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Abstract 

The Servo-hydraulic systems are commonly used for motion and force control and exhibit nonlinear dynamic phe-
nomena. One such nonlinear phenomenon is the loss of stability via bifurcations. In this work, a computational and 
experimental investigation is performed to characterize with a higher degree of accuracy the effect of linear feedback 
control on the bifurcation stability of a nonlinear servo-hydraulic system. A low-order model of the experimental test 
stand is first developed, validated and analyzed. It is then shown that the use of an appropriate linear feedback control 
structure can improve the bifurcation stability of a nonlinear servo-hydraulic system. Parametric space investigation is 
conducted to study the bifurcation stability behavior of the system and stability boundaries are developed to demon-
strate the effect of linear feedback on the nonlinear systems. 
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1 Introduction 

Design of servo-hydraulic systems is a challenge 
because of the ever-increasing demands on the per-
formance and economics of the intended systems. Fur-
ther, these systems have been optimized in design over 
so many years that further improvement is harder to 
achieve using the linear system theory. Current practice 
places stringent demands on these systems by requiring 
these systems to be more reliable and robust in a larger 
design space.  

The servo-hydraulic systems also provide for inter-
esting dynamical behavior due to the presence of the 
square root flow nonlinearity and coupling between the 
hydraulic and mechanical response. Also, these systems 
have complex dynamics associated with them due to 
the presence of friction, hard limits, complicated port 
flows, and intricate coupling between various compo-
nents in the circuit. A typical servo-hydraulic circuit 
(Kremer and Thompson, 1998) consists of servo valves, 
orifices, tubes, volumes, pumps, solenoid valves, etc. 
They exhibit modes, which range from very slow (drift) 
to very fast ones (McCloy and Martin, 1980) (as asso-
ciated with the valve spool and flapper dynamics).  

 

This manuscript was received on 20 November 2003 and was ac-
cepted after revision for publication on 15 April 2005 

 

Nonlinear systems such as servo-hydraulic systems 
can undergo loss of stability due to change in system 
parameters. When qualitative change in the dynamics 
occurs due to a small change in a system parameter it is 
broadly classified as a bifurcation. Such phenomena 
usually manifest themselves in the form of fluid pres-
sure and flow oscillations (with accompanying vibra-
tion of mechanical elements). In some settings, this 
behavior is also classified as a self-excited oscillation. 
The emergence of bifurcations is equivalent to loss of 
stability of an equilibrium condition in nonlinear sys-
tems. Various types of bifurcations exist and have been 
investigated by various researchers including Jordan 
and Smith (1999). A numerical investigation of the 
bifurcation stability on a servo-hydraulic system was 
conducted by Shukla and Thompson (2001, 2002). 
Some experimental studies on the stability of servo-
hydraulic systems were also conducted by Kowta 
(2003). 

This ever increasing demand on the performance 
and stability of these systems can be fulfilled by the use 
of appropriate feedback control structures. The two 
primary goals of this work are 1) to study bifurcation 
stability behavior of a specific servo-hydraulic system 
by developing stability boundaries in parametric space 
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and 2) to study the effect of linear controllers on bifur-
cation stability of this system. Specifically, the aim is to 
demonstrate that for linear controllers, increased con-
troller order can be effective in modifying the bifurca-
tion stability behavior of a nonlinear servo-hydraulic 
system. In this work a servo-valve actuator system is 
developed as a hydraulic system test stand (Fig. 1). A 
reduced-order model of this test stand is also developed 
and validated. The bifurcation stability behavior due to 
parametric variation of this test-stand system for a non 
zero flow operating condition is predicted. These re-
sults are also experimentally verified. 

Thus, the main goal of this work is to conduct 
nonlinear parametric bifurcation stability analysis for a 
servo-valve actuator system. Further, the effect of a 
baseline PD controller and a ninth–order linear control-
ler is studied on the bifurcation stability of the servo-
valve actuator system. The essential contributions of 
this research are to:  
1. Demonstrate the effect of control on the bifurcation 

stability of a servo-hydraulic system. It is shown in 
this work that it is possible to extend the bifurca-
tion stability boundary in the parameter space by 
suitable design of a linear feedback control law. 

2. Demonstrate the value of bifurcation analysis in 
characterization of the overall nonlinear stability 
properties of such systems. 

The role of experimental test stand is to verify the 
bifurcation stability result as predicted by the computa-
tional analysis. 

