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Abstract

The numerically stable simulation of cavitation effects is mandatory for
predicting the friction and wear behavior of translational hydraulic seals.
This contribution provides a comparison of two different implementations
of the Jakobsson-Floberg-Olsson (JFO) cavitation model, an investigation of
their properties and possible options for their stabilization. These methods
are tested and compared both within a simple divergent gap test case as
well as within an EHL simulation of a rubber metal contact. Based on these
comparisons and theoretical investigations, the strengths and weaknesses
of the different methods are summarized and discussed with respect to an
application in EHL simulations of translational hydraulic seals.
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1 Introduction

Translational hydraulic seals are widely used machine elements of crucial
importance. For predicting their friction and wear behavior based on a
physically motivated model, it is typically not possible to obtain an ana-
lytical solution of the equations describing the sealing contact. Therefore,
numerical simulations are frequently used for this application. Besides the
deformation of the seal, the friction and the distribution of the solid con-
tact pressure, the fluid pressure distribution within the sealing gap has to
be calculated. Since the flow in this application is typically laminar, the
Reynolds equation can be used to describe the pressure distribution within
the sealing gap. However, the solution of the Reynolds equation of incom-
pressible fluids often provides negative pressures, contradicting with kinetic
molecular theory. This, in turn, affects the calculation of the gap height
and friction force, ultimately causing deviations between simulated and real
behavior.

In reality, in the areas where the simulation predicts negative pressures, a
gaseous phase is formed, which is known as cavitation. There are several
models, which can be used to include cavitation in elastohydrodynamic
lubrication (EHL) simulations. One widely used model is the Jakobsson-
Floberg-Olsson (JFO) cavitation model, which has the advantageous property
of mass conservation. There are several ways to implement this model in
EHL simulations. However, the inclusion of such a model can cause severe
instabilities. The choice of the numerical scheme for discretizing the partial
derivatives directly affects the extent of these instabilities and therefore the
simulation results.

This contribution compares two different approaches for the JFO model
using different numerical schemes. It discusses to what extent the results
differ and which model and scheme should be used for the specific appli-
cation of translational hydraulic seal simulation. First, a brief overview of
literature is given in Section 2. Next, Section 3 introduces the difference
schemes and discusses two implementation strategies of the JFO model. The
application and comparison of these methods is given both for a simple
divergent gap test case in Section 4 as well as for a benchmark EHL sim-
ulation of a hydraulic seal in Section 5. Finally, the results are summarized in
Section 6.

A part of the results from this contribution has already been published as
a conference paper in 2020 [5].
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2 Literature Review

The aim of this chapter is to give the reader an overview of the current
state of research in order to understand the context. First of all, in 2.1, an
overview of selected literature regarding EHL simulations in general and the
simulation of elastomeric seals in particular is presented. This is followed
by a description of the mathematical fundamentals in 2.2. Finally, in 2.3, the
Reynolds equation and the Jakobsson-Floberg-Olsson (JFO) cavitation model
are introduced.

2.1 Related Work

Several publications deal with the simulation of translational hydraulic seals.
Within the finite element software Abaqus, [12] and [17] used a concept based
on the User Element subroutine in order to implement the fluid pressure dis-
tribution in the sealing contact. However, these approaches do not contain a
cavitation model. A similar approach was also used in [4], but was combined
with the mass conserving JFO cavitation model, introduced by [10] and [11].
In [4], this model was implemented using the approach described in [20],
which in turn is based on the implementation presented in [7].

An alternative approach for implementing the JFO cavitation model was
introduced in [1], but, to the best of the author’s knowledge, has not been
used for the simulation of dynamic seals until now. This approach does not
introduce a new equation for determining the value of the cavity fraction, but
uses a variable transformation instead.

2.2 Mathematical Fundamentals

Since the Reynolds equation has the form of an advection-diffusion equation,
this section describes the mathematical fundamentals of such equations and
possible solution methods.

Advection-diffusion of a quantity u in one dimension can be modeled
with the partial differential equation:

∂u

∂t
+ a · ∂u

∂x
= D · ∂

2u

∂x2
(1)

Equation (1) consists of a hyperbolic term, representing advection, and
a parabolic term, representing diffusion. If the coefficients a and D are
constant, an analytical solution by Fourier decomposition can be obtained
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for arbitrary initial profiles, where αk denote the Fourier coefficients [9]:

u (x, t) =
∑
k∈Z

αk · e−4π
2k2Dt+2πik(x−at) (2)

In practice, the coefficients are not constant and a numerical approach
needs to be implemented. This presents a challenge of its own as the spatial
discretization required for the advection and diffusion terms are different.
Therefore, the advection equation and the diffusion equation are examined
separately first.

