
Fluid Stiction From a Contact Condition
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Abstract

This paper considers modeling of fluid stiction between two separating plates
that start from a mechanical contact condition. Published experimental work
on initially contacting plates showed significant variations in stiction force
peak values. In order to describe the observed strong force variations with
mathematical models, the models should be quite sensitive to some of the
input parameters of the stiction problem. The model in this paper assumes
that small air bubbles are entrapped between the contact areas of the asperity
peaks and that the fluid film flow between the cavitation bubbles is guided by
Reynolds equation. The proposed model exhibits high sensitivity to initial
bubble size and initial contact force compared to state-of-the art models.
A delay of about 1 ms in the simulated stiction force evolution and the
experiments was found. Potential causes for this discrepancy are discussed
at the end of this paper and an outlook to future work, which can reduce the
discrepancy between the model and experimental results is given.
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1 Introduction

Fluid stiction occurs at the lubricated interface between two bodies from the
onset of a quick separation motion. It can result in very large resistive forces,
hindering any immediate response to the opposing motion. This is a major
drawback in fast switching valves as the fast switching capability of the valves
are essential for accurate and efficient switching [1, 2]. In addition to fast
switching valves, stiction effects in compressor valve technology is known to
cause increased wear and noise [3–5].

In the early studies of fluid stiction Stefan [6] and later Budgett [7] con-
ducted experimental testing and derived some general guidelines regarding
the influence of different parameters on the stiction observations. It was not
until the 20th century, however, that fluid stiction was treated theoretically by
employing mathematical models based on theory of hydrodynamic lubrica-
tion [4, 5]. These theoretical findings showed to be in good agreement with
the experimental findings of Stefan and Budgett, respectively. A series of
work [1,8–12] concerning oil stiction has been published in recent times. This
was mainly motivated by the oil stiction problems in fast switching valves and
suitable stiction models for the purpose of valve design and optimization.

The majority of the published theoretical work about fluid stiction is
based on initial nonzero, fluid-filled, gaps in which the influence of surface
roughness can be neglected. For example, Resch and Scheidl [10] proposed
a fluid stiction model combining the Reynolds equation with cavitating
zones. The pressure in the cavitation zone was assumed to be zero, hence
the pressure in the surrounding fluid was alway non-negative. This stiction
models showed to be in good agreement with the experimental results of
Resch [9]. However, experimental results [9] with plates starting from an
initial mechanical contact condition showed tensile forces of fluid film with
significant variation in the stiction force peak values.

In an effort to describe fluid stiction from contact, Scheidl and Zhidong
[12] proposed two different mathematical models. Both models take basis
in a priori existence of cavitation nuclei in form of small bubbles. The first
model was a Reynolds equation for the gap domain augmented by a Rayleigh-
Plesset bubble dynamics model. However, this model exhibited a very fast
dynamics of bubble growth and violated the basic condition that bubbles
stay smaller than the gap. The second model is based on the hypothesis
that cavitation nuclei are circular voids in the fluid film that can grow and
the flow and pressure of the surrounding fluid film is guided by Reynolds
equation. The model did not include surface roughness, but used an initial gap
height parameter in the sense of an average value for the flow passages in the
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indentations of both plate surfaces. This model showed to be in reasonable
agreement with the observed stiction forces from [9]. However, the model
failed to capture the large variations in the observed stiction forces.

Although much work has already been dedicated to the modeling of fluid
stiction, the stochastic nature of the stiction force with initially contacting
plates is still troubling modern stiction models. Since initial contact of lubri-
cated plates is a common situation suitable models for proper consideration
of stiction in this case is of great practical significance. A thorough under-
standing of the stiction phenomenon can potentially result in the reduction of
large undesirable stiction forces via optimized contact geometries.

In this work a fluid stiction from contact model in combination with a
surface roughness model is proposed. The stiction model is based on the
assumption that bubbles exist a priori in the fluid film and that the crevices of
asperities are preferred places of the cavitation nucleus. A surface roughness
model with only two peaks is taken for simplicity. The two-peak roughness
model is correlated with the asperity contact model of Persson [13]. The
contact model is based on Hertzian theory and should mainly reveal the effect
of the fluid domain. The elastic deformation of the asperities is needed to
consider the interaction of a changing boundary when the contact force is
reduced and elastic contact zones shrink. Tensile stresses in the fluid domain
are possible in this model. The number of bubbles, initial bubble size and the
deformation of asperities are a priori unknown parameters of the model, and
should be identified from experiments. The hypothesis is that the inherent
stochastic nature of these parameters could explain the observed variations
in the stiction forces when the contact plates are separated from an initial
mechanical contact condition.

