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Abstract 

In this paper the problem of experimental control of hydraulic actuators is considered. To deal with mechanical and 
hydraulic uncertainties two different controllers are synthesized: a backstepping controller and a LQR-2DOF controller. 
Experimental results of both implementations are analyzed in the context of practical difficulties, mainly the measure-
ment of acceleration. These results illustrate the main features of these controllers when applied on a hydraulic actuator. 
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1 Introduction 

Hydraulic actuators are largely employed in indus-
try. These actuators have high durability and high 
power density, providing large forces at high speeds 
with a relatively small size, which is an advantage 
when compared to electric and pneumatic actuators. 
For such reasons, hydraulic actuators (and hydraulic 
motors) are used in machine tools, in robot manipula-
tors (Heintze, 1997) and in vehicle suspensions (Fialho 
and Balas, 1998; Wang and Wilson, 2001). However, 
hydraulic actuators present a highly nonlinear behav-
iour (due to the pressure-dependent compressibility of 
the fluid, to the nonlinear flow equations and to the 
friction forces acting on the cylinder), along with 
lightly damped dynamics and parameter variations. 
These characteristics are obstacles for the design of 
adequate controllers, especially in applications that 
require high performance such as, for example, robotic 
systems, since a hydraulic robot will have its behaviour 
dominated by the actuator dynamics. 

In order to overcome these obstacles, many kinds of 
controllers for hydraulic actuators have been proposed 
in the literature. A review of the research on the control 
of fluid power systems was presented by Edge (1997). 
As stated by him, the linearised model has a single pole 
in the origin and two complex conjugate poles badly 
damped. In Guenther et al (2000), it is shown that the  

This manuscript was received on 14 August 2004 and was accepted 
after revision for publication on 15 October 2004 

 

poles and zeros added in the closed-loop by classical 
controllers (like P, PD, PI and PID) do not change 
appropriately the location of the complex conjugate 
poles. Therefore, these controllers achieve only limited 
performance. Furthermore, the robustness requirements 
are hardly achieved. In order to improve the closed-
loop performance, most controllers take into account 
the nonlinear nature of this actuator. In Guenther et al 
(1998), a cascade control was proposed, with the hy-
draulic subsystem being separated from the mechanical 
subsystem and controlled by a variable structure con-
troller. Lyapunov based nonlinear controllers designed 
using the backstepping methodology were first studied 
by Yao et al (1998), who presented only simulation 
results. In Sirouspour and Salcudean (2000), experi-
mental results for such controllers were presented. 
Even though the results were satisfactory, the large 
number of numerical differentiations required may pose 
a problem for practical implementation, because of the 
amplification of noises caused by such derivations. 
Another Lyapunov based nonlinear controller, which 
used a technique similar to backstepping for the design, 
was proposed by Sohl and Bobrow (1999). In order to 
cope with parameter variations, adaptive controllers 
that identify the parameter values on line were used in 
Bobrow and Lum (1995), Rudas et al (2003) and Yao et 
al (2000). All the controllers mentioned above control 
the actuator position.  
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In Jovanović (2002), the backstepping methodology 
was used to design a velocity controller for a hydraulic 
motor, which showed good results in simulations. 
Many other works deal with force control. 

In this paper, the design and experimental imple-
mentation of controllers for hydraulic actuators is con-
sidered. Two different controllers are proposed. The 
first is an alternative backstepping controller, combined 
with feedback linearization. In this controller, the aim 
is to keep a simple control law minimizing the use of 
numerical differentiation (only one is necessary) and 
minimizing the error even in the presence of distur-
bances. The second is a linear two degree-of-freedom 
controller with pole placement minimizing a linear 
quadratic regulator performance index (the LQR-2DOF 
controller). This controller is robust to parameter varia-
tion and provides good disturbance rejection and noise 
attenuation properties. These controllers are tested in an 
experimental setup and the results are compared. Also, 
practical difficulties concerning the measurements of 
the variables to the both controllers are discussed. 

In section 2, both a nonlinear and a linearised model 
of the hydraulic actuator are presented. The backstep-
ping controller is designed in section 3 and the LQR-
2DOF in section 4. In section 5, the experimental setup 
is described. Experimental results are shown and dis-
cussed in section 6. In section 7, the conclusions are 
presented. 

2 Modelling of a Hydraulic Actuator 

The hydraulic actuator shown in Fig. 1 consists of a 
single-rod cylinder controlled by a symmetrical critical-
centre 4-way 2-stage servo valve. 

