load. Ap-

propriate transducers for measuring the average values of 

the state variables, Ps0, Py0, PL0, xr0, sp0 and QL0, at the 

chosen operating point were installed. The signal genera-

tor provided a dynamic input signal to control the servo 

valve orifice opening and a signal analyzer was em-

ployed to directly obtain the experimental Bode plot.  
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The parameters required for the model were ob-

tained from the experimental system and are listed in 

Table 1 (Appendix A). All parameters with a “*” repre-

sent adjustable parameters. Av is the cross sectional 

area which is proportional to the adjustable orifice 

opening, x, (Note: the orifice of the servo valve was 

rectangular). The pressure differential setting, Pd, the 

damped natural frequency in the LS line, Ls, and the 

resistant torque of the load, Tmf, were adjustable. The 

bandwidth of the experimental system was limited 

(<20Hz) due to the finite bandwidth of the servo valve 

and the limited resolution of the tachometer.  

6 Comparison of Model Predictions and 

Experimental Results 

The transfer functions of the overall LS system re-

lating motor rotary speed, (s), to the adjustable orifice 

opening, Xv(s), were developed for the three operating 

conditions (Wu et al (2003)). It was found that the LS 

system model could be simplified into a 5
th

 order dy-

namic model for Conditions I and II, and a 3
rd

 order 

model for Condition III. Experimentally, motor rotary 

speed,  and adjustable orifice opening, x, were con-

venient variables to enable verification of the LS trans-

fer functions at the different operating conditions. 

6.1 Condition I (xr0 = 0, Ps0 – PL0 = Pd) 

For the experimental tests under Condition I, the op-

erating point of the excitation signal to the servo valve 

was such that the flow rate, QL, was 13 l/min with the 

orifice area, Av, estimated to be 11 mm
2
. The adjustable 

parameters were set to the values shown in Table 2 (Ap-

pendix B) by adjusting the relief valve (1) to a cracking 

pressure of approximately 3.5 MPa. The linearized pa-

rameters, model parameters and the coefficients of the 

system transfer function (Wu, 2003) were determined as 

listed in Table 2. Finally, the poles of the transfer func-

tion that relate the motor rotary speed, (s), to the adjust-

able orifice opening, Xv(s), were obtained. 
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Fig. 6: Comparison of magnitudes between the measured 

and predicted results 

Figures 6 and 7 show a comparison of Bode dia-

grams between the model (predicted, Wu et al (2003)) 

and the measured values. Figure 6 indicates that the 

model is a close representation of the actual system, 

particularly at lower frequencies. The phase shift pre-

diction is somewhat off in the mid frequency range, but 

the crossover frequency prediction at 90
o
 is very close. 

There is a resonance peak near 6 rad/s. This is a result 

of a pair of dominant conjugate poles (s1,2 = -0.6 6j) 

which yield a small damping ratio ( = 0.1). 
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Fig. 7: Comparison of the phase angles between the meas-

ured and predicted results 
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Fig. 8: Comparison of magnitudes between the measured 

and predicted results with a small opening of the 

adjustable orifice 
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Fig. 9: Comparison of the phase angles between the meas-

ured and predicted results with a small opening of 

the adjustable orifice 

For comparison, the frequency responses at a small-

er orifice opening, x, were obtained. A comparison be-
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tween the predicted and measured magnitudes and 

phases are shown in Fig. 8 and 9. A resonant peak ex-

ists near 7 rad/s. This is again a consequence of a pair 

of dominant conjugate poles (s1,2 = -0.5  j7.3) with a 

small damping ratio ( = 0.07).  
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Fig. 10: Root locus of the LS system for Condition II 

A comparison of Fig. 8 and 6 indicate that at the 

smaller orifice opening, x, a higher resonant peak in 

magnitude occurred. It can also be observed that the 

experimental plot of Fig. 8 has a larger scatter com-

pared to Fig. 6. This is because the signal to noise ratio 

at the small opening is larger than that at the larger 

opening; this also has a large effect on the measure-

ment of phase, as can be observed in Fig. 9. What is 

significant is that the model does predict a change in 

both the damped natural frequency and the damping 

ratio, which is consistent with the experimental results.  