When considering the diffusion-equation, the approximation of the
second-order spatial derivative results in a central difference formula and
produces a second-order accurate scheme:

un+1
i = uni +

D ·∆t
(∆x)2

(
uni+1 − 2 · uni + uni−1

)
(3)

According to [6], the scheme given by equation (3) is conditionally stable
with stability criterion:

r :=
D ·∆t
(∆x)2

≤ 1

2
(4)

When considering the advection-equation, the convergence of numerical
schemes depends heavily on the type of approximation used for the spatial
derivative. If a > 0, a backward in space finite difference approximation must
be used to guarantee conditional convergence, whereas if a < 0, a forward in
space finite difference approximation must be used. This is called a first-order
accurate upwind scheme, also known as the CIR scheme, and is given by:

un+1
i = uni −

a ·∆t
∆x

(
uni − uni−1

)
if a > 0 (5)

un+1
i = uni if a = 0 (6)

un+1
i = uni −

a ·∆t
∆x

(
uni+1 − uni

)
if a < 0 (7)

According to [19], the scheme given by equation (7) is conditionally
stable with a stability criterion of:

CFL :=

∣∣∣∣a ·∆t∆x

∣∣∣∣ ≤ 1 (8)

Disappointingly, this scheme often produces inaccurate results even for
sufficiently smooth data. Hence, it is preferable to use higher-order methods,
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e.g. a central finite-difference approximation which is second-order accurate.
However, said scheme is unconditionally unstable for non-smooth data. [19]

After examining the advection equation and diffusion equation separately,
a conditionally stable scheme for the advection-diffusion equation can be
formulated:

un+1
i = uni −

a ·∆t
∆x

(
uni − uni−1

)
+ S if a > 0 (9)

un+1
i = uni + S if a = 0 (10)

un+1
i = uni −

a ·∆t
∆x

(
uni+1 − uni

)
+ S if a < 0 (11)

with S =
D ·∆t
(∆x)2

(
uni+1 − 2 · uni + uni−1

)
(12)

Note that the advection-diffusion equation becomes second-order accu-
rate, i.e. reduces to the diffusion-equation if a = 0. Thus, a dimensionless
quantity which describes the ratio of advection to diffusion, the Péclet
number, is introduced as:

Pe =
a

D
·∆x (13)

Equation (1) is said to be advection dominated if |Pe| → ∞, and
diffusion dominated if |Pe| → 0.

The Péclet number is important when a higher-order solution for the
advection-diffusion equation is sought after. According to [9], it allows using
unconditionally unstable central difference approximations for the spatial
derivative of the advection term, if |Pe| ≤ 2. This restriction on the Péclet
number leads to oscillation-free results and overall convergence of the numer-
ical scheme. For Péclet numbers of higher magnitude, the conditionally stable
but only first-order accurate upwind schemes can be used.

In some simulations, the Péclet number varies over the computational
domain. Consequently, it would be of interest to switch between higher-order
methods when applicable and first-order methods when not. Fortunately, this
is possible by introducing a hybrid scheme, which is given by the following
equation:

un+1
i = uni −

a ·∆t
2 ·∆x

[
(1 + α)uni+1 − 2αuni − (1− α)uni−1

]
+
D ·∆t
(∆x)2

(
uni+1 − 2 · uni + uni−1

)
(14)
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In this numerical scheme, the spatial derivative in the advection term
is approximated depending on the value of the dimensionless weighting
factor α, which allows switching between forward, central and backward
differences by setting α to 1, 0 or −1 respectively. Choosing non-integer
values of α can be interpreted as a convex combination of the adjacent
schemes. The weighting factor can also be expressed as a function of the
Péclet number, thus adapting the numerical scheme at each node according
to the local advection-diffusion ratio.

2.3 The Reynolds Equation and JFO Model

In this section, both the transient Reynolds equation and the JFO cavitation
model with respect to the Elrod-Adams implementation are presented.

The Reynolds equation Rey used in this contribution includes transient
effects and is extended by the flow factors introduced by [13] and the JFO
cavitation model as implemented in [4] and takes the form:

Rey =
v

2

∂

∂x
[(1− θ) ρh+ (1− θ) ρRqΦτ ]−

− 1

12η

∂

∂x

[
Φpρh3 (1− θ) ∂p

∂x

]
+
∂

∂t
[(1− θ) ρh] = 0 (15)

Note, that this form of the Reynolds equation is based on the assumption
that only one surface moves with the velocity v. Here, p denotes the fluid
pressure and h the gap height between the two surfaces. ρ and η are the
density and dynamic viscosity of the fluid, respectively. Φp and Φτ are the
pressure and shear flow factors.Rq denotes the root mean squared roughness.