 

Fig. 1: Servo Hydraulic Actuator 

In Fig. 1, PS is the supply fluid pressure (supplied 
by a high-pressure fluid pump, not shown), P0 is the 
reservoir pressure, P1 and P2 are the pressures in cylin-
der chambers 1 and 2, respectively, Vh1 and Vh2 are the 
initial volumes in chambers (and lines) 1 and 2, respec-
tively, Q1 is the fluid flow from the servo valve to 
chamber 1, Q2 is the fluid flow from chamber 2 to the 

servo valve, M is the mass of the piston and the load 
coupled to the actuator, B is the viscous friction coeffi-
cient, A1 is the cylinder piston cross-sectional area in 
chamber 1, A2 is the cylinder piston cross-sectional area 
in chamber 2, u is the control input (the voltage applied 
to the servo valve), y is the piston position and FL is an 
external force acting on the load. The origin of the 
system (the position y = 0) is chosen to be mid-
cylinder. 

2.1 Nonlinear Model 

When a control input u is applied to the servo valve, 
it causes a displacement of the spool. This displace-
ment, xv, is considered directly proportional1 to the 
control input u, i.e., 

 uKx emv =  (1) 

where Kem is the servo valve gain. 
The displacement of the spool opens the passages of 

fluid to the chambers, causing the flows Q1 and Q2. 
These flows may be modelled by the “equation of flow 
through an orifice”, yielding 
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where K is a hydraulic constant that depends on the 
flow discharge coefficient of the servo valve and on the 
diameter of the orifice2. 

According to the “Continuity Equation”', the pres-
sures in chambers 1 and 2 have the following dynamics 
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where β is the fluid bulk modulus. 
The load dynamics is given by 

 LP FFyByM +=+ ���  (6) 

where FP = A1P1 - A2P2 is the force applied by the pis-
ton on the load. 

Combining the equations above, the nonlinear 
model of the hydraulic actuator is 

                                                     
1 Valve dynamics are neglected. This assumption is acceptable be-
cause the bandwidth of the valve used in this work is much higher 
than the bandwidth of the actuator. As stated by Sohl and Bobrow 
(1999), only minimal performance improvement is achieved by 
including these dynamics in the control design. 

2 Eq. 2 and Eq. 3 are frequently used in literature. However, they are 
valid only for turbulent flow and not for the laminar flow that occurs 
when the valve is almost closed. If one desires to take into account 
this effect, a more complete model should be used (see Jelali and 
Kroll (2002)). 
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Further details on the modelling of hydraulic actua-
tors may be found in Watton (1989) and in Merrit 
(1967). 

2.2 Linearised Model 

The system is linearised around the origin, thus  
y ≅ 0. 

Using the function signum of xv and considering the 
reservoir pressure P0 equal to 0, the flows Q1 and Q2 
may be written as 
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The constants 

 SemQ PKKK =  (10) 
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are defined. In practical applications, the value of KC is 
obtained by identification, rather than calculated by the 
expression given above3. 

Making the changes given above in the nonlinear 
model, the linearised model of the hydraulic actuator is 
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2.3 Uncertainties and Disturbances 

The parameters M, B, A1, A2, Vh1 and Vh2 may be de-
termined with accuracy. However, the parameters β, PS, 

                                                     
3 Eq. 11 results from a simplified model that neglects leakages in the 
valve and, for this reason, its analytical evaluation does not corre-
spond to the value of KC obtained by identification. 

KC, KQ, K and Kem may present variations during the 
operation of the system, such as: 
• the high-pressure fluid pump does not supply a 

constant PS, 
• the presence of unsolved air in the lines and in the 

cylinder chambers decreases the value of β, 
• variations in the temperature of the fluid cause 

variations in the value of β, 
• K and Kem present small variations for different 

openings of the valve, and 
• KC and KQ are valid next to the point of lineariza-

tion. 

FL is considered as a disturbance acting on the sys-
tem. This disturbance may be caused by extra load, by 
static friction and by Coulomb friction (the viscous 
friction is considered in the model). 

3 Design of the Backstepping Controller 

The backstepping controller is designed following 
the procedure described by Khalil (1996). Backstep-
ping is a recursive Lyapunov-based procedure that 
breaks the design problem for the full system into a 
sequence of design problems for lower-order systems.  