6.2 Condition II (xr0 > 0 and Py0 = Ps0) 

Based on the model for operating Condition II, a 

pair of dominant poles exist which are sensitive to the 

operating point and subsequently are affected by the 

opening of the adjustable orifice, x. Figure 10 shows 

how the locus of the pair of dominant poles changes as 

the opening of the adjustable orifice changes. When the 

opening begins to increase (from zero), the dominant 

poles become a pair of complex conjugate poles. The 

corresponding undamped natural frequency is 18 rad/s 

and the damping ratio is very small (the smaller the 

opening, the smaller the damping ratio). When the 

opening increases to a specific value (corresponding to 

a low flow rate near 0.87 litre/min), the damping ratio 

becomes greater than 0.7. When the opening increases 

further, the damping ratio increases to 1. The model 

predicts that another pair of conjugate poles with posi-

tive real parts exist in the high frequency region, (about 

100 ~ 300 rad/s, not shown in Fig. 10) when the open-

ing, x, is large. However, this pair of poles is approxi-

mately cancelled by a pair of zeros near the same loca-

tions. Due to the high frequency of these poles (in the 

region of 100 ~ 300 rad/s), it is difficult to verify their 

presence experimentally. 

In order to verify that the undamped natural fre-

quency of 3 Hz (18 rad/s) exists in the experimental 

system as predicted by the model, the orifice opening, 

x, was set to a very small value (but not zero) and a 

Bode plot using a signal analyzer was attempted. As a 

consequence of the low signal-noise-ratio, reliable data 

could not be obtained to construct the Bode plot in the 

range of frequency desired. Therefore the following 

method was used to indicate where the undamped natu-

ral frequency occurred. When the pump operates, suffi-

cient random noise is present in the system to excite a 

range of frequencies. Using spectral analysis of a signal 

from the system, an indication of the frequencies pre-

sent in the system can be made.  

Figure 11 shows the spectrum of the measured 

pump pressure, Ps. It is evident that several peaks exist 

in the trace. Some of the peaks can be attributed to the 

pump rotational speed and its harmonic frequencies as 

shown in Fig. 11. The peak at 3 Hz (18 rad/s) however, 

is attributed to the damped natural frequency of the LS 

system as predicted by the model. It was observed in 

other experiments that when the orifice opening was 

increased, the peak disappeared in the trace (damping 

ratio increases to 1). Therefore, it was concluded that 

the model did predict the main dynamic characteristic 

(the damped natural frequency) of the actual LS sys-

tem. The actual damping ratio could only be indirectly 

deduced. 

 

Fig. 11: Power spectrum of the pump pressure at Condition II 

6.3 Condition III 

When the LS system operates under Condition III, 

the LS pump acts as a fixed displacement pump since it 

is fully stroked. The circuit effectively becomes a sim-

ple fixed displacement pump/valve/motor configura-

tion. The model for the experimental LS system, is giv-

en in the normalized form as 

  
 

  2

0.000288 3

30 3.4 38.54

s
G s

s s s




  
 (25) 

Equation 25 indicates that the system is stable be-

cause the transfer function has a zero (sz= -3 rad/s), a 

pair of dominant conjugate poles (sp1,2 = -1.7  j 

6 rad/s), and an additional pole (sp3 = -30 rad/s). Fig-

ures 12 and 13 show a comparison of the predicted and 

experimental results in the form of Bode plots. It can be 

observed that the resonant frequency occurs near 

6 rad/s (1 Hz). The comparison indicates that the exper-

imental results have significant scatter at frequencies 

less than 2 rad/s. These results were repeatable but the 

actual reason for poor performance at low frequencies 

has not been adequately explained. This is being further 

explored. At higher frequencies, however, the predicted 
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results follow the trend of the experimental results quite 

closely and show very close correlation to the damped 

natural frequency and damping ratio. 
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Fig. 12: Comparison of the magnitude between the model 

and experimental results under Condition III 
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Fig. 13: Comparison of the phase between the model and 

experimental results under Condition III 

7 Conclusions 

In this paper, linearized models of an LS type sys-

tem with a critically lapped regulator spool were intro-

duced. Because the system operation strongly depends 

on the operating regions and the steady state operating 

point, steady state operating regions labeled as Condi-

tions I, II and III have been defined. The procedure of 

justifying the operating condition and solving for the 

operating point was presented. 

