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Abstract

The hydraulically driven quadruped robot has received extensive attention
from many scholars due to its high power density and adaptability to unstruc-
tured terrain. However, the research on hydraulic quadruped robots based on
torque control is not mature enough, especially in the aspect of multi-rigid
body dynamics. In this paper, the most commonly used gait trot is selected as
the research object. First, the multi-rigid motion equation of the quadruped
robot is established by the spin recursion method based on Lie groups.
Next, the Lagrange multiplier is used to represent the constraint force to
establish the 12-degree-of-freedom inverse dynamics model of the quadruped
robot’s stance phase. And the hybrid dynamics method is used to reduce the
dimension of the inversion matrix, which simplifies the solution process of
the dynamics model. Then, the trajectory of the foot is planned. Through the
analysis of the simplified model, it is concluded that the gait cycle and the
initial position of the stance phase are important factors affecting the stability
of the trot gait. Finally, the controller framework of the quadruped robot is
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introduced, and the effectiveness of the algorithm designed in this paper is
verified through the co-simulation of the trot gait. The co-simulation results
show that the inverse dynamics algorithm can be used as the feedforward of
the control system, which can greatly reduce the gains of the PD controller;
the robot has good compliance and can achieve stable trotting.

Keywords: Hydraulic quadruped robot, compliance control, multi-rigid
body dynamics, hybrid dynamics, co-simulation.

1 Introduction

After decades of development, robots can replace humans to complete some
tasks, such as rescue and disaster relief, and investigation. Compared to
wheeled robots and crawler robots, quadruped robots are valued by sci-
entific research institutions in various countries because of their ability
to adapt to unstructured terrain. According to the classification of driving
methods, quadruped robots can be divided into electric motor driving and
hydraulic driving. Because hydraulic driving has the characteristics of high
energy density, fast response speed and strong load capacity, it has attracted
wider attention. In recent years, many hydraulic quadruped robots have
appeared, among which Bigdog is the most representative [1, 2]. Bigdog
can complete difficult movements and resist lateral interference, but the rel-
evant organization has not disclosed its structural design and related control
algorithm.

Historically, robotic arms and legged robots have mostly adopted position
control methods. Because the contact dynamics are difficult to fully consider
in the position control system, the interaction between the robot and the envi-
ronment needs to be carefully considered in the kinematic space. Although
position-controlled robots can already complete some specific tasks, for
legged robots, when facing unstructured terrain, non-smooth contact dynam-
ics and unavoidable impacts will cause the robot to lose balance. When the
robot interacts with the environment, controlling the torque of the robot joints
and the contact force between the robot and the environment is crucial. There-
fore, force-controlled robots are more in line with our needs. Hogan calls this
robot-environment interaction impedance control [3]. Impedance control is
a typical active compliance control, which can be divided into force-based
and position-based. For humans, research shows that when humans interact
with the environment, the antagonistic action of muscles can control the
torque of joints, which is equivalent to active compliance control [4, 5].
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However, active compliance control has a delay of tens of milliseconds [6],
which requires certain elastic elements to protect the actuator system during
the delay, e.g. human skin soft tissue and tendons, which is called passive
compliance control. Therefore, the existence of active compliance control and
passive compliance control is a prerequisite for the ideal interaction between
the robot and the environment. In this paper, inverse kinematics feedforward
link and PD controller are used as active compliance control modules, and
the mechanical spring damping of the calf of the robot is used as passive
compliance control module.

In recent years, research on quadruped robots based on force-based com-
pliance control can be divided into two aspects. One aspect is the research
of series elastic actuator (SEA), that is, elastic elements and actuators are
connected in series, which can fully play the role of passive compliance.
Most motor-controlled quadruped robots use SEA, such as StarlETH [7, 8];
the other aspect is the research of active compliance control strategies, such
as hydraulic quadruped robot HyQ [9, 10]. For hydraulic quadruped robots,
due to the rigidity of hydraulic transmission, SEA will greatly reduce the
bandwidth of the actuator [9], so we no longer consider SEA. For force-
based active compliance control, there are two control strategies, namely
virtual model control and Inverse dynamics feedforward combined with PD
control. Most of the quadruped robots use the former [11, 12], but this method
ignores the dynamics characteristics of rigid bodies, and a set of determined
controller gains and weights can only be used in a specific situation [8],
which is not conducive to the robot’s adaptation to different environments;
the inverse dynamics model takes into account the inertia parameters of
the various components of the body, and it is easier to accurately calculate
the driving torque of the joint and the contact force at the foot. Only [10]
mentioned this method in the field of hydraulic quadruped robots, but did
not explain how to efficiently build a multi-rigid body dynamics model of a
quadruped robot and improve its solution efficiency. This is also the problem
addressed in this paper.