The state space representation of the nonlinear sys-
tem described by Eq. 7, with state variables x1 = y,  
x2 = y�  and x3 = FP, is 
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The control objective is trajectory tracking. The 
system output y = x1 must track a reference trajectory 
yd, with derivatives dy� , dy��  and dy��� .  

Defining the errors e1 = x1 - yd and e2 = x2 - dy� , the 

system is rearranged as 
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where e1, e2 and x3 are the new state variables. For this 
new system, the objective is to stabilize the origin, that 
is, to vanish the error. 

Initially, a feedback linearization control input is 
applied. This control input4 is 

 ( ) ( )( )dd21a
dv211
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where ua is the backstepping control input to be deter-
mined. 

Applying the control input u to system (Eq. 14) re-

                                                     
4 Over the domain of interest, 0),,,,h( dv211 ≠yxPPe . 
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duces it to the integrator backstepping form, which is 
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Supposing that the subsystem 
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may be stabilized by a smooth virtual control law 
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where φ1 and φ2 are state feedback gains, yields 
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The eigenvalues of matrix AMF are closed-loop 
poles of the subsystem. The values of φ1 and φ2 are 
chosen accordingly in order to obtain the desired poles. 

For the Lyapunov function V(e) = eTPe, where P is 
a positive definite matrix5, the time derivative is 

 ( ) [ ] L
TTT

L 2,V FF PDPAPA MFMF eeee ++=�  (20) 

If FL is bounded, i.e., ||FL|| ≤ θ, for a positive con-
stant θ, then making 

 QPAPA MFMF −=+T  (21) 

for an adequate choice of the positive definite matrix Q 
leads to 

 ( ) ( )LL ,W,V FF ee ≤�  (22) 

where W(e,FL) is positive definite. Thus, e is bounded6. 
The origin of the nominal subsystem, i.e., the subsys-
tem with FL = 0, is asymptotically stable. 

By adding and subtracting ( ) 3
~1 xM  on the right-

hand side of the function 2e�  in system (Eq. 16) and 
defining the change of variables 33

~xxz −= , which 
represents the error between the virtual control 3

~x  and 
the real control 3x , the equivalent representation of the 
system is obtained  
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5 Matrix P has the form 
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6 Proof of this result may be found in Khalil (1996), chapter 5. 

The objective is to stabilize this system, minimizing 
the errors e and z. For the candidate Lyapunov function 
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the time derivative is 
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Choosing the backstepping control input 
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where c is a positive constant, and considering the 
result (Eq. 22), yields 

 ( ) 0c,WV 2
L <−−≤ zFa e�  (27) 

which shows that the system (Eq. 23) is stable and that 
e and z are uniformly ultimately bounded (Qu and 
Dawson, 1995). The evaluation of the set to which the 
tracking error converges and its relationship with the 
parameter variations is an open problem. 

Substituting Eq. 18 in Eq. 26, yields 
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The combination of Eq. 15 and Eq. 28 gives the 
complete control law for the system. 

For the experimental setup described in section 5, 
whose nominal values of the parameters are given in 
Table 1, two fast poles are chosen, in order to guarantee 
a fast convergence. These poles are p1 = -50 and  
p2 = -400. Therefore, the gains φ1 and φ2 are φ1 = 20000 
and φ2 = 450. Substituting the known values in Eq. 28, 
yields 
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According to this expression, the contribution of p12 
and p22 to the control signal is very small. In fact, it is 
almost imperceptible. Matrix Q is randomly chosen to 
be [1000 0;0 1000], then p12 = 0.025 and p22 = 1.1112. 
The positive constant c is chosen to be 500. 

The signals that have to be measured to implement 
the backstepping controller are the piston position, 
velocity and acceleration, the servo valve spool posi-
tion and the pressure difference. For practical purposes 
the measurement of acceleration is not desired. In par-
ticular, the acceleration obtained from numerical differ-
entiation can lead to bad results due to the presence of 
noise. An efficient way to circumvent this problem is to 
design a controller with similar performance employing 
a reduced number of measured signals. It is possible to 
achieve this goal with a linear control approach. Unlike 
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classical controllers, the LQR-2DOF controller allows 
an optimized pole placement for this system, ensuring 
high performance and being, at the same time, robust to 
parameter variations and external disturbances. 