2 Experimental Test Stand Development 

The experimental apparatus is developed in conjunc-
tion with the Parker Hannifin Hydraulic Trainer (Fig. 1) 
which is a low-pressure device developed specifically for 
industrial and university training in fluid power applica-
tions. Due to equipment and cost constraints associated 
with this project, the trainer is used for its hydraulic 
power supply as well as for the servo-valve and its asso-
ciated manifold. The cylinder test stand (Fig. 1) consists 
of a reaction stand for supporting an electro-hydraulic 
cylinder (Krutz, 2001). The electro-hydraulic cylinder 
used in this test stand is made by Parker Hannifin Corpo-
ration (model number 3LXLTS34A7). These cylinders 
are equipped with MTS Temposonics linear differential 
transducer (LDT) (model number LHTRB00U00701V0) 
to measure cylinder position. The servo-valve used for 
this analysis is a flapper-nozzle type servo-proportional 
valve (Merritt, 1967) made by Parker Hannifin Corpora-
tion (model number DY05AFCNA5). The hydraulic 
power supply consists of the gear pump installed on the 
Parker Trainer. To reduce the effect of pump noise in the 
supply pressure, a diaphragm type accumulator (charged 
to 2.76 MPa) is used with a supply pressure of 3.10 MPa. 
As stated in the introduction to this Section, this rela-
tively low value of supply pressure is used as an aca-
demic demonstration and is not intended to replicate any 
specific application of servo-hydraulic system. However, 
the hydraulic circuit itself is commonly found in various 

applications including aircraft hydraulic control systems. 
This is appropriate for the goal of this study, which is to 
conduct parametric bifurcation stability analysis. 

A pair of 2 m (approx. 6 ft) flexible hoses were used 
as a pipeline connecting the hydraulic servo-valve to 
the actuator. Such an arrangement is generally undesir-
able in most practical applications, due to the potential 
of transmission line modes; however, since the goal of 
this study is to characterize fundamental dynamics and 
stability behavior, this does not pose a specific per-
formance limitation as long as the dynamics are mod-
eled with appropriate accuracy. Additionally, accumu-
lators (charged to a nominal value of 1.035 MPa) are 
introduced into the circuit as described further in Sec-
tion 3; the specific goal of this is to make the system 
amenable for control studies by enabling adjustment of 
system natural frequencies (i.e., to within available 
control bandwidth) through reduction of the effective 
system bulk modulus. 

A high-pressure inline filter is used to guarantee the 
cleanliness of the hydraulic fluid. The servo-valve 
current driver card (Parker BD101-24) is controlled by 
a Matlab based real time data acquisition and control 
hardware and software (WINCON 3.2), developed by 
Quanser Consulting (www.quanser.com). The pressure 
signal is measured by means of PCB Piezotronics static 
pressure sensor (model number 1502A02FJ1 KPSIS). 

 

Fig. 1: Servo-hydraulic test stand with real-time control 
hardware 

The servo-valve consists of a flapper-nozzle stage 
and a cylindrical spool stage. The details of operation 
and construction of a typical flapper nozzle servo-valve 
are discussed by several authors including Merritt 
(1967). Generally, the nonlinearities in this valve can 
be due to the nonlinear torque motor, flapper dynamics, 
nonlinear flow through nozzles, nonlinear flow forces 
on flapper, pressure-flow dynamics, spool dynamics, 
clearance in feedback spring and nonlinear port flow in 
the spool. These nonlinearities are inherent to the sys-
tem and their interaction can lead to highly nonlinear 
dynamic behavior of the overall test-stand. The dynam-
ics, control and stability of servo-hydraulic systems 
have been studied in detail by numerous investigators 
some of which include Alleyne and Liu (1999), Burton 
(1975) Blackburn, Reethof and Shearer (1960), Cox 
and French (1986), Foster and Kulkarni (1968), Fuerst, 
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Hahn and Hecker (1997), Kremer and Thomson (1998), 
Lewis and Stern (1962), Maccari (2000), McCloy and 
Matrin (1980), Scheidl and Manhartsgruber (1998), 
Van Schothorst (1997), Viersma (1980), Watton (1988) 
and Yau, Bajaj, and Nwokah (1992). The primary aim 
of this work is to demonstrate a method for accurately 
characterizing the effect of linear feedback control 
structures on the bifurcation stability of a servo-
hydraulic system via experimentation as well as nu-
merical computation.  