The trajectory of the foot and the selection of gait parameters are very
important for the stable motion of the robot. In terms of trajectory planning
of quadruped robots, central pattern generators (CPG) is the most widely
known [17–19]. Related researchers use nonlinear oscillators to synthesize
foot trajectories. However, it is difficult for CPG to incorporate online
feedback, which is not conducive to further improving the robot’s motion
ability [20]. Barkan U proposed an analytical trajectory generation based on
the zero moment point (ZMP) to realize the trot gait of HyQ, but in order
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to ensure that the ZMP is in the support area, the duty cycle of the trot gait
is greater than 0.5 [20]. The trajectory generation designed in this paper can
be used for trot gait with a duty cycle less than or equal to 0.5. Through
the analysis of the simplified model, the key gait parameters that affect the
stability of the trot are found, and the stable trot of the robot is realized
without being restricted to the ZMP method.

The contributions of this article have two aspects: the main contribution is
to efficiently establish the multi-rigid body dynamics model of the quadruped
robot, and combine the Lagrange multiplier method and the hybrid dynamics
method to reduce the amount of calculation. The designed inverse dynamics
algorithm is used as the feedforward of the controller, which greatly reduces
the gains of the PD controller and realizes the active compliance of the robot.
On the other hand, through theoretical analysis, it is concluded that the gait
cycle and the initial state of the stance phase are the key factors affecting
dynamic stability. The proposed trajectory generator can realize the stable
trot of the robot.

This paper is divided into 6 parts: in Section 2, the forward and
inverse kinematics of the quadruped robot are analyzed, and the multi-rigid
body dynamic equation of the quadruped robot is established by using the
spin recursion method based on Lie groups and algebras. In Section 3, a
12-degree-of-freedom inverse dynamics model of the robot is established.
The hybrid dynamics method is used to reduce the dimension of the inverse
matrix and simplify the solution process. The gait generator is introduced in
the Section 4. In Section 5, the proposed inverse dynamics algorithm is used
as the feedforward of the force controller. And the effectiveness of the related
algorithm is verified by co-simulation. Section 6 summarizes the paper and
proposes future research plans.

2 Multi-rigid Kinematics and Inverse Dynamics Analysis of
the Quadruped Robot

2.1 Kinematics Analysis Based on Floating Body

In [13], we made a detailed discussion of the robot single-leg system, estab-
lished a robot single-leg kinematics and dynamics model, and optimized the
single-leg structure by analyzing the natural frequency. But for quadruped
robot movement, the inertia parameters of the trunk are very important, so the
influence of the trunk cannot be ignored. Featherstone defines floating body
as follows [14]: there is no constraint between the centroid and the inertial
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Figure 1 Kinematics model of our quadruped robot. M is the inertial coordinate system, N
is the body coordinate system of the trunk, and M and N are connected by a virtual 6-degree-
of-freedom joint. Points A to D are the hinge point and end point of the RF leg. θ1, θ2, θ3 are
the angles of the joints, and l1, l2, l3 are the dimensions of the connecting rods.

coordinate system, and there is no corresponding drive, which means that
the body has 6-degree-of-freedom relative to the inertial coordinate system;
for a quadruped robot, its trunk is a floating body. According to [14], a
virtual 6-degree-of-freedom joint can be used to connect the inertial system
to the trunk. The structure of the four legs of the robot are completely
the same, namely the left front leg (LF), right front leg (RF), left hind
leg (LH), right hind leg (RH), and the specific structural parameters and
configuration method of the legs refer to [13]. To facilitate the kinematics
analysis, we assume that the legs in the stance phase are strictly in contact
with the ground without sliding, and a simple model as shown in Figure 1 is
established.