4 Design of the LQR-2DOF Controller 

The LQR-2DOF controller7 is designed following 
the procedure described by Wolovich (1995). This 
controller allows the closed-loop system to maintain a 
desired response performance while varying the loop 
performance, which means that it is possible to improve 
robust stability, disturbance rejection and noise attenua-
tion, independently of response performance.  

Applying the Laplace Transform in Eq. 12 and sub-
stituting the values from Table 1, the linearised system 
transfer function8 is 
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where G(s) is a transfer function from input to output 
and d(s) is a disturbance signal added to the output. The 
open-loop poles are 0 and -37.5 ± 340.3j. 

 

Fig. 2: Closed-Loop System 

The LQR-2DOF controller has the configuration 
shown in Fig. 2, where the polynomials9  
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7 A linear two degree-of-freedom controller with pole placement 
minimizing a linear quadratic regulator performance index. 

8 In the particular experimental setup used, A1 = A2 and Vh1 = Vh2. For 
this reason, there is not a term depending on PS in the linearised 
system transfer function. In the more general case, one can use a 
control law u(s) = u2DOF(s)+uPs(s), where uPs(s) compensates the term 
depending on PS and u2DOF(s) is calculated according to the procedure 
described in this section. 

9 These polynomials have degrees equal to (deg[a(s)]-1) and k(s) is 
monic. 

are to be determined to achieve the desired closed-loop 
goals. 

The closed-loop system is given by 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )ssCsdsSsysTsy η++= d  (32) 

with 
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 ( ) ( ) ( ) ( ) ( )shscsksas +=δ  

where T(s) is the output response transfer function, S(s) 
is the sensitivity transfer function and C(s) is the com-
plementary sensitivity transfer function. δ(s) is the 
characteristic polynomial, whose 5 roots are the closed-
loop poles. The overall performance of the system 
depends on the ability of its output y(t) to track the 
reference input yd(t) while minimizing the effect of both 
the disturbance signal d(t) and the sensor noise η(t) on 
its behaviour. 

T(s) should guarantee that the output response pre-
sents some desired characteristics, such as a small set-
tling time and no overshoot. 

A choice of arbitrary stable polynomials qm(s) and 
δm(s), such that 

 ( ) ( )sqsq mα=  (33) 

 ( ) ( ) ( )sqss mmδδ =  (34) 

causes zero-pole cancellations, yielding 
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Therefore δm(s) contains the 3 poles that define the 
nominal output response and qm(s) contains the 2 poles 
that only affect S(s) and C(s). 

The 3 poles of δm(s) are chosen using the LQR per-
formance index, defined by 

 ( ) ( )( )∫
∞

+=
0

22
LQR tutyJ ρ  (36) 

where ρ is an weighting factor. The minimization of 
JLQR implies the minimization of both excessive output 
y(t) excursions and control efforts u(t) required to pre-
vent such excursions. The poles of δm(s) that minimize 
the index are found using the Spectral Factorization 
Method. These poles are the 3 negative roots of 

 ( ) ( ) ( ) ( ) ( )scscsasas −+−=∆ ρ  (37) 

for some real ρ > 0. 
In order to choose the closed-loop poles, the root-
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square locus10 of ∆(s), shown in Fig. 3, is used. Accord-
ing to the Fig. 3, the two negative complex conjugate 
poles are far from the real axis and not so close to the 
imaginary axis. Therefore, they have only a small in-
fluence on the output and the system dynamics is domi-
nated by the negative real pole. The system behaves 
approximately as a first order system, with some oscil-
lations. The negative real pole is chosen to ensure that 
the 2% settling time ts is 0.02 s. Thus, this pole11 is 
equal to -200. Consequently, ρ = 3.14×106, the other 
two poles are -105 ± 382j and 

 ( ) 31389800+198949s410 23
m ++= sssδ  (38) 

−250 −200 −150 −100 −50 0 50 100 150 200 250
−500

−400

−300

−200

−100

0

100

200

300

400

500

Real Axis

Im
ag

 A
xi

s

 

Fig. 3: Root-Square Locus of ∆(s) 

In order to guarantee a DC gain of the output re-
sponse transfer function (Eq. 35) equal to 1, 
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S(s) should provide disturbance rejection and C(s) 
should provide noise attenuation. In order to accom-
plish that, |S(jω)| should be minimized over the band of 
frequencies that characterizes d(t) and |C(jω)| should be 
minimized over the frequencies that characterizes η(t). 