3 Reduced-Order Model Development 

A flapper-nozzle servo-valve can be modeled by 
first principles (Merritt, 1967), but preliminary simula-
tion studies showed that flapper dynamics had no sig-
nificant effect on the system dynamics below 800 Hz. 
Thus, a reduced-order model of the servo-valve is de-
veloped. This reduction is based on the physics of the 
system and is developed iteratively based on experi-
mental data. The aim is to approximate the full nonlin-
ear dynamic characteristics of the servo-valve by de-
composing it in two parts (Fig. 2). Based on the simula-
tion studies, it was decided that the two parts consist of 
a linear transfer function from command voltage (V(s)) 
given to the valve amplifier card to the spool position 
(X(s)) of the valve and a nonlinear pressure-flow-
voltage static (i.e., algebraic) characteristic of the form 

( , )valveq q x p= ∆ , where q is the flow through the valve 

for a valve position input of xvalve and pressure differen-
tial p∆ .  

The servo-valve has a flow throughput based on the 
command voltage and the pressure differential across 
the servo-valve. This is referred to as pressure-flow-
voltage characteristics. In order to capture the nonlinear 
nature of the pressure-flow-voltage characteristics of 
the servo-valve, several static tests were conducted. 
These static tests involved studying response of the 
servo-valve for a dummy load (needle valve). The data 
obtained is shown in Fig. 4. Customarily, valve flow is 
modeled as a sharp edged orifice with an appropriate 
laminar to turbulent transition and depends on the pres-
sure differential across the valve and the valve opening 
(Merritt 1967). Further, it was experimentally observed 
that the flow constant for the valve is also a function of 
the command voltage applied to the valve. Based on 
experimental data, the valve flow, q (gal/min) charac-
teristics can be modeled as in Eq. 1: 

 )()(valve psignpVkq ∆∆=  (1) 

where V is the valve input voltage, kvalve(V) is a func-
tion of valve discharge coefficient, hydraulic fluid 
density, nominal valve spool diameter and valve spool 
position. This approach is similar to previous studies in 
which the variable discharge coefficient of the servo-
valve based on the valve position was used (Viall and 
Zhang, 2000). 

The valve is symmetrical and has no measurable 
dead-band. After experimental investigations (Fig. 3), 
the following fifth-order polynomial model for the 

effective kvalve is developed as given in Eq. 2. The effect 
of pressure differential (Fig. 3) is captured by Eq. 1. 

 

Fig. 2a: Nonlinear model decomposition of test stand 

 

Fig. 2b: Servo-valve actuator system- open loop schematic 

 

Fig. 3: Pressure-differential-voltage input–flow throughput 
characteristics of the servo-valve 
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The linear transfer function (voltage input to spool 
position output) representation of the valve is given in 
Eq. 3: 

 
2

( ) ( )
(1 ) (1 )

2π80 2π900

k
X s V s

s s
=

+ +
 (3) 

where k is 0.005 in/V. The servo-valve (Parker 
DYO5AFCNA5) does not have a measurable spool 
position output signal, so an experiment was designed 
with a dummy orifice load to validate the transfer func-
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tion. No other dynamics are observed in the range of 0-
60 Hz. At higher frequencies, the signal to noise ratio is 
very low. 

The line dynamics is the leading cause of limiting 
the system bandwidth in this case since the servo-valve 
is mounted at a distance from the hydraulic cylinder. 
As indicated in the introduction to Section 2, this par-
ticular experimental configuration was incorporated to 
utilize existing hardware, provide portability and re-
duce the cost of the overall experiment. Further, due to 
the distance between the servo-valve and the hydraulic 
cylinder, line dynamics plays an important role in the 
overall stability behavior of the test stand. It is essential 
to generate the loss of bifurcation stability to investi-
gate the effect of various controllers on the system. To 
analyze this, the system needs to include appropriate 
dynamic models of the transmission lines. Theoretical 
models of a single transmission line carrying com-
pressible fluid assume that the wall of the transmission 
line is rigid, flow through the line is laminar, tempera-
ture is constant, and flow is one-dimensional. Various 
investigators have studied line dynamics and their ef-
fects on servo-hydraulic systems including Viersma 
(1980) and Watton (1988). The modal approximation 
(Yang and Tobler, 1991) for the transmission line be-
tween valve and actuator is given in Eq. 4: 
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where Eq. 4 represents the state space realization and pa 
and Qa denote pressure and flow at the inlet of the pipe-
line. pb and Qb denotes the pressure and flow at the 
outlet of the pipeline. The subscript i in the pressure 
and flow states denote the contribution of the ith mode 
related to that state. Also, the dissipation parameter, Dn 
and line impedance constant Zo are given in Eq. 5. 
Also, the values of natural frequency modification 
factor (α ), and damping modification factor (β )  are 
given in Table 1. All other parameters are associated 
with the hydraulic oil (Mobil DTE 24) and a 3/8 in. 
diameter pipeline is used.  
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where o e oc β ρ=  and 2
o πA r= . Also, eβ  is the 