According to the geometric relationship shown in Figure 1, we can have

(MRN )−1(MrMD −M rMN )−N rNA =N rAB +N rBC +N rCD (1)

According to the joints rotation angles and the dimensions of the
connecting rods, equation (1) can be obtained from positive kinematics

NrAB +N rBC +N rCD =

 l2 sin θ2+l3 sin(θ2 + θ3)

(l1 + l2 cos θ2 + l3 cos(θ2 + θ3)) sin θ1

−(l1 + l2 cos θ2 + l3 cos(θ2 + θ3)) cos θ1


(2)

In the inertial coordinate system, the position of N and D can be recorded
as M rMN = [xn yn zn]T and M rMD = [xd yd zd]

T. In the body coordinate
system, the position of hinge point A can be recorded as N rNA = [a b c]T.
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Then, we can get

(MRN )−1 •

xd − xnyd − yn
zd − zn

−
ab
c


=

 l2 sin θ2+l3 sin(θ2 + θ3)
(l1 + l2 cos θ2 + l3 cos(θ2 + θ3)) sin θ1
−(l1 + l2 cos θ2 + l3 cos(θ2 + θ3)) cos θ1

 (3)

Accurately obtaining the inverse kinematics solution is an indispensable
part of inverse dynamics modeling. For trajectory planning, we always think
that M rMD and M rMN are definite, and then we can get the inverse kinemat-
ics solution according to Equation (3). Let the left side of Equation (3) be
H = [h1 h2 h3]T, and the inverse solution isθ1θ2
θ3

 =

 arctan(h2/h3)

arctan(h1/P )− arccos((P 2 + h21 + l22 − l23)/(2l2
√

(P 2 + h21))
arccos((P 2 + h21 − l22 − l23)/2l2l3)


(4)

where P = (
√
h22 + h23 − l1)2.

2.2 Inverse Dynamics Analysis of the Robot

The quadruped robot is a multi-rigid body dynamics system with a floating
body. After considering the virtual 6-degree-of-freedom of the floating trunk,
there are 18 degrees of freedom. The swing leg needs to reach the planned
foothold accurately, and the swing leg in the air does not interact with the
environment. According to the method in [8], we adopt the position control
strategy for the swing leg; the stance leg interacts with the environment while
supporting the body movement so the force control strategy is adopted for
the stance leg. Because the stance legs and the trunk occupy most of the mass
of the robot, the 2 legs in the swing phase can be ignored. In this way, the
degrees of freedom have become 12, which are 6 virtual degrees of freedom
of the trunk and 6 active degrees of freedom of the 2 stance legs.

Due to the existence of floating body and too many degrees of freedom in
the system, the traditional Lagrange equation, Rolls equation, etc. are more
troublesome to use, which will bring a large amount of calculation and is
not conducive to programming. In the case of a large number of degrees of
freedom, Newton Euler’s recursion method is usually used to establish the
dynamics equations of the system, but Newton’s Euler equation are expressed



Force-based Active Compliance Control of Hydraulic Quadruped Robot 153

Figure 2 Dynamics model of our quadruped robot. M is the inertial coordinate system, The
black coordinate system represents the joint coordinate system, and the green coordinate sys-
tem represents the rigid body centroid coordinate system; li({i|1 = i = 5, i ∈ Z}) represents
the robot geometric parameters; qi({i|1 = i = 6, i ∈ Z}) represents the 6 generalized
coordinates of the trunk; qi({i|7 = i = 12, i ∈ Z}) represents the generalized coordinates
of the 2 stance legs; mi and Ii({i|1 = i = 7, i ∈ Z}) represent the mass and inertia tensor
of each component; According to the definition in [15], Si({i|1 = i = 7, i ∈ Z}) is called
screw axes. Using the representation method in the joint coordinate system can reduce the
calculation amount [14], at this time, Si({i|2 = i = 7, i ∈ Z}) = [0 0 1 0 0 0]T. The trunk
is connected to the inertial coordinate system through a virtual 6-degree-of-freedom joint, i.e.
S1 = I6×6.

using 3D vectors, which is still more complicated [14]. Featherstone [14]
and Kevin [15] used 6D vectors to analyze the kinematics and dynamics
of multi-rigid-body systems, that is, the recursive dynamics of spins based
on Lie groups and algebras. Compared with the 3D vector, the 6D vector
representation greatly reduces the number of algebras and makes it easier to
efficiently obtain the system’s equations of motion. The derivation process of
the inverse dynamics equations in this paper is under the system of [14]. To
facilitate the derivation, we build a simple model as shown in Figure 2.