An additional desired characteristic for S(s) is that 

 ( ) dB62jmax ≈≤=
∞

ω
ω

SS  (40) 

ensuring robust stability with respect to plant parameter 
variations, as demonstrated by Wolovich (1995). 

In Fig. 4, Bode plots of two different disturbance 
signals d(s) are shown. In the first one the external 
force FL is a step of amplitude 1000N and in the second 
one FL is a sine wave of amplitude 1000N and fre-
quency 1 Hz. It can be seen that the disturbance signal 
is characterized by low frequencies. The noise η(t) in 
this system is characterized by high frequencies. Thus, 
the desired behaviour for S(s) and C(s), considering 
that they are complementary and not independent, is 

                                                     
10 The root-square locus is an s-plane plot of all roots of ∆(s), as ρ 
varies from 0 to ∞. 

11 For a first order system, ts = 4τ, where τ is the system time con-
stant, and the only pole is given by -1/τ. 
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Fig. 4: Bode Diagram of S(s) and d(s) 

The polynomial qm(s) is chosen to be s2+400s+39900 
(the poles are -190 and -210). This choice guarantees an 
acceptable behaviour for S(s) and C(s), as seen in Fig. 4 
and Fig. 5. Using the value of α obtained in Eq. 39, 

 ( ) 707146467089191772 2 s++ssq =  (42) 
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Fig. 5: Magnitude Diagram of S(s) and C(s) 

The polynomials h(s) and k(s) are obtained solving 
the so-called Diophantine equation 

 ( ) ( ) ( ) ( ) ( )shscsksas +=δ  (43) 

Thus 

 ( ) 707146463694861342 2 s+-ssh =  (44) 

 ( ) 2307817362 s++ssk =  (45) 

The LQR-2DOF controller is composed by poly-
nomials (Eq. 42, 44 and 45). The only signal that has to 
be measured to implement this controller is the piston 
position. 
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5 Experimental Setup 

In this section, the particular system where the ex-
perimental implementation of the controllers was car-
ried out is described. This hydraulic system is installed 
on LASHIP (in the Federal University of Santa Ca-
tarina, Brazil). 

The experimental setup consists of: 
• a symmetric double-acting-double-ended cylinder, 
• a servo valve and its electronic card, 
• position transducers, 
• temperature transducers in each cylinder chamber, 
• pressure transducers in each cylinder chamber, 
• a DS1102 board, responsible for the data acquisi-

tion and the control signal generation, and 
• a computerized hydraulic power and conditioning 

unit, which maintains the fluid at the required con-
ditions. 

The nominal parameters of the system are given in 
Table 1. These parameters were obtained from manu-
facturers and experimental data. Since the cylinder is 
double ended and symmetric, A1 = A2 and Vh1 = Vh2. 

Table 1: Nominal Parameters 
Parameter Nominal Value 
M 20.66 kg 
B 316 Ns/m 
A1 7.6576×10-4 m2 
A2 7.6576×10-4 m2 
Vh1 4.882×10-4 m3 
Vh2 4.882×10-4 m3 
β 109 N/m2 
PS 107 N/m2 
KC 1.46×10-11 m6/VsN 
KQ 1.167×10- 4m3/Vs 
KKem 3.97×10-8 m4/VsN0.5 

 
The saturation limits for u are -10V and 10V and for 

y are -0.5 m and 0.5 m. 

6 Experimental Results 

The backstepping controller and the LQR-2DOF 
controller were tested in the experimental setup de-
scribed in section 5, using the Euler integration method 
with a fixed step of 1ms. The control algorithms were 
developed using Matlab/Simulink and then loaded into 
the DS1102 board. All measured signals were filtered 
by low pass filters with cut-off frequencies of 100rad/s, 
due to the presence of noise. The signals obtained by 
numerical differentiation (piston velocity and accelera-
tion) were also filtered, since the differentiation process 
amplifies the noise. 

During the operation of the system, PS presented 
variations of ±30% of its nominal value. The fluid 
temperature was kept between 40 and 45 degrees Cel-
sius, consequently, small changes in β were expected. 

The experimental results are presented in Fig. 6, 
Fig. 7, Fig. 8 and Fig. 9. In each figure, the first plot 

shows the output response, the second plot shows the 
tracking error and the third plot shows the control in-
put.  