In the next section, the two-peak surface roughness model is introduced
and compared with the contact model of Persson [13]. The stiction model and
the numerical scheme for solving the pressure evolution in the fluid domain
are subsequently described. The experimental results are described in section
’Model Evaluation with Experimental Validation’ and a comparison of the
simulation model with the experiments is given. The last section describes
a resume and also an outlook for how to improve the stiction model in the
future.

2 Two-Peak Rough Surface Model

The fluid film is assumed to be enclosed between two bodies with a small
annular bubble in the wedge shaped surrounding of the contact zone, see
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Figure 1 Schematic of the two-peak model: psq , squeezing pressure;R, radius of curvature;
∆u, height difference.

Figure 1. For simplicity, the contacting bodies (A and B) are assumed to be
symmetrical and the surface roughness is represented by two asperity peaks
of different height (∆u) and with different radius of curvature (R1 and R2).

A mathematical model for the gap height, which allows control of the
curvature radii and asperity height difference, reads

h = h0 + k1 − k1 | g1(x, y) |n1 sign(g1(x, y))

− k2 | g2(x, y) |n2 sign(g2(x, y)) (1)
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The cell length LCell represents the characteristic wavelength of the

two-peak model, h0 is the lift-off parameter (in deformation direction) and
n1, n2, k1, k2 are geometrical constants. The curvature at asperity peaks and
height difference can be expressed in terms of the geometrical constants and
cell length.
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∆u = 2(k1 − k2) (4)



Fluid Stiction From a Contact Condition 335

Figure 2 Gap geometry due to lift-off (h0) and asperities.

An additional measure for the roughness is the maximum height differ-
ence, i.e., the difference of maximum and minimum values of the gap height
h (see Equation 7). The gap geometry due the asperities and the lift-off (h0)
is shown in Figure 2.

hmax = h0 + 2

(
k1 −

k1

2n1
− k2

2n2

)
(5)

hmin = h0 (6)

∆hmax = 2

(
k1 −

k1

2n1
− k2

2n2

)
(7)

2.1 Contact Geometry

It is not immediately obvious what values are appropriate for the different
roughness attributes; ∆hmax,∆u,R1, R2. However, it is known from litera-
ture [13–16] that rough contacting bodies show a linear relationship between
contact area and load. This linear dependency comes from the random nature
of the asperity shapes, in relation to the two-peak model; the statistical
distribution of peak height and curvature. Thus, in order to find an appropriate
contact geometry a Hertzian contact model is adopted and used to seek an
optimal linearity between contact force and contact area.

In order to find an appropriate contact geometry, contact between both
asperity peaks is considered. The individual asperity peak contact is modeled
as Hertzian contact of two identical spheres with the same curvature as the
asperity peaks, see Figure 3.
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Figure 3 Hertzian contact situation with both asperities in contact (full contact situation).

The contact circle radii and the centre deformations are given by

ai =
3

√
3FCiRi

8E′
(8)

δCi =
2a2

i

Ri
(9)

The reduced Young’s modulus is

E′ =
E

2(1− ν2)
(10)

With contact forces FCi, Poisson’s ratio ν and Young’s modulus E of
the contacting bodies. The geometrical relations allows computing the centre
deformations δCi from the lift-off and peak height difference h0 and ∆u,
receptively.

δC1 = −h0 (11)

δC2 = −h0 −∆u (12)

The total contact area is given by the sum of the contact areas at the two
asperity peaks.