The most important parameters in the dynamics equations are the mass
and inertia tensor. Because the recursive calculation is performed in the joint
coordinate system, the rotation matrix is used to transform the inertia tensor
into the joint coordinate system: I0i = RTIiR, and R ∈ SO(3). The spatial
inertia tensor is used to represent the mass and inertia tensor of the rigid body

Ici =

[
I0i +mi[ri][ri]

T mi[ri]
mi[ri]

T miIi

]
(5)

where [ri] is the antisymmetric matrix of the position vectors of the two
coordinate systems.
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According to [14], we can get the following inverse dynamics recursive
expressions

VJi = Siq̇i (6)

Vi =i Xα(i)Vα(i) + VJi (7)

ai =i Xα(i)aα(i) + Siq̈i + Vi × VJi (8)

fBi = Iiai + Vi ×∗ IiVi (9)

fi = fBi +

i∑
j∈λ(i)

X∗j fj (10)

τi = ST
i fi (11)

where VJi represents the velocity spin of the joint; α(i) is the parent of the
rigid body i; iXα(i) represents the coordinate transformation matrix, which is
a 6 × 6 matrix; Vi is the velocity spin of the rigid body; ai is the acceleration
spin of the rigid body; fBi is the net force acting on the rigid body; λ(i)
represents the children of rigid body i; f i represents joint force; τi represents
the generalized force to be applied; Vi×∗ and Vi× are spatial velocity cross
operators.

For a fixed base robot, τ i can be directly used as the feedforward link of
a force controller. However, the quadruped robot trunk in the stance phase is
a floating body, and τ i cannot be used directly.

3 Inverse Dynamics Algorithm of the Quadruped Robot
Based on a Floating Body

According to the composite rigid body dynamics [14], we can easily obtain
the dynamics equation of the quadruped robot without constraints according
to Equations (6) to (11)

H(q)q̈ + c(q, q̇) = τ (12)

The trunk of the quadruped robot is a floating body with 6 degree-of-
freedom. These virtual degrees of freedom are not driven. As an under-driven
system, the Equation (12) cannot be used directly. But the 2 stance legs of the
robot are in contact with the environment, and each leg can establish three
constraints with the environment. As long as the constraints established by the
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2 legs are linearly independent, the robot will no longer be under-driven. The
left side of Equation (12) is unchanged; we can use the Lagrange multiplier
method to establish dynamics equations with constraints

H(q)q̈ + c(q, q̇) = STτ + JT
c λ (13)

where H(q) ∈ R12×12 is the inertia matrix; c(q, q̇) ∈ R12×1 is the bias force
matrix; S = [06×6 I6×6] is the joint selection matrix; τ ∈ R12×1 is the
vector of generalized forces; Jc ∈ R6×12 is the constrained Jacobian matrix,
follow the leg configuration we defined earlier [13], Jc is full rank; λ ∈ R6×1

is the vector of constraint forces.
We always assume that the foot of the stance leg is not moving relative to

the ground, we will have
Jcq̈ + J̇cq̇ = 0 (14)

According to Equations (13) and (14), we can obtain

λ = (JcH
−1JT

c )−1(−J̇cq̇ + JcH
−1(c− STτ )) (15)

Inserting Equation (15) into (13) and multiplying both sides by
(SH−1ST)SH−1, we will have

(SH−1ST)−1Sq̈ + (S∗ − S∗JT
c J
∗
c )c+ S∗JT

c (JcH
−1JT

c )J̇cq̇

= (I − S∗JT
c J
∗
cS

T)τ (16)

where S∗ = (SH−1ST)SH−1 and J∗c = (JcH−1JTc )−1JcH−1.
As can be seen from the Equation (16), if (I − S∗JTc J

∗
cS

T) is invertible,
we can obtain the generalized forces, but in fact this approach is not desirable
for two reasons. One is that this method is too computationally expensive,
and the other is that (I − S∗JTc J

∗
cS

T) is usually rank deficient and therefore
not invertible.

If the sampling time is set sufficiently small, the constraint forces can be
calculated using the joint torques at the previous moment, that is, λ at time t
is obtained from τ at time t − 1, and the value of τ can be measured by the
force sensor in real time [16]. In this way, we will have

λt = (JcH
−1JT

c )−1(k + JcH
−1(c− STτt−1)) (17)

In this case, we can consider λ of Equation (13) as an external forces
vector and replace it with Fx. According to the derivation process of
Equation (16), we will have

τ = (SH−1ST)−1Sq̈ + S∗(c− JT
c Fx) (18)
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From Equation (18), we can get the generalized forces, but it still needs
to invert the entire inertia matrix. This is the largest calculation in the entire
algorithm, and it is easy to cause error amplification in practical application.