6.1 Sine Wave Tracking 

In Fig. 6, the reference yd is a sine wave with fre-
quency 0.5 Hz, varying from -0.4m to 0.4m. The 
maximum error for the backstepping controller is 
3.5mm, while the maximum error for the LQR-2DOF 
controller is 11mm. 
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Fig. 6: Sine Wave Tracking (0.5Hz) 
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Fig. 7: Sine Wave Tracking (2Hz) 
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In Fig. 7, the reference yd is a sine wave with fre-
quency 2 Hz, varying from 0.3 m to 0.4 m. The maxi-
mum error for the backstepping controller is 4.5 mm, 
while the maximum error for the LQR-2DOF controller 
is 10 mm. In both cases, there is no phase lag and the 
control signal is smooth.  

6.2 Step Response 

In Fig. 8, the reference yd is a sequence of steps, 
each one with amplitude 0.2 m. In this case, there is a 
saturation of the control signal, i.e., the actuator moves 
with maximum velocity. Not considering the saturated 
portion, the LQR-2DOF controller presents overshoot 
of 20 mm, while the backstepping controller does not 
have overshoot. 
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Fig. 8: Step Response 

6.3 Polynomial Trajectory Tracking 

In Fig. 9, the reference yd is a smooth polynomial 
trajectory, varying from -0.4 m to 0.4 m. The maximum 
error for the backstepping controller is 4 mm, while the 
maximum error for the LQR-2DOF controller is 6mm. 

Considering these results, it follows that both con-
trollers provide good trajectory tracking for low fre-
quency sinusoidal inputs, step inputs and polynomial 
inputs, although the output response obtained with the 
LQR-2DOF presented in all cases a slightly bigger 
tracking error than the output response obtained with 
the backstepping controller. Nevertheless, these errors 
(when compared to the trajectories) are not very sig-
nificant for many applications. Furthermore, both con-
trollers show robustness to parameter variations, since 
the experiments were performed in non-nominal condi-
tions (variations in PS and β). In the actual stage of this 
work, the robustness to load variations was not verified 
due to limitations in the experimental set-up. 
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Fig. 9: Polynomial Trajectory Tracking 

7 Conclusions 

In this paper, the control of hydraulic actuators was 
presented. Two main aspects were considered: the 
robustness problem and the practical implementation 
problem. The experimental results show that the back-
stepping technique is a good way to improve high per-
formance and to reduce tracking errors for the consid-
ered system. However, the complexity of the controller 
leads to a practical restriction: the acceleration meas-
urement. The LQR-2DOF controller offers an efficient 
way to guarantee robustness and performance and is 
simpler to implement. The experimental results show 
that its performance is comparable to the backstepping 
controller performance, with a slightly bigger error. 

The problem of friction compensation can lead to 
steady state errors and, as pointed out by some authors, 
limit cycles may occur. In the experimental results the 
relation between friction and these phenomena was not 
observed. Depending on the required performances this 
problem needs to be addressed. 

Acknowledgements 

The authors would like to thank the anonymous re-
viewers for their helpful comments and for the recom-
mended references on uniformly ultimately bounded 
stability and on the mathematical model of the flow. 



Design and Experimental Evaluation of Position Controllers for Hydraulic Actuators: Backstepping and LQR-2DOF Controllers 

International Journal of Fluid Power 5 (2004) No. 3 pp. 39-48 47 

Nomenclature 

A1 cross-sectional area in chamber 1 [m²] 
A2 cross-sectional area in chamber 2 [m²] 
B viscous friction coefficient [Ns/m] 
FL external force acting on the load [N] 
FP force applied by piston on load [N] 
K flow discharge coefficient [m3/sN½] 
Kem servo valve gain [m/V] 
KC flow-pressure gain [m6/VsN] 
KQ flow gain [m3/Vs] 
M mass of piston and load [kg] 
P0 reservoir pressure [N/m²] 
P1 pressure in cylinder chamber 1 [N/m²] 
P2 pressure in cylinder chamber 2 [N/m²] 
PS supply fluid pressure [N/m²] 
Q1 fluid flow: servo valve - chamber 1 [m3/s] 
Q2 fluid flow: chamber 2 - servo valve [m3/s] 
u voltage applied to the servo valve [V] 
Vh1 initial volume in chamber 1 [m3] 
Vh2 initial volume in chamber 2 [m3] 
xv displacement of servo valve spool [m] 
y actuator piston position [m] 
yd Reference trajectory [m] 
β fluid bulk modulus [N/m²] 
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