A = π(a2
1 + a2

2) (13)

The total contact force, i.e., the sum of the contact forces can be
represented by an equivalent average contact pressure according to the
formula

psq =
FC1 + FC2

L2
Cell

(14)



Fluid Stiction From a Contact Condition 337

The equivalent average contact pressure can be derived by solving for
the Hertzian contact forces FC1, FC2 in Equation (8) and substituting these
into Equation (14) above. The expression for the equivalent average contact
pressure in its dimensionless form is given by

psq
E′

=

√
16

18

(√
R∗1[sg(−H0)]3 +

√
R∗2[sg(−H0 −∆u∗)]3

)
∆hmax
LCell

(15)
with the scales

Ri = R∗i
L2
Cell

∆hmax
; h0 = H0∆hmax; ∆u = ∆u∗∆hmax (16)

The auxiliary function ‘sg’, in Equation (15), is similar to a Heaviside
function and is used to smother the influence of asperities that are not in
contact. Thus, for any displacement input x, the auxiliary function evaluates
to:

sg(x) =

{
x if x > 0

0 otherwise
(17)

The non-dimensional radii of curvature R∗i , in Equation (15), can be
expressed in terms of the exponents n1, n2 and the dimensionless height
difference ∆u∗ by solving the system of equations; Equation (4) and Equa-
tion (7) for k1 and k2 and inserting these into Equations (2) and (3),
respectively.

R∗1 =
4(2n1+n2 − 2n1 − 2n2)

π2n12n1(2n2 −∆u∗)
(18)

R∗2 =
4(2n1+n2 − 2n1 − 2n2)

π2n22n2(2n1 − 2n1∆u∗ + ∆u∗)
(19)

In order to validate the two-peak model a least-squares method was used
to find the optimal parameter values for n1, n2. Here, the height difference
∆u∗ was chosen to be 0.5, which means that the lower peak is half the height
of the larger peak. Figure 4 shows the obtained linear relationship between the
dimensionless load and contact area. It indicates that the two-peak model can
be brought in reasonable agreement with the theory of rough surface contact.
The linearity is quite good and verifies the potential of the pseudo contact
model.
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Figure 4 Dimensionless contact pressure as a function of the contact area for ∆u∗ = 0.5
and the optimum exponents n1 = 3.55 and n2 = 1.45.

2.2 Comparison with the Persson Asperity Contact Model

The two-peak model is correlated using the asperity contact model of Persson
[13], which reads

psq
E′

= β ε q0 hrms exp

(
− u α

hrms

)
(20)

where

u is the deformation
psq is the contact pressure
E′ is the reduced Young’s modulus
hrms is the surface root mean square roughness
q0 is the roll-off wave vector of the roughness spectrum
ε is a constant (ε ≈ 0.75)
α, β are coefficients.

The Perrson asperity contact model (Equation (20)) is selected as it
has shown to be in good agreement with experimental observation [16, 17]
for non-adhesive interaction and small loads. The majority of surfaces of
engineering interest are self-affine fractal over a wide range of length scales
with fractal dimension df = 2.15 ± 0.15 [18], for which case α ≈ 1 and
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Table 1 Parameter set used in the model of Persson [13]

hrms [µm] 0.5

q0 [m−1] 1.0 ×105

ε [–] 0.75

α [–] 1

β [–] 0.5

β ≈ 0.5. The root mean square asperity height hrms and the wave number of
roughness q0 for a grinded steel surface is found in [18]. The parameters used
in the Perrson model are presented in Table 1.

For the comparison of the two-peak model with the Perrson model, the
interfacial deformation is given as input. Because elastic deformation in the
two-peak model occurs for H0 = [−1; 0), the separation motion u in the
Persson model corresponds to 1 + H0 in the two-peak model. Thus, the
relation between the deformation in the Persson model and the two-peak
model is

u

hrms
=

(1 +H0)∆hmax
hrms

=
1 +H0

h∗rms,1
(21)

Where h∗rms,1 = hrms/∆hmax is the nondimensional root mean square
height of the two-peak model. Through numerical evaluation of the asperity
heights (see Figure 5), it was found to be h∗rms,1 ≈ 0.29.

Figure 6 shows the relation between the nondimensional average contact
pressure psq/E′ and the interfacial deformation u/hrms for the two-peak
model in comparison with the Persson model. It is shown that the models
compare well if a proper value for ∆hmax/LCell (0.04) is set. Although
parameters like hrms of both models and LCell of the two-peak model and
q0 of the Persson model are not directly comparable due to a big difference in
the quality of the surface roughness, Figure 6 still shows a certain conformity
between the models.