Featherstone introduces the hybrid dynamics method, which combines
forward kinematics and inverse kinematics to solve the problem, it can make
the problem simple [14]. Under the hybrid dynamics approach, we have

q̈ =
[
q̈1 q̈2

]
(19)

τ =
[
τ1 τ2

]
(20)

where q̈1 and τ1 are acceleration and force variables related to forward
dynamics, and q̈2 and τ2 are acceleration and force variables related to inverse
dynamics, at this point, Equation (12) becomes[

H11 H12

H21 H22

] [
q̈1
q̈2

]
+

[
c1
c2

]
=

[
τ1
τ2

]
(21)

Equation (21) has two unknown variables, q̈1 and τ2. Move these two
unknown variables to the left side of the equation, and then we get[

H11 0
H21 I

] [
q̈1
τ2

]
=

[
τ1
0

]
−
[
c1 +H12q̈2
c2 +H22q̈2

]
(22)

From Equation (22), we can obtain q̈1 and τ2; this is the solution process
of hybrid dynamics. For our inverse dynamics model, because λ has been
regarded as an external forces vector Fx, there is no unknown constrained
force so we can use the mixed dynamics method. Equation (13) can be
written as [

H11 H12

H21 H22

] [
q̈1
q̈2

]
+

[
c1
c2

]
=

[
0
τ2

]
+

[
JT
c1

JT
c2

]
Fx (23)

Further derivation gives[
H11 0
H21 −I

] [
q̈1
τ2

]
=

[
JT
c1Fx − c1 −H12q̈2

JT
c2Fx − c2 −H22q̈2

]
(24)

[
q̈1
τ2

]
=

[
H11 0
H21 −I

]−1 [JT
c1Fx − c1 −H12q̈2

JT
c2Fx − c2 −H22q̈2

]
(25)

τ2 = (H22 −H21H
−1
11 H12)q̈2 −H21H

−1
11 (c1 − JT

c1Fx) + c2 − JT
c2Fx

(26)
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Compared with Equation (18), the number of matrix inversions in Equa-
tion (26) is reduced, and we no longer need to invert the entire inertia matrix,
so we use Equation (26) as the feedforward term for our torque controller.

4 Analytical Trajectory Generation

Trajectory generation refers to determining the foot trajectory of the stance
phase and the swing phase. The foot trajectory in the robot movement process
includes two aspects: one is the pre-planned trajectory, such as the trajectory
function of the foot in the horizontal direction; the other is the compensation
of the foot trajectory, such as online adjustment of the trajectory according
to the terrain estimation module. This paper mainly designs the pre-planned
foot trajectory. The quadruped robot mainly moves in the sagittal plane. Take
the RF leg as an example, its schematic diagram is shown in Figure 3. The
relevant parameters are defined as follows: Oxz is the sagittal plane; T is the
gait cycle, which represents the time it takes for a leg to complete a stance
phase and swing phase; vx represents the forward speed; s is the stride, and
s = Tvx/2; ht is the step height of the swing phase; xf represents the initial
position of the stance phase.

The time interval of one cycle of the robot is recorded as [0 T]. Assuming
that the RF leg first starts to move in the stance phase, then the interval [0
T/2] is for stance phase, interval [T/2 T] is for swing phase. The stance phase
does not move in the z direction so only the trajectory in the x direction needs
to be considered. Considering to reduce the inertial force of the robot in the
horizontal direction, the trajectory planning method of the stance phase in the
x direction is a uniform linear motion, that is, the trajectory function of the

Figure 3 Schematic diagram of trajectory planning.
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stance phase is
XRF
st = xf − vxt (27)

where XRFst represents the position of the foot of the RF leg relative to point
O; t ∈ [0 T/2].