effective bulk modulus, l is the line length, ν is kine-
matic viscosity, and oρ  is the density. The effective 

bulk modulus (air free) is experimentally determined to 
be 480.5 MPa by Kowta (2003). The mass balance of 
the actuator chamber results in the state equations Eq. 6 
of the actuator pressure for both sides of the actuator. 
This neglects (Eq. 6) the effect of external leakage. 

 

)(

)(

cylinder_blb
cylinder_b

e
b

cylinder_ala
cylinder_a

e
a

xAqq
xA

P

xAqq
xA

P

�

�

�

�

++−=

−−=

β

β

 (6) 

where aP�  and bP� are the rate of change of pressure in 

the two chambers of actuator, lq is the laminar leakage 

flow across the cylinder piston, aq and bq  are the flow 

to the actuator chambers, cylinder_aA  and cylinder_bA  are 

the areas of the cylinder piston. The difference in the 
value of areas is due to actuation rod. The effect of the 
accumulators in the transmission line between the 
servo-valve and the actuator is assumed to be accu-
rately reflected by the reduction of the effective bulk-
modulus of the system eβ . Hence the total effective 

bulk modulus of the system under study is given by 
Eq. 7: 
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The model for the electro-hydraulic cylinder has 
two states associated with the cylinder position (x) and 
two states associated with the chamber pressures (p) 
(Scheidl and Manhartsgruber, 1998). The equation of 
motion describing the cylinder dynamics is as shown in 
Eq. 8: 
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The overall nonlinear model of the system includes 
a position and a velocity state for the cylinder/actuator 
(based on Eq. 8), a valve position state (based on 
Eq. 3), a four state (two pressure and two flow states) 
approximation of each pipeline (based on Eq. 4), and 
two pressure states for the cylinder (Eq. 6), It should be 
noted that the total number of the states and the overall 
transfer function will depend on the number of modes 
utilized to approximate the pipeline dynamics. 

Table 1:  Natural frequency (α) and damping modifi-
cation factor (β) for the two-mode approxi-
mation of pipe line dynamics 

Mode # α β 

1 1.06 2.31 

2 1.05 3.38 

 
The servo-valve actuator model schematic is given 

in Fig. 2(b). The closed loop transfer function of the 
servo-valve actuator system (using a nominal PD con-
troller) as observed experimentally using a sine wave 
analysis is given in Fig.4. The frequency response of 
the differential equation model shows two modes (8Hz 
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and 25.5 Hz). These two modes are also visible in the 
experimental observation and hence provide a reason-
able degree of validation of the developed model. Ap-
parently, the 8 Hz mode is related to the dynamics 
associated with the load mass and its interaction with 
the hydraulic fluid stiffness of the cylinder. The 25.5 
Hz mode can be correlated to the first pipeline mode in 
the system model which includes the effect of accumu-
lators. The dynamic behavior of the servo-valve actua-
tor model developed in this study matches well with the 
experimental observations except for difference in the 
numerical and experimental damping values of the 
second mode (Fig. 4). This model is studied for bifurca-
tion behavior in closed loop using two different control 
structures. These studies are discussed in the following 
section. 