The JFO model is included by introducing the cavity fraction θ, which
describes the fraction of the vaporized fluid. In regions where no cavitation
occurs, θ takes a value of zero. If the pressure drops to zero, cavitation occurs.
This leads to a value of 0 ≤ θ < 1, which describes how the density of the
fluid in the regions with cavitation decreases. Effectively, the density in these
regions is interpolated between the liquid and the vapor. However, since the
density of the vapor is small compared to the liquid, it is assumed to be zero
for this contribution.

3 Implementation

The focus of this chapter is on the implementation of the EHL model used in
this contribution. Section 3.1 provides an overview of the general simulation
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model. Two different implementations of the JFO model are presented in 3.2
and 3.3. Finally, stabilization techniques are discussed in 3.4.

3.1 Simulation Model

This section provides a brief overview of the simulation model used in this
contribution. It is based on the model by [4]. For further details about the
model, such as the influence of surface anisotropy and temperature, the reader
is referred to [3].

The simulation model has been created using the finite element method
(FEM) software Abaqus, which allows the user to extend its capabilities by
adding user defined subroutines. In order to describe the sealing contact,
the user subroutines User Element (UEL) and User Interaction (UINTER)
are used in the simulation model. The user interaction subroutine calculates
the solid contact pressure and friction, whereas the user element subroutine
implements the Reynolds equation in order to calculate the fluid pressure
distribution within the sealing gap.

The calculation of the solid contact is based on Persson’s contact theory
[14]. It is used to calculate the normal pressure distribution based on the
Young’s modulus, Poisson’s ratio and the surface topography. In contrast to
other theories, this method takes into account surface roughness of all length
scales. Further details about the contact model can be found e.g. in [15, 16]
and [18].

The total friction force is the sum of the solid, fluid and adhesive friction
forces. For further details regarding the calculation of the friction force, the
reader is referred to [4].

The implementation of the fluid film is described in [2] and uses an
approach similar to [12] and [17]. It is based on the Abaqus user subroutine
User Element and utilizes a finite difference scheme in order to solve the
Reynolds equation.

For each User Element (UEL) in Abaqus, a stiffness (Jacobian) matrix
K for the element and a residual vector ~r have to be calculated. With this
information available, Abaqus is able to calculate the displacement ~u for each
node of the whole model by solving the following equation:

K · ~u = ~r (16)

In order to fully describe the behavior of the fluid at each node i at
the edge of the seal, four quantities must be known: the two current spatial
coordinates of the nodes xi and yi, the pressure pi and the cavity fraction
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θi. In order to describe these quantities, the User Element used in this paper
consists of two kinds of nodes.

Half the nodes are also part of the seal. The coordinates of these nodes
describe the deformation of the seal at the contact and thus the gap height
within the sealing gap. Therefore, the stiffness of the UEL corresponding to
these nodes describes how the force exerted by the fluid on the seal changes
with a varying displacement of the seal nodes.

The other half of the nodes are ghost nodes, whose coordinates do not
describe a position in space, but rather the current pressure pi and cavity
fraction θi at seal node i. Hence, the stiffness of the UEL regarding these
nodes describes how the forces on the seal change with a changing pressure
respectively cavitation at node i. Thus, one ghost node is necessary for each
seal node affected by fluid forces, so that in order to describe the influence of
the fluid on a seal edge with n nodes, the UEL must consist of 2n nodes in
total.

The calculation of the displacement of the spatial nodes is based on a
force equilibrium in the x and y direction, respectively. The displacement
of the ghost nodes, which corresponds to the pressure p, uses the Reynolds
equation. However, since a new variable, θ has been introduced by the
cavitation model, it is necessary to include another equation to determine the
value of the new variable. As described in 2.3, if there is non-zero pressure at
node i no cavitation occurs at this node:

pi > 0 =⇒ θi = 0 (17)

Likewise, if cavitation occurs, i.e. the cavity fraction is larger than zero,
the pressure has to be equal to zero:

θi > 0 =⇒ pi = 0 (18)

And finally, both quantities p and θ cannot be negative at any node:

pi ≥ 0 ∧ θi ≥ 0 (19)