For the swing phase, in order to ensure a smooth connection with the
stance phase, the position, speed, and acceleration of the start and end states
of the swing phase in the horizontal direction are required to be consistent
with the beginning and end states of the stance phase. This paper adopts 5th-
order interpolation polynomial, which can be described as

XRF
sw = a0 + a1t+ a2t

2 + a3t
2 + a4t

4 + a5t
5 (28)

The initial conditions of each derivative can be described as

C =
[
s0 s0 + s −v −v 0 0

]
(29)

where s0 = xf − vxT/2; s = vxT/2.
According to Equations (28) and (29) to solve the linear equations, the

trajectory in the x direction of the swing phase can be obtained as

XRF
sw = s0 − vxt+

10(s+ Tswvx)

T 3
sw

t3 − 15(s+ Tswvx)

T 4
sw

t4

+
6(s+ Tswvx)

T 5
sw

t5 (30)

where Tsw = T/2; t ∈ [0 T/2].
In order to avoid shock, the speed and acceleration of the start and end

states of the swing phase in the z direction are zero. The trajectory in the z
direction is a compound cycloid, which can be described as

ZRFsw = zRFf + ht

[
sgn(δt)

(
2t

Tsw
− 1

2π
sin

(
4π

t

Tsw

)
− 1

)
+ 1

]
(31)

where δt = t− T/4; t ∈ [0 T/2].
According to Equations (27) to (31), the foot trajectory curve shown in

Figure 4 can be obtained, and the trajectory of the robot in the swing phase is
smoothly connected with the stance phase.

Trot is a process that requires dynamic stability so the stability of the
motion process needs to be analyzed. Take the movement of the robot in
the sagittal plane as an example, a simplified schematic diagram is shown in
Figure 5.
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Figure 4 The foot trajectory curve.

 
Figure 5 Schematic diagram of movement in the sagittal plane. ψ is the inclination angle
of the ground; The total mass of the robot is recorded as m; b is the distance between the
midpoint of the support line and the center of mass; zf is the standing height of the robot.

When the robot adopts the trot gait, the projection of its center of mass
will deviate from the support area so the robot will rotate around the mid-
point of the support line during the movement. According to the angular
momentum theorem, we can get

mg cos(ψ)(vt+ b)−mgzf sin(ψ) = Jα (32)

where J and α are the moment of inertia and angular acceleration of the body.
Integrating the angular acceleration twice, we can get the rotation angle of the
body

Φ =

∫ t

0

(∫ t

0

mg cos(ψ)(vt+ b)−mgzf sin(ψ)

J
dt

)
dt

=
mg

J

(
cos(ψ)

(
1

6
vt3 +

1

2
bt2
)
− zf sin(ψ)

1

2
t2
)t

0

(33)
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It can be seen that the body cannot avoid rotation. In order to improve the
stability of the robot movement process, it is hoped that the rotation angle of
the body after a complete stance phase is equal to zero, that is, when t = T/2,
Equation (33) is equal to 0. Through calculation, we can get the following
expression

b = zf tan(ψ)− s

3
(34)

Next, the extreme points of Equation (33) are analyzed. Take Equa-
tion (34) into (33) and find the first derivative, we can get

Φ̇ =
mg

J
cos(ψ)

(
1

2
vt2 − s

3
t

)
(35)

Let Φ̇ = 0, then t = T/3 and t = 0. And when t ∈ [0 T/3), Φ̇ > 0;
t ∈ (T/3T/2], Φ̇ < 0. It can be concluded that when t = T/3, the body
has the maximum rotation angle, and the maximum rotation angle can be
described as

φmax =
mg cos(ψ)sT 2

162J
(36)

For trot gait, To ensure that the body rotation angle equal to 0, xf should
be determined according to Equation (34). On the other hand, in order to
reduce the maximum rotation angle of the movement process, the value of
the gait cycle T should be as small as possible.

5 Torque Control Framework and Co-simulation

5.1 Torque Control Framework

As shown in Figure 6, the torque controller is composed of an inner-
loop HDU force control and an outer-loop active compliance control. The
Hydraulic drive unit (HDU) is composed of hydraulic cylinder, servo valve,
displacement sensor and force sensor (Figure 7). The trajectory planning
module is the analytical trajectory generation designed in Section 4. The
inverse kinematics module generates the desired joint angle displacement,
velocity and angular acceleration according to the foot trajectory. The inverse
dynamics module uses the inverse dynamics algorithm proposed in Section 3
to obtain the feedforward torque of the torque controller. The inner-loop
force control uses PID and speed compensation control strategies, which
can make the response speed and stability of the valve-controlled cylinder
satisfactory [10]. The outer-loop uses the inverse dynamics module as the
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Figure 6 Torque control framework. τfd is the feedforward value of inverse dynamics; τff
is the compensation value of the PD controller; τ is the actual torque.