 

Fig. 4: Experimental transfer function of the closed loop 
(PD controlled) servo-valve actuator system 

4 Control Studies  

Two types of controllers are investigated; a PD 
(proportional plus derivative) controller and a ninth-
order linear controller are used in this study for their 
effect on the bifurcation stability behavior of the servo-
valve actuator system. All of the studies are conducted 
with the feedback of cylinder position signal measured 
by the LVDT. The effect of control on the bifurcation 
stability (Jordan and Smith, 1999) of the system is 
studied under a constant velocity condition (Shukla and 
Thompson, 2001, 2002). If operation is such that it is 
on a trajectory or flow where the cylinder is moving at 
a constant velocity then it is defined as a constant ve-
locity solution. The advantage of analysis at a point on 
the trajectory other than zero velocity solution is in the 
excitation of the significant nonlinear response of the 
system (i.e., zero input corresponds to the zero 
flow/zero velocity condition). The motivation for these 
control studies is to investigate the effect of controllers 
on the bifurcation stability behavior of the servo-
hydraulic system. This comparison of stability charac-
teristics would help characterize and design controllers 
for robust stability for nonlinear systems. 

The general expectation is that a higher-order linear 
controller, when properly designed, would enhance the 
stability behavior of the nonlinear servo-hydraulic 
system as compared to the PD controller. This conclu-
sion is well-known for linear plants, but nonlinear 
analysis is required to demonstrate a corresponding 
trend for nonlinear systems. Moreover, it should be 
noted that any such trend will be noted in specific cases 
and that general conclusions cannot be drawn. The 
work will characterize this improvement in stability 
behavior in parametric space by experimental as well as 
numerical observations.  

A PD controller is very frequently used in industrial 
control systems. This is a logical first step in analyzing 
the effect of feedback on the system stability. The ef-
fect of PD control is to add a zero to the open loop 
system; from a linear feedback stability standpoint, the 
benefits of an appropriately placed zero are obvious. 
(As a practical matter, such a controller must also con-
tain at least one pole which may be at high frequency; 
as such, ideal PD control must normally be approxi-
mated.) The zero of the controller may be placed using 
a model-based analysis, but it is also possible to em-
ploy a non-model-based approach in which the control-
ler is tuned online.   

The qualitative of change in the stability property of 
the equilibrium point as a parameter is moved is known 
as a bifurcation. This specific behavior of the loss of 
stability leading to a limit cycle oscillation is known as 
a Hopf bifurcation. The Hopf bifurcation occurs when a 
pair of complex eigenvalues crosses the imaginary axis 
as a parameter is moved, provided that some other 
technical conditions hold (Jordan and Smith, 1999; 
Guckenheimer and Holmes, 1983; Seydel, 1994; Stro-
gatz, 2000). Further, if a system goes from an asymp-
totically stable equilibrium to a limit cycle as the pa-
rameter is increased through the critical value indicates 
that the system exhibits a super-critical Hopf bifurca-
tion.  

The results presented next in Fig. 5-7 and Fig. 8-11 
indicate the effect of a varying parameter on the bifur-
cation stability of the overall system by tracking the 
change in the eigenvalues of the system via bifurcation 
analysis. This can be considered to be analogous to the 
root-locus plot for linear systems; in a traditional linear 
system root locus plot, the closed loop system poles 
(eigenvalues) are traced as a function of a system pa-
rameter, normally the open loop gain constant. How-
ever, in this case, bifurcation analysis provides addi-
tional insight by taking into account the parametric 
dependence of the equilibrium point, upon which the 
system Jacobian is dependent. In the eigenlocus plots 
shown (Fig. 5-7 and Fig. 8-11), the x-axis represents 
the real part and y-axis represents the imaginary part of 
the eigenvalues. The parameter(s) under study is high-
lighted in the caption of each figure and the result 
summarized by the identification of the critical fre-
quency of Hopf bifurcation. The effect of increasing 
proportional gain in this system (Fig. 5) is to result in a 
Hopf bifurcation with critical frequency of 14.8 Hz 
which is depicted by the complex conjugate eigenvalue 
crossing the imaginary axis. The effect of increasing 
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derivative gain is to result in the loss of stability of the 
transmission line dynamics mode as shown in Fig. 6. 
Variation of parameters on a two-dimensional grid of 
load mass and proportional gain is shown in Fig. 7. The 
effect of increase in the load mass is to decrease the 
critical bifurcation frequency of the system. The effect 
of increase in proportional gain is to result in Hopf 
bifurcation. 