The range for contact area shown in Figure 4 and the elastic deformation
shown in Figure 6 deem rather large, if the validity of the Herztian contact
theory is considered; furthermore Persson [13] stresses the fact that elastic
deformation not only comes from the Herztian contact of the asperity peaks,
but also from compression of the base, which is not included in the two-peak
model now. On the other hand, the two-peak model should mainly reveal
the effect of the fluid domain. The elastic deformation is needed to consider
the interaction of a changing boundary of the fluid domain when the elastic
contact zone shrink when the contact force is reduced.
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Figure 5 The total fluid gap height of the two-peak model for n1 = 3.55, n2 = 1.45,
∆u∗ = 0.5. The hrms value refers to the asperity height, which is the complement of the
fluid gap height.

Figure 6 The dimensionless squeezing pressure psq/E′ of the two-peak model and the
Persson model. Two-peak model: n1 = 3.55, n2 = 1.45, ∆u∗ = 0.5, ∆hmax/LCell = 0.04.
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Figure 7 Geometry of the stiction model; bubbles are placed in array with pitch distance
LCell, i.e., at the pendentives around the larger asperity peaks in contact. The origin is placed
at the lower left corner of the cell on the left figure.

3 Stiction Model

In the stiction model it is assumed that the gap is made up of quadratic cells
with an annular bubble in the wedge shaped surrounding of the contact zones.
In this initial study of the stiction model, only the larger asperity peaks are
brought into contact, see Figure 7, which is the limiting assumption of the
two-peak model.

In the cell fluid domain the Reynolds equation is used to model the
pressure evolution. The pressure in the bubble is assumed to decline if the
bubble grows in volume following a polytropic state change model of a gas
volume (Equation 22) with ambient pressure pB,0 in the initial situation, i.e.,
when the bubble has initial volume VB,0.

pB = pB,0

(
VB,0
VB

)κ
(22)

where

VB is the bubble volume
pB is the gas pressure inside the cavitation bubble at volume VB
κ is the polytropic exponent
VB,0, pB,0 are the initial bubble volume and pressure, respectively.

It was found in [12] that the influence of surface tension is only marginal
and thus not included in the current model. This means the pressure at the
fluid-bubble interface (pF in Figure 7) is equal to the bubble pressure pB .
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The formula for the bubble volume is given by Equation (23). The first
term on the right-hand side of Equation (23) is related to the contact geometry
and is derived under an assumption that the contact body surfaces can be
approximated by the curvature of the spheres. The second term represents the
void between the spherical bodies when these are released from contact (i.e.,
when the lift-off parameter h0 is greater than zero).

VB =
π

2R
(r2
B − a2)2 + πr2

Bsg(h0) (23)

If the liquid is assumed to be incompressible then the volume flow rate
must remain the same. The flow at the bubble boundary, QB , is computed by
integrating the fluid velocities along the bubble boundary.

QB =

∫ s=πrB/2

s=0
vn(s)h(s) ds (24)

where

s is a point on the bubble boundary given by the arc length
vn(s) is fluid speed at bubble boundary point s
h(s) is the gap height at position s.

The bubble volume change rate (Equation (25)) is derived by taking the
derivate of the bubble volume (Equation (23)) with respect to time.

dVB
dt

=
2π(r2

B − a2)(rB ṙB − aȧ)

R
+ 2πrB ṙB sg(h0) + πr2

B

d sg(h0)

dt
(25)

The new bubble radius rB(t+∆t) can then be computed at time (t+∆t)

from the continuity relation QB = dVB
dt . The new bubble radius is computed

using the Euler method, i.e., rB(t + ∆t) = rB(t) + ∆t ṙB(t) and making
sure the continuity relation is true at any time.

4 Weighted Finite Cell Method Approach for Solving the
Reynolds Equation

The experimental findings of Stefan [6] and Budgett [7] and the qualitative
rules concerning the influencing problem parameters are in accordance with
the classical hydrodynamic theory [10]. Thus, the Reynolds equation is used
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to model the pressure evolution in the fluid film. The solid bodies at the
interface do not perform any in-plane motion. Then the Reynolds equa-
tion in a Cartesian coordinate system (its dimensional and non-dimensional
counterpart) reads

∂

∂x

(
h3 ∂p

∂x

)
+

∂

∂y

(
h3 ∂p

∂y

)
= 12µ

∂h

∂t
(26)