It was found that the LS system model could be 

simplified into a 5
th

 order dynamic model for Condi-

tions I and II, and a 3
rd

 order model for Condition III. 

These models relate to the steady state operating point 

via the flow gain, Kq, the flow-pressure coefficient, Kc, 

and the non-linear dynamic equation of the pump 

swash plate. 

The dynamic models of the LS system were vali-

dated experimentally under operating Conditions I, II 

and III. Bode plot comparisons (and in the case of 

Condition II, results from the frequency spectrum) in-

dicated that the models were able to predict the dynam-

ic performance of the LS system operating in Condi-

tions I, II and III, with the exception of the lower fre-

quency region of Condition III where scatter made it 

difficult to ascertain the results. It was concluded that 

the models could be used at different operating points 

with some confidence in predicting stability and transi-

ent performance. 

Nomenclature 

 Differential of variables [-] 

“0 “  Subscript which represents the oper-

ating point of a variable 

[-] 

Ap Cross-sectional area of pump pistons [m2] 

Ar Cross-sectional area of the LS spool 

in the LS regulator 

[m2] 

Av Orifice flow area [m2] 

Ay Cross-sectional area of the control 

piston of the pump  

[m2] 

a, b Coefficients in the empirical model 

Cd 

[-] 

ai, bi Coefficients of s polynomial associ-

ated with transfer functions 

[s-1],[s-2] 

Bm Damping coefficient of the motor [Nms] 

Br Damping coefficient of the LS spool  [Nm-1s] 

Bsp Simplified constant (damping coef-

ficient) of the control piston and 

swash plate assembly 

[Nms] 

Cd Orifice discharge coefficient [-] 

Cd Fully turbulent flow / Orifice dis-

charge coefficient 

[-] 

cml Leakage coefficient of the motor [m3s-1Pa-1] 

Cp Dynamic gain of the LS pump [m3s-1rad-1] 

cpl Leakage coefficient of the pump [m3s-1Pa-1] 

Dm Volumetric displacement of the mo-

tor 

[m3] 

d Equivalent height of square type 

orifice at the null position 

[m] 

GLs Transfer function of the LS line [-] 

Gr Transfer function of the LS spool 

displacement 

[mPa-1] 

Gs Transfer function associated with the 

pump volume 

[Pasm-3] 

Gsp Transfer function associated with the 

swashplate of the LS pump  

[-] 

Gy Transfer function associated with the 

control piston volume  

[-] 

G Transfer function associated with the 

motor speed 

[radm-3] 

HL Transfer function of the load: 

PL(s)/QL(s) 

[Pam-3s] 

Jm Moment of inertia of the motor and 

load. 

[Nms2] 

Jsp Average total moment of inertia of 

swash plate, yoke and piston assem-

bly 

[Nms2] 

Kc Flow-pressure coefficient [m5s-1N-1] 

Kcr1 Flow-pressure coefficient for the 

“charge” orifice of the LS regulator 

[m5s-1N-1] 

Kcr2 Flow-pressure coefficient for the 

“discharge” orifice of the LS regula-

tor 

[m5s-1N-1] 
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Kd  Linearization coefficient [Parad-1] 

KL Gain coefficient of the load transfer 

function 

[Pam-3s] 

Kpr2 Pressure torque constant [m3] 

Kpr3 Pressure torque constant [m3rad-1] 

Kps Linearization coefficient [s-1] 

Kpy Linearization coefficient [s-1] 

Kq Flow gain of orifices [m2s-1] 

Kqr1 Flow gain for the “charge” orifice [m2s-1] 

Kqr2 Flow gain for the “discharge” orifice [m2s-1] 

Kr Gain coefficient of the LS spool 

transfer function 

[mPa-1] 

Kxr Linearization coefficient [Pam-1s-1] 

Ks Gain coefficient of the pump volume 

transfer function 

[Pasm-3] 

Ksp Angular effective spring coefficient [Nmrad-1] 