 

Fig. 5: The effect of variation of proportional gain. Hopf 
bifurcation occurs at Kp=150, Kd=1 –PD controller 
with a critical frequency of 14.8 Hz 

 

Fig. 6: The effect of variation of derivative gain. Hopf 
bifurcation occurs at Kp=100, Kd=63 – PD control-
ler with a critical frequency of 55.73 Hz 

The study of the PD controller showed that some 
control of the bifurcation stability behavior is possible 
by a simple feedback structure. A higher order (ninth-
order) controller for a non-linear plant model based 
upon an operating condition of a 2 volt (10% of full 
scale) command input to the servo-valve with a load 
mass of 45.36 kg (100 lbs) and a supply pressure of 

3.10 MPa (450 Psi) is designed with the general expec-
tation that it would improve the stability of the servo-
valve actuator system. As indicated in the introduction 
to Section 2, the two identical accumulators used to 
reduce the effective bulk modulus of the system, in 
order to facilitate this study, are charged at 1.035 MPa. 
System parameters including load mass and line pres-
sure are selected to demonstrate the loss of stability via 
bifurcations.  

 

Fig. 7: Effect of parameter variation on a grid of parame-
ters (Kp, M)- PD controller. Critical frequency 
value ranges between 5 Hz and 11 Hz depending on 
the value of the load mass 

The compensator design was based on a nominal 
plant under the operating conditions outlined above. 
The performance specifications were selected based on 
a preliminary review of the uncompensated open loop 
Bode magnitude and phase plots. These plots were 
developed using a swept-sine wave simulation experi-
ment (under the aforementioned operating conditions) 
using the reduced-order differential equation model 
outlined in Section 3. Based upon this review, it was 
decided that, with a modest amount of controller effort 
(i.e., in terms of controller frequency response magni-
tude), that a compensated system with at least 30o 
phase margin and a gain margin of 3 db or more could 
realistically be achieved with an open loop bandwidth 
of 8 Hz, the latter figure being roughly equivalent to 
that of the nominal PD-compensated system. Towards 
these goals, a compensator was designed to shape the 
open loop Bode magnitude and phase plots so as to 
meet the assumed performance specifications. First, 
two pairs of complex conjugate zeros were added to 
cancel the nominal plant poles (around 8 Hz and 29 
Hz). In addition to this, several poles were added to 
cut-off the high frequency response, which is generally 
necessary to reduce amplification of measurement 
noise entering in the feedback path (D’Azzo and 
Houpis, 1966). The higher-order control structure pro-
vides greater flexibility in the design of the controller. 
Using the frequency response shaping approach de-
scribed, a controller consisting of four complex poles 
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and zeros and an additional five poles is developed, 
resulting in a ninth-order compensator (Eq. 9). The 
open loop Bode gain and phase plot of the controller is 
shown in Fig. 8. 
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Fig. 9: Effect of varying Bode gain of the controller (Kv). 
Hopf Bifurcation occurs at Kv=220, M=100 lb, 
V=0.2 in/sec-9th order controller with critical fre-
quency of 8.75 Hz 

The effect of increasing the Bode (DC) gain of the 
ninth-order controller is to result in Hopf bifurcation 
with the critical frequency of 12 Hz (Fig. 9). The effect 
of increasing load mass is to result in a Hopf bifurca-
tion with significantly lower critical frequency (Fig. 
10). The effect of variation of parameters on the two 

dimensional space of the compensator Bode gain and 
the load mass is shown in Fig. 11. 

 

Fig. 10: Effect of varying load mass. Hopf Bifurcation oc-
curs at Kv=100, M=600 lb, V=0.2 in/sec.-9th order 
controller with critical frequency of 5.75 Hz 

 

Fig. 11: Effect of varying compensator bode gain (100-250) 
and load mass (50-500 lb) - 9th order controller 
with critical frequency range between 6.5 Hz and 10 
Hz depending on load mass 

5 Stability Boundary in Parameter Space  

The control studies, as discussed in the previous 
section, for the two feedback control structures – a PD 
controller and a ninth-order linear controller – provide 
insight into the effect of various parameters on the 
bifurcation stability of the servo-valve actuator system. 
However, to effectively capture the nonlinear stability 
behavior due to change in the system parameters, it is 
essential to map the stability boundary in the parameter 
space. The stability boundary can be generated for two-
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dimensional grids on the parameter space. These results 
are also experimentally verified. During any such ex-
perimental verification, a parameter set for which the 
system is stable is chosen as a starting point. This start-
ing point results in a constant velocity operation of the 
load mass in closed loop. The parameter is then varied 
in a particular direction on the selected two-dimen-
sional parameter space until the loss of stability occurs. 
For all the cases presented in this paper, the loss of 
stability was due to Hopf bifurcation. Experimentally, 
Hopf bifurcation is manifested as emergence of limit 
cycle oscillations in the position of the electro-
hydraulic cylinder, which in turn leads to large pressure 
oscillations in the system. In practical situations, these 
large pressure oscillations are detrimental to the system 
operation and performance. 