The following Sections 3.2 and 3.3 describe two different ways to imple-
ment these relations. The first method is based on [20] and uses a Fischer-
Burmeister equation for determining the value of θ. The second method
expresses both variables p and θ with a new variable ξ, thus eliminating the
need for an additional equation.
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3.2 Using the Fischer-Burmeister Equation

Based on the work of [4] and [20], the constraint for θ can be implemented
using a Fischer-Burmeister equation. As a first step, Equations (17) and (18)
are reformulated to:

pi · θi = 0 (20)

Combined with constraint (19), this is equivalent to considering the root
of the Fischer-Burmeister function Gi:

Gi = pi + θi −
√
p2i + θ2i

!
= 0 (21)

Thus, in this implementation the Reynolds equation is solved alongside
equation (21). Further details about this approach are presented in [4].

3.3 Using the Combined Approach

In contrast to the previously described implementation, the method dis-
cussed in this section does not introduce a new equation, which needs to be
solved, but rather a new variable ξ. The variables p and θ are replaced with
known functions of this new variable. The approach has been presented and
described in [1]. The newly introduced variable can be interpreted as a pseudo
pressure, that is equal to the real pressure, if larger than zero. However, in
contrast to the real pressure, ξ can also take negative values. In that case,
the magnitude of ξ describes the amount of fluid that has vaporized. Then,
the real pressure p has to be equal to zero. Thus the function p(ξ) can be
described using the piecewise linear function:

p (ξ) =

ξ if ξ ≥ 0

0 if ξ < 0
(22)

The function θ(ξ) in this contribution slightly differs from the one used
in [1], since it contains a hyperbolic tangent in order to prevent values of θ
above 1.

θ(ξ) =

0 if ξ ≥ 0

β + γ · (tanh(−ξ · δ+2.7
−ε + δ) + 1) if ξ < 0

(23)
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Table 1 Values for the parameters of the function θ(ξ)

β −0.5

γ 0.735

δ −0.331

ε −1

Here, β, γ, δ and ε are parameters which can be used to adjust the
function. For the simulation results presented in this contribution, the set of
parameters which was chosen is shown in Table 1.

3.4 Implementation of the Schemes

As can be seen in Equation (14), it is possible to define a weighting factor α
in order to interpolate the value of the first derivatives in a partial differential
equation between the central and one-sided difference schemes. This has also
been used in this contribution. Since there are two variables, for which the
equation has to be solved; two weighting factors αp and αθ are defined for
the pressure and cavity fraction, respectively. Thus, the derivatives of p and θ
are calculated using the following expressions:

∂p

∂x

∣∣∣
i

=
[
(1 + αp) p

n
i+1 − 2αpp

n
i − (1− αp) pni−1

]
(24)

∂θ

∂x

∣∣∣
i

=
[
(1 + αθ) θ

n
i+1 − 2αθθ

n
i − (1− αθ) θni−1

]
(25)

However, in order to use these expressions, it is necessary to define values
or schemes for the weighting factors. It is convenient, to use an algorithm,
which calculates the values of α based on the local Péclet number for the
corresponding quantity. According to the schemes used in [8], which were
applied to a finite volume method, five schemes are investigated in this
contribution: central, upwind, exponential, hybrid and power law (PL). These
schemes are defined by the following equations:

αCentral = 0 (26)

αUpwind =

{
−1 if Pe > 0

1 if Pe < 0
(27)

αExponential = 1− 2 · (Pe− 1) · ePe + 1

Pe · (ePe − 1)
(28)
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Figure 1 Plots of the weighting factor α as a function of the Péclet number Pe according to
the schemes introduced in Equations (26) to (30).

αHybrid =


1− 2 · Pe−1Pe if Pe ≥ 2

0 if |Pe| < 2

1 + 2
Pe if Pe ≤ −2

(29)

αPL =


1− 2 · Pe−1Pe if Pe ≥ 10

1− 2 · (Pe−1)+(1−Pe/10)5
Pe if 0 ≤ Pe < 10

1− 2 · (1+Pe/10)
5−1

Pe if − 10 ≤ Pe < 0

1 + 2
Pe if Pe < −10

(30)

Figure 1 shows a plot of the weighting factor as a function of the Péclet
number for the different schemes. It can be seen, that the values obtained
with the exponential and the power law scheme are rather close to each other.
Therefore, it can be expected, that the results obtained with these schemes
do not differ considerably. Furthermore, for |Pe| < 2, the hybrid scheme
generates the same values of α as the central scheme. For |Pe| > 5 the hybrid
scheme approaches the exponential and power law schemes.