Ksps Gain coefficient of the swash plate 

transfer function with respect to the 

pump pressure 

[radPa-1] 

Kspy Gain coefficient of the swash plate 

transfer function with respect to the 

control pressure 

[radPa-1] 

Kyr Gain coefficient of the transfer func-

tion associated with the control vol-

ume to the LS spool displacement 

[Pam-1] 

Kys Gain coefficient of the transfer func-

tion associated with the control vol-

ume to the pump pressure 

[-] 

Kysp Gain coefficient of the transfer func-

tion associated with the control vol-

ume to the swash plate angle 

[Pas2rad-1] 

K Gain coefficient of the load rotary 

speed transfer function 

[radm-3] 

kr Spring coefficient of balance spring 

of the LS spool 

[Nm-1] 

mr Mass of the LS spool [kg] 

N The number of the pump pistons [-] 

Pd Pressure differential setting across a 

simple orifice in the LS system or 

across a PC valve in the LSPC sys-

tem 

[Pa] 

PL Load pressure [Pa] 

PLs Load pressure at the end of LS line [Pa] 

Ps Pump pressure [Pa] 

PT Tank pressure [Pa] 

Py Control piston pressure of the pres-

sure control pump 

[Pa] 

Q Flow rate [m3s-1] 

QL Load flow rate [m3s-1] 

Qml Leakage flow rate of the motor [m3s-1] 

Qpl Leakage flow rate of the pump [m3s-1] 

Qr1 Flow rate through the “charge” ori-

fice 

[m3s-1] 

Qr2 Flow rate through the “discharge” 

orifice 

[m3s-1] 

Re Reynolds number on an orifice [-] 

RLs Flow resistance on the LS damping 

orifice 

[m3s-1Pa-1] 

Rp Moment arm of the pump piston [m] 

Rpy Moment arm of the control piston 

about pump shaft 

[m] 

Tmf Resistant torque of the motor load [Nm] 

Tsp Angular effective spring pretension [Nm] 

VLs Volume in the LS line [m3] 

Vm Volume in the chamber between the 

flow valve (a simple orifice or a PC 

valve) and the motor 

[m3] 

Vp Volume of the pump chamber [m3] 

Vy Volume of the control piston cham-

ber of pump 

[m3] 

Vymax Maximum volume of the control 

piston chamber of pump 

[m3] 

w Rectangular orifice width  [m] 

wr Width of the rectangular orifice for 

the control piston 

[m] 

x Orifice flow opening  [m] 

X Dimensionless orifice opening [-] 

xr The displacement of the LS spool in 

the LS regulator 

[m] 

 Bulk module of the fluid [Nm-2] 

 Laminar flow coefficient of orifices [-] 

 Attenuation coefficient in empirical 

model of Cd 

[-] 

 Modification coefficient of dis-

charge coefficient, or Reynolds 

number 

[-] 

 Rotary speed of the motor [rads-1] 

 Fluid density [kgm-3] 

sp Swash plate angle of the pump [rad] 

 Rotary speed of pump shaft [rads-1] 

L Undamped natural frequency of the 

motor load 

[s-1] 

L0 Zero of the motor load transfer func-

tion  

[s-1] 

Ls Damping break frequency of the LS 

line 

[s-1] 

p0 Zero of the LS pump transfer func-

tion  

[s-1] 

r Undamped natural frequency of the 

LS spool 

[s-1] 

s Break frequency of the pump vol-

ume associated with capacitance 

[s-1] 

sp Undamped natural frequency of the 

swash plate 

[s-1] 

y Break frequency of the control 

chamber 

[s-1] 

ysp Equivalent break frequency [s-1] 

 Damping ratio [-] 
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Appendix A 

Table 1: Parameters for the stability analysis of the LS system 

Components Parameter definition  Symbol Value Unit 

  Bulk modulus   1.38x10
9
 Nm

-2
 

Fluid properties Fluid density  898 kgm
-3

 