∂

∂X

(
H3 ∂P

∂X

)
+

∂

∂Y

(
H3 ∂P

∂Y

)
=
∂H

∂τ
(27)

p = prefP ; h = ∆hmaxH; x = LCellX; y = LCellY ;

t = trefτ ; pref =
12µL2

Cell

∆h2
maxtref

(28)

In this paper, a weighted finite cell method (FCM) approach is used to
solve the Reynolds equation. This approach is particularly appropriate for the
stiction problem as it avoids remeshing of the model at each time step due
to a changing boundary of the fluid domain. In FCM the physical domain
(the fluid domain) is embedded into a regular rectangular domain which is
further discretized with a fixed grid of cells using higher-order B-spline basis
functions [19]. An illustration of FCM for the Reynolds equation is shown in
Figure 8. Due to symmetry, only a quarter of the cell is considered.

The finite cells are divided into physical cells, fictitious cells and bound-
ary cells according to their relative position by means of a signed distance
function. Here, the signed distance function is simply given by the circle
function. This approach obviates the need for an explicit formulation of the
boundary; only a simple inside/outside test has to be performed for the corner
points of each integration cell. Furthermore, a quad-tree refinement is applied
to the boundary cells at the bubble-fluid interface in order to guarantee
computing accuracy of the discretized model, see Figure 8.

Like in classical finite element method, the idea of FCM is to find the
best approximation of an analytical solution by minimizing the variational
functional in a finite dimensional ansatz space Vh ⊂ H1(Ω) [20]. This is
accomplished by representing the approximate solution as a linear combina-
tion of ansatz functions or shape functions that span the test space Vh. In this
work B-splines basis functions are used as shape functions, see e.g. [21] for
a definition of these basis functions.

The weak form of the nondimensional Reynolds equation with a Dirichlet
boundary condition along the bubble boundary and homogeneous Neumann
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Figure 8 Schematic of the finite cell method used to solve the Reynolds equation; the
original domain ΩFl is extended to the embedding domain Ω, which is then subdivided into
physical cells, fictitious cells and boundary cells on which a quad-tree refinement is performed.

boundary conditions along the edges (as shown in Figure 8) can be written as
a(P, v) = l(v) with

a(P, v) = −
∫

Ω
∇P TαH3∇v dΩ

l(v) =

∫
Ω

∂H

∂τ
αv dΩ (29)

Since the boundary value problem above is solved on the embedding
domain, a penalty factor, α, is here used to recover the original domain. It
is defined as

α =

{
1 if (x, y) ∈ ΩFl

10−q if (x, y) ∈ Ω\ΩFl
(30)
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In the fictitious domain (Ω\ΩFl), the parameter q should be selected as
small as possible, but large enough to avoid ill-conditioning of the stiffness
matrix.

Since the bubble boundary does not conform to the surface mesh, the
imposition of the Dirichlet boundary condition needs special consideration.
In order to impose a Dirichlet boundary condition on the bubble boundary
a weighted FCM approach is taken as described in [19]. This approach is
taken as it does not require additional boundary meshes. Instead of gener-
ating additional boundary meshes, a weighting function and boundary value
function are used in the weighted FCM [19] to impose Dirichlet boundary
conditions.

The weight function w(x, y) and boundary value function G(x, y) are
expressed in form of implicit functions. For the nondimensional Reynolds
equation these are defined as

w =

(
x

LCell

)2

+

(
y

LCell

)2

−
(

rB
LCell

)2

(31)

G = w +
pB
pref

(32)

There are no unique expressions for the weighting function and boundary
value function. However, the functions have to satisfy; w(x, y) = 0 only on
the Dirichlet boundary, and G(x, y) = pB if w(x, y) = 0.

In this weighted interpolation scheme the numerical approximation Ph is
constructed as

Ph =
n∑
i=1

m∑
j=1

wNi,j(ξ, η)qi,j +G (33)

with B-spline basis functionNi,j and real coefficient qi,j ∈ R. By substituting
the numerical approximation in Equation (29) and testing with v = wNI for
I = 1, . . . ,mn, the governing system of equations Aq = b reads.