The stability boundary for the PD controlled case is 
shown in Fig. 12 on the parameter space of the propor-
tional gain and the derivative gain for controller. Ex-
perimental results agree with the numerical observa-
tions. Some deviation between the experimental and 
numerical results is attributed to identifying the limit 
cycle oscillations in the pressure signal data above the 
system noise level of 0.034 MPa (5 psi). Stability 
boundary in the space of load mass and proportional 
gain for the PD controller case is shown in Fig. 13. For 
the ninth-order linear controller case, the stability 
boundary is generated in the space of load mass and the 
Bode gain of the compensator (Fig. 14). The level cuts 
of changing the operating condition (constant velocity 
of system) is also depicted in Fig. 14. It is clearly visi-
ble that as the constant velocity is increased the stable 
region in the parameter space shrinks. This behavior is 
attributed to the increasing nonlinear behavior of the 
system as the constant velocity of operation is in-
creased. The experimental result is in agreement with 
the numerical findings as shown in Fig. 14.  

 

Fig. 12: Stability boundary in two-dimensional parameter 
space (Kp, Kd) for load mass=370lb - experimental 
and numerical result –PD control 

In summary, the effect of various parameters on the 
stability boundary of servo-hydraulic systems has been 
demonstrated. The effect of two control structures on 
the stability has also been investigated. These investi-
gations have been conducted by developing stability 

boundaries in two-dimensional parameter spaces. Fur-
ther, it is shown that by designing a linear controller it 
is possible to extend the stability boundary and hence 
increase the stable region of the system. Increase in the 
order of the linear controller is demonstrated to have 
the potential to increase (expand) the stable region of 
the parameter space. This is clearly visible from the 
Fig. 15 which shows the stability boundary in the pa-
rameter space of Bode gain and load mass for the two 
control structures. It is shown that the ninth-order con-
troller results in a larger stable region as compared to 
the PD controller for equivalent operating conditions. 
Thus appropriate design and selection of control struc-
tures can result in an increased margin. This results in 
an increased robustness to bifurcation stability. 

6 Conclusions 

In this work a detailed experimental investigation is 
carried out to develop a reduced-order model of an 
experimental servo-valve actuator system. Based on 
this reduced model, bifurcation studies are conducted 
and stability boundaries are generated for different 
control structures. These results are verified by the 
experimental parametric space investigations. It is 
shown that the loss of stability due to Hopf bifurcation 
is the most common in such systems. Also, the effect of 
two feedback control structures – PD control and a 
ninth order linear control on the stability boundary is 
studied. It is shown that a higher-order linear controller 
can increase the overall relative stability of the nonlin-
ear closed loop system when compared to the PD con-
troller. The higher-order control structure provides 
greater flexibility in the design of the controller. It is 
thus demonstrated that robustness to bifurcation stabil-
ity can be extended by utilizing an appropriate control 
structure. 

 

Fig. 13: Stability boundary in two-dimensional parameter 
space (Mload, Kp) for constant velocity =0.2 in/sec 
and Kd=0.1- experimental and numerical result- PD 
control 
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Fig. 14: Bifurcation stability boundary in the 2-dimensional 
parameter space of load mass and Bode gain of the 
9th order controller. Level cuts of constant velocity 
solution are shown. Experimental data matches 
closely with the numerical result 

 

Fig. 15: A comparison of the two controllers – PD and 
ninth-order for a constant velocity case (0.2 in/sec) 

Nomenclature 

V Voltage input to servo-valve 
q  Flow 

p∆  Pressure differential 

valvek  Valve flow constant 

valvex  Valve spool position 

Dn Pipe-line dissipation parameter 
Zo Pipe-line impedance constant 

eβ  Effective bulk modulus 

oρ  Density  

ν  Kinematic viscosity  

loadm  Load mass 

loadc  Load damping constant 

loadk  Load stiffness 

aP  Pressure associated with volume a 

cylinderA  Cross section area of cylinder 

α Natural frequency modification factor for 
pipe-line dynamics 

β Damping modification factor for pipe-
line dynamics 
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