Figure 7 Hydraulic drive unit.

feedforward of the control system, and the PD controller as the torque com-
pensation. The form of the PD controller is shown in Equation (37). On the
premise that the position tracking performance meets the demand, the smaller
the PD gains mean the better the compliance of the system. The outer-loop
control is also equivalent to active compliance control. In addition, because
our quadruped robot is driven by hydraulic cylinders, the linear displacement
and force of the hydraulic cylinder need to be converted into angle and torque
variables through geometric relationships.

τff = kp(qd − q) + kd(q̇d − q̇) (37)

5.2 Co-simulation Framework

Adams is the world’s most widely used multibody dynamics simulation
software, but it is tedious to implement complex control in it so we use Adams
and Matlab-Simulink for co-simulation. The framework of co-simulation
is shown in Figure 8. Through the trajectory planning, inverse kinematics
and inverse dynamics modules in Matlab, the position and force signals are
calculated and transmitted to the force controller and position controller,
the controller generates the current control signal of the servo valve to
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Figure 8 The framework of co-simulation.

Figure 9 Quadruped robot virtual prototype in Adams.

control the flow of the hydraulic system, the hydraulic system simultaneously
establishes hydraulic pressure based on the load in Adams; Adams receives
the force signal calculated by Matlab to realize the movement of the virtual
prototype, and feedbacks the position and attitude of the quadruped robot, the
displacement and force of the hydraulic cylinder to Matlab; Matlab receives
the signals fed back by Adams and sends them to the corresponding controller
to realize the closed loop of the control system.

The 3D model in Adams was a virtual prototype of our quadruped robot,
as shown in Figure 9. In order to make the simulation results of the virtual
prototype as reliable as possible, we strictly defined a series of parameters in
Adams; see Table 1 for specific parameters. As mentioned in the Section 1, it
takes tens of milliseconds to implement active compliance control. Therefore,
we installed a mechanical spring damper on the calf of the robot as a passive
compliance control link; see Table 1 for spring stiffness and damping values.
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Table 1 The parameters values of virtual prototype
Parameter Name Value Unit

The length of the robot 0.9 m

The width of the robot 0.44 m

The length of the thigh 0.34 m

The length of the calf 0.33 m

The mass of the robot 90 kg

Moment of inertia of the trunk diag[3.74,3.32,2.74] kgm2

The mass of the thigh 2.8 kg

Moment of inertia of the thigh diag[0.035,0.034,0.013] kgm2

The mass of the calf 1.75 kg

Moment of inertia of the calf diag[0.045,0.036,0.011] kgm2

Environmental stiffness 2000 N/mm

Environmental damping 20 N·s/mm

Coefficient of static friction 0.8

Coefficient of dynamic friction 0.75

Calf passive spring stiffness 80 N/mm

Calf passive damping coefficient 6 N·s/mm

Co-simulation sampling time 0.0001 s

Table 2 Gait parameters of the quadruped robot
Parameter Name Value unit
Gait cycle (T) 0.8 s

Duty cycle (dt) 0.5

Speed (v) 800 mm/s

Step height (ht) 70 mm

Initial position (xf ) s/3 mm

5.3 Simulation Results on Flat Ground

The inverse dynamics algorithm and the analytical trajectory generation
were built in Simulink. The trot of the quadruped robot was selected as the
simulation object. The inclination angle of the ground in the simulation was
0 degrees. The relevant gait parameter values are defined in Table 2. The



164 Z. Rui et al.

(a)       (b) 

(c)            (d) 

(e)            (f) 
Figure 10 Simulation results of trot of the quadruped robot. (a) and (b) are the displacement
and speed of the robot. (c) and (d) are roll angle and pitch angle respectively. (e) and (f) are
the positions of the knee joint hydraulic cylinder and the hip joint hydraulic cylinder of the
RF leg.

simulation results are shown in Figure 10. It can be seen that after a brief
acceleration, the robot can maintain a stable motion near the desired speed
[Figure 10(a), (b)]. The fluctuations of the roll angle and pitch angle of the
robot are within acceptable limit [Figure 10(c), (d)]. Under the combined
action of inverse dynamics feedforward and PD control, the position tracking
performance of the actuator is satisfactory [Figure 10(e), (f)]. As shown in
the Figure 10(e) and (f), there is a slightly larger deviation between the actual
hydraulic cylinder position and the expected hydraulic cylinder position near
t = 2 s, which is the manifestation of the low stiffness characteristics of
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(a)             (b) 
Figure 11 The torques of the joints of the RF leg during the simulation. (a) is the torque of
the hip joint and (b) is the torque of the knee joint.

the system. Because the swinging leg touches the ground to bring a certain
impact, the active compliance of the system makes the actuator have a buffer
effect.