A = a(wNJ , wNI) =

−
∫

Ω
(∇wNJ + w∇NJ)TαH3(∇wNI + w∇NI) dΩ (34)

b = l(wNI)− a(G,wNI) =∫
Ω

∂H

∂τ
αwNI dΩ−

∫
Ω

(∇wNI + w∇NI)
TαH3∇G dΩ (35)
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The Reynolds equation is solved at each time τ and for each time the
weighting function and boundary value function are updated according to the
current pressure pB(τ) at bubble boundary and bubble radius rB(τ). The total
stiction force can then be computed as the sum of all the forces; from the fluid
domain, the cavitation bubble and the solid body contact.

5 Model Evaluation with Experimental Validation

For the validation of the stiction model experimental measurements have
been provided by Mrs. Eva Holl from Johannes Kepler University Linz. The
experiments were carried out on a special test rig shown in Figure 9. The
experiments were performed by placing an oil film on the lower plate and
the plates then brought into contact by means of the servo hydraulic drive.
The plates were held at a constant contact force of 20 N for 10 s followed
by a fast separation motion. The experiment was repeated 10 times under the
exact same conditions. The stiction force was recorded with the force sensor
(6) and the gap motion by the eddy current position sensor (1), as depicted in
Figure 9. The diameter of the upper plate (4) was 16.7 mm. The test fluid was
a standard mineral oil based hydraulic fluid with 46 cSt nominal viscosity. It
should be mentioned that the same test rig was also used in the experiments
of [9] and more details on the test rig can be found in the reference.

Figure 9 Fluid stiction test rig. Scheme of mechanical design and photo; components: (1):
position sensor, (2): measuring object for (1), (3): hydraulic cylinder, (4,5): upper and lower
stiction plate, (6): force sensor, (7): frame structure, (8): fluid film, (9): servo-valve.
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Figure 10 Input motion used in the simulation (red) and measured motion of the experiment
(blue). Power-law function h(t) = 0.0021µm/ms8 t8 identified from the the measured
motion.

The main input to the stiction model is the plate separation motion. It
was not possible to use the recorded plate separation motion as input in the
analysis due to measurement noise in the data set. Instead the motion from
the experiment was represented by a power-law model where the parameters
were fitted based on the measured data. The original measured motion and
the fitted regression model for the separation motion is shown in Figure 10.
Further input includes the initial bubble radius rB,0, cell length LCell, and
the asperity heights which is dependent on the contact geometry of the two-
peak model. The measured plate surface roughness values were in the ranges:
Rz : 4− 10µm Ra : 0.6− 1.5µm. These were not uniform and different in
circumferential and radial direction.

Figure 11 shows the experimental stiction force with the corresponding
theoretical stiction force according to the two-peak model. In the experiments
the stiction force increases first (starting from a positive stiction value due the
pre-compression force) and reaches a maximum before it quickly collapses
due to a reduction of flow resistance which allows fluid to fill the gap.
Although, the stiction experiments were conducted under the same test condi-
tions peak force variations of up to 20% appear in the measurements. Various
attempts to reproduce the stiction results have been made by adapting the
bubble size, cell length and the oil viscosity, however, it was not possible to
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Figure 11 Comparison of the simulated stiction force (blue line) with the measured stiction
force (black line).

bring the model in reasonable agreement with the measurements. There was
a consistent discrepancy of approximately 1 ms between the model and the
experimental results. The simulation parameters used for the computational
results in Figure 11 are shown in Table 2.

An explanation why the simulated stiction force curve is faster to develop
than the experimental could be unevenness of the gap profile due to manu-
facturing tolerances and elastic deformation. Although elastic deformations
are very small they may have an influence. It makes the average gap between
the plates non-uniform and the equivalent gap motion may be delayed to the
position sensor signal, which shows the centre deformation of the plates and
includes all other deformations of the actuation system between the position
sensor and the plate contact point. Disregarding the elastic deformations may
lead to an overestimation of the effective plate separation in the early phases.
The release of the elastic deformation when stiction suddenly breaks down
due to forming of cavitation bubbles (at approximately 3 ms in Figure 11)
may also be responsible for the faster force breakdown since the effective
gap opening in this phase is increased by the elastic relaxation process.
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Table 2 Simulation parameters of the two-peak model for the results shown in Figure 11

rB,0 [µm] 60

wB,0 [µm] 7

FC [N] 20

LCell [mm] 1.2

µ [Pa.s] 0.08

E [GPa] 210

∆hmax [µm] 48

∆u [µm] 24

R1 [mm] 2.3

R2 [mm] 8.5

Another major influence is the separation motion, which is the main input
to the model. The approximation by a power-law may fail to represent the
motion characteristics which may be composed of several phases and in
which the interaction between the stiction process and the drive dynamics (the
opening dynamics of servo-valve and the pressure build-up in the cylinder) is
not apparent.