  Fluid absolute viscosity at 25
o
C  1.74x10

-4
 m

2
s

-1
 

  Pressure differential of the adjustable orifice Pd 
*
 0.3 ~ 2.5 MPa 

  LS spool cross-sectional area  Ar 3.2x10
-5

 m
2
 

  LS spool balance spring constant kr 6.1x10
4
 Nm

-1
 

LS regulator LS spool mass mr 1.6x10
-2

 kg 

  LS spool damping coefficient Br 2.21 Nsm
-1

 

  Equivalent opening of two orifices at null point dr 2.5x10
-5

 m 

  Equivalent width of two orifices at null point wr 4x10
-3

 m 

  Moment arm of the control piston about the shaft Rpy 5.5x10
-2

 m 

Control piston Cross-sectional area of the control piston  Ay 3.36x10
-4

 m
2
 

  Minimum volume of the control piston chamber Vymin 1.38x10
-6

 m
3
 

  Moment arm of the pump pistons about the shaft Rp 3.48x10
-2

 m 

  Cross-sectional area of pump pistons  Ap 2.07x10
-4

 m
2
 

  Pump outlet volume including the hose volume Vp 2.0x10
-4

 m
3
 

  Pump leakage coefficient cpl 2.0x10
-12

 m
5
s

-1
N

-1
 

  Pump shaft speed  183.5 rad-s
-1

 

Pressure pump Angle coefficient of swash plate spring Ksp 1.42x10
6
 N-m

-2
rad

-1
 

  Angle precompression of swash plate spring Tsp 1.11x10
6
 N-m

-2
 

  Pressure torque constant  Kpr2 2.84x10
-1

  

  Pressure torque constant  Kpr3 4.53x10
-1

 rad
-1

 

  Damping coefficient of the swash plate Bsp 5.5x10
-1

 Nsm 

  Inertia of the swash plate Jsp 1.32x10
-3

 kgm
2
 

  Maximum swash plate angle spmax 3.14x10
-1

 rad 

Adjustable orifice Discharge coefficient Cd 0.63  

  Cross sectional area of the flow control orifice Av * Variable m
2
 

  Damping coefficient of the motor and the load Bm 0.056 Nms 

  Motor inlet volume including the hose volume Vm 1.4x10
-4

 m
3
 

Motor and load Inertia of the motor and the load Jm 1.62x10
-1

 kgm
2
 

  Resistant torque of the load on the motor axis Tmf * 0.2 ~ Nm 

  Motor leakage coefficient cml 2.0x10
-13

 m
5
s

-1
N

-1
 

  Volumetric displacement of the motor Dm 2.57x10
-6

 m
3
rad

-1
 

LS line Damping frequency of the LS line ls * 0 ~ 500 rad-s
-1
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Appendix B 

Table 2: An example of determining parameters for the stability analysis 

 Adjustable  A v Settable  P d T mf  Ls 
parameters 11 mm 2 parameters 0.3 MPa 13.7 Nm 450 s -1 

Operating P s0 P y0 P L0 x r0  sp0 Q L0  0 
point 7.6 MPa 3 MPa 7.3 MPa  -0.006 mm 0.055 rad 13 l/min 53 rad/s 

K q1 K q2 K cr1 K cr2 K c 
Linearized  

parameters 
0.099           
m 2 s -1 

 -0.092       
m 2 s -1 

0.5x10 -12  

m 5 s -1 N -1 
0.8x10-12  
m 5 s -1 N -1 

3.6x10 -12  

m 5 s -1 N -1 

K p K s K L  s  L  sp  r 
Model  

parameters 
2x10 -8           

m 5 s -1 N -1 
5x10 11          

m - 
5 
sN 

9.8x10 9        

m -5 sN 13.8 s -1 18.6 s -1 130 s -1 1954 s -1 

 y  L0  p0  r  L  sp 
290 s -1 0.34 s -1 405 s -1 0.0353 0.06 0.4 

numerator b 3 b 2 b 1 b 0 
Coefficients 4.69x10 -4 0.384 143 2.95x10 4 

of TF Denominator a 5 a 4 a 3 a 2 a 1 a 0 
1.36x10 -6 0.94x10 -2 5.96 803 1127 2.95x10 4 

Poles of TF s 1 s 2 s 3 s 4 s 5 
 -0.6+j6  -0.6-j6 -188 -499 -6248 

 
 