As we mentioned earlier, under the premise of ensuring the position
tracking performance, it is hoped that the gains of the PD controller is small
enough. If the gains of the PD controller are set to a large value, it means that
the stiffness of the system is large, which will cause the compliance of the
system to deteriorate. In our simulation, kp was equal to 500 Nm/rad and kd
was equal to 60 Nm·s/rad. The torque curves of the two joints of the RF leg
are shown in Figure 11. It can be seen from Figure 11 that the feedforward
torque calculated by the inverse dynamics module obviously occupies the
dominant position of the torque controller.

5.4 Gait Cycle and Initial Position of the Stance Phase

The influence of gait cycle T and initial position of the stance phase xf on
stability was verified by co-simulation. In the simulation process, the robot
moved on a flat ground, the value range of T was 0.6 ∼ 1 s, the value range
of xf was 0 ∼ 120 mm, and the values of other parameters are the same as in
Table 2. First, the influence of T was verified. During the simulation, xf was
always equal to 80 mm. The simulation results of different values of T are
shown in Figure 12(a) ∼ (c). As T increases, the fluctuations of speed, roll
angle and pitch angle all increase, so T has a significant impact on stability.
The smaller the T, the more stable the robot movement. The simulation results
are consistent with the conclusion of Equation (36). Therefore, in practical
applications, a small T should be selected. Next, the influence of xf was
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(a)       (b) 

(c)            (d) 

(e)            (f) 
Figure 12 The influence of T and xf on motion stability. (a) ∼ (c) are the simulation results
where T is equal to different values. (e) ∼ (f) are the simulation results where xf is equal to
different values. (a) and (d) represent forward speed of the robot, (b) and (e) represent the roll
angle, and (c) and (f) represent the pitch angle.

analyzed. During the simulation, T was always equal to 0.6 s. The simulation
results of different values of xf are shown in Figure 12(e)∼ (f). It can be seen
that when xf is equal to 80 mm, which is equal to s/3, the fluctuations of the
speed, roll angle and pitch angle are minimal. This is also consistent with the
previous analysis results.

The above analysis shows that the influence of T and xf on motion
stability cannot be ignored. In order to make the robot move more stable,
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(a)            (b) 
Figure 13 The roll and pitch angles of the robot when moving on rough ground. (a) is the
roll angle and (b) is the pitch angle.

Figure 14 The impact force of the foot.

the value of T should be as small as possible, and xf should be determined
according to Equation (34).

5.5 Simulation Results on Rugged Ground

When the robot moves on rugged ground, its legs touch the ground in advance
or step into a pit will bring impact. During the simulation, the ground was set
to be uneven, T was equal to 0.6 s, and the values of other parameters are
the same as in Table 2. The robot used position control (only PD control)
and force-based active compliance control strategies to pass through the
rugged ground respectively. The simulation results are shown in Figure 13.
Compared with active compliance control, the roll angle and pitch angle
fluctuations of the robot using the position control strategy are obviously
larger.

Further, the foot force of the RF leg was analyzed. As shown in Figure 14,
due to the high stiffness of the position control actuator, the foot receives a
greater impact in the vertical direction. It can be seen that if the robot adopts
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a pure position control strategy, it will not be able to buffer, and the body will
fluctuate greatly or even fall.

6 Conclusion

This paper focuses on the inverse dynamics algorithm of a hydraulic
quadruped robot. The multi-rigid body motion equations of the quadruped
robot is efficiently established by using the spin recursion method based
on Lie groups and Lie algebras. Combining forward dynamics with inverse
dynamics to solve motion equations with contact constraints, this method
reduces the amount of calculation and is easier to use in real-time control
systems. The co-simulation results show that using this inverse dynamics
algorithm as the feedforward of the control system, the compensation value
of the PD controller is small, that is, the system has good compliance.

In the future, we will explore the gait with a duty cycle of less than 0.5
and compare the pros and cons of force-based active compliance control and
position-based active compliance control. Related algorithms will be further
verified through prototype experiments.
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