Figure 12 shows the simulated results for various initial bubble size,
but otherwise same parameters as in Table 2. The actual bubble size wB is
apparent from the legend in Figure 12 and it is also illustrated in Figure 7.

The stiction force curve sensitivity to initial bubble radius is particularly
interesting in the light of previous stiction force measurements [12], which
showed high variations of the peak forces from experiment to experiment in
some of the cases with different plate diameter and separation speed. Former
attempt [12] to reproduce this force variation by variation of the initial bubble
size showed that the stiction force curves were fairly unresponsive to the
initial bubble size. The stiction model in this work shows to be much more
responsive to variation in initial bubble size.

Figure 13 shows the stiction response for three different pre-compression
forces given to the model. In each case the initial bubble radius was rB,0 = 60
µm. The dependence of the magnitude of stiction force on the contact force
is explained by the initial film thickness and the actual bubble size wB (see
Figure 7). When the initial Hertz contact deformation increases when contact
force FC is large the indentation increases and the initial film thickness and
actual bubble size decreases. This a direct consequence of the modeling
approach in which bubble is assumed entrapped between the contact areas
of the asperity peaks.
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Figure 12 Simulation results for various initial bubble sizes.

Figure 13 Simulation results for various pre-compression forces.
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6 Summary and Outlook

In this paper a fluid stiction model with surface roughness for stiction of
plates starting from initial contact has been presented. The model assumes
that nucleation bubbles are placed near the solid boundaries (asperities) and
when the lift-off process starts the gas pressure in the these cavitation bubbles
influences the fluid film flow which is governed by Reynolds equation. It
was also assumed that the bubble pressure within the bubbles is uniform and
depends on the bubble volume. The surface roughness profile was designed
such that it was in reasonable agreement with the asperity contact model of
Persson. It is shown that the model is quite sensitive to parameters like initial
cavitation size and contact force, which could help explain the strong force
variations observed from experimental work with initially contacting plates.
However, a discrepancy in the simulated stiction forces and the experimental
results of approximately 1 ms was found and the model could not be brought
in agreement with the experiments. The reason for this discrepancy could
be due to the elastic deformation due to compression of the base. These
effects are not included in the two-peak model. The conjecture is that these
deformations make the gap non-uniform, which may lead to an off-set in
the effective plate displacement to the analog position sensor. Also the faster
force breakdown after the stiction force reaches a maximum may be provoked
by the elastic relaxation process in this phase causing a more rapid drop
in flow resistance into the gap. Furthermore, sensible precaution needs to
be taken when approximating the experimental motion data by a power-law
as the power-law curve is no globally valid approximation and may fail to
represent the essence of the interaction between the stiction process and the
drive dynamics.

In order to improve the stiction model the following aspects should be
considered in the future.

• The power-law motion curve is an important input to the stiction model,
hence modeling of the actuation process may be necessary in order to
justify the results qualitatively.

• In the two-peak model only Hertzian contact of the asperity peaks was
considered mainly to reveal the effect of the fluid domain. However, a
better model for the elastic deformations at the plate interface may be
necessary, or at least to verify the conjecture presented in this paper.

• The simulation model is set to start from an initial contact condition,
i.e. an initial contact force and initial cavitation bubble size. It might
be necessary to consider the squeezing process prior to lift-off. When
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the average fluid gap is very small the squeezing pressure may lead to a
substantial pressure build-up which may influence the initial cavitation
bubble size and might also lead to a small leakage of the fluid film to the
ambiance, which is not included in the current model.

• In the current model zero mass transport was assumed across the bub-
ble/liquid interface. In further studies it might be necessary to study the
influence of convective transport of the bubbles on the results.

• The current set-up most likely includes deformation of non-rigid parts
including the force sensor. This could be improved by placing the
displacement sensor closer to the stiction plates, see Figure 9.
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