Since these numerical schemes depend on the Péclet number Pe, they can
only be calculated for the Péclet number regarding the pressure Pep, as there
is no diffusive term for the cavity fraction, which leads to |Peθ| → ∞. Hence,
only constant values are used for the weighting factor αθ. For the calculation
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of αp, the Péclet number Pep is derived from the Reynolds equation (15).

∂

∂x

[
Φpρh3 (1− θ) ∂p

∂x

]
=

=
∂

∂x

[
Φpρh3 (1− θ)

] ∂p
∂x

+
[
Φpρh3 (1− θ)

] ∂2p
∂x2

(31)

Using this notation, the advection and diffusion coefficients a and D can
be used for calculating the Péclet number regarding the pressure Pep:

a =
∂

∂x

[
Φpρh3 (1− θ)

]
(32)

D = −
[
Φpρh3 (1− θ)

]
(33)

=⇒ Pep = − a
D
·∆x =

∂
∂x

[
Φpρh3 (1− θ)

]
[Φpρh3 (1− θ)]

·∆x (34)

4 Simulation of a Divergent Gap

In this chapter, the influence of the weighting factors and implementations
introduced in Chapter 3 are compared for the simulation of the pressure
distribution and cavitation within a rigid divergent gap. The parameters and
setup of the test case are presented in Section 4.1. The results of this test case
are given in Section 4.2 alongside a discussion in Section 4.3.

4.1 Setup of the Test Case

The simulation model consists of a rigid gap with a linearly increasing gap
height as shown in Figure 2. Since the geometry is known, this test case
does not require an FEM calculation. This offers two advantages: first, the
two transitions from liquid phase to cavitation and vice versa can be studied
isolated from deformation effects and under repeatable conditions. Secondly,
the convergence behavior of the different approaches can be studied more
accurately. In the full EHL simulation, no distinction between convergence
behavior of the FEM and the Reynolds equation can be made. Therefore, the
efficiency of the methods cannot be studied or compared accurately for a full
EHL simulation, as the FEM calculation blurs the actual number of iterations
required for the calculations within the gap. Since the FEM calculation of
the deformation can be omitted in this test case, an accurate examination of
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pr

l

hl

hr

Figure 2 Divergent gap.

the convergence behavior by comparing the required number of iterations is
possible.

For this test case, the model parameters were nondimensionalized. The
surfaces are assumed to be ideally smooth, so that the influence of the flow
factors can be neglected (i.e. Φp = 1, Φs = 0). The gap height is given by
the linear equation h(x) = hl + hr−hl

l · x. The initial pressure p0 is given as
1, resulting in an initial cavitation θ0 of 0. The pressures at both boundaries
pl and pr are both equal to 1. The top surface is fixed. The bottom surface is
under constant acceleration arel = 0.1, so that the relative velocity vrel can
be expressed as a function of time vrel(t) = arel · t. The vapor pressure is set
to pV apor = 0. The full set of parameters used for the simulation is given in
Table 2.

4.2 Results

The test case has been simulated for different values of αp and αθ, both using
the Fischer-Burmeister equation and the combined approach. As the purpose
of this test case is to study the influence of the weighting factors themselves
rather than the influence of the schemes, constant values for both weighting
factors are chosen at the start of each simulation instead of a dynamical
determination according to the schemes introduced in Section 3.4. The effect
of the schemes will be investigated for the EHL simulation presented in
Chapter 5.

The results for pressure distribution and cavity fraction at different times
are shown in Figure 3. It can be seen that the pressure starts to drop with
increasing time due to the increasing velocity. At t = 5, the minimum
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Table 2 Parameters used for the simulation of the divergent gap in Figure 2

Number of Nodes nn 100

Simulation Time ttotal 20

Time Step Size ∆t 0.1

Length of the Gap l 10

Acceleration of the Counter Surface arel 0.1

Density of the Fluid ρ 1

Dynamic Viscosity of the Fluid η 1

Vapor Pressure pV apor 0

Constant Pressure Flow Factor Φp 1

Constant Shear Flow Factor Φs 0

Gap Height (Left Boundary) hl 1

Gap Height (Right Boundary) hr 1.5

Pressure (Left Boundary) pl 1

Pressure (Right Boundary) pr 1

Initial pressure p0 1

Initial cavitation θ0 0

pressure is close to 0. At later time steps, a cavitating region in the middle
of the domain is formed. Both the size of the region and the magnitude of
cavitation increase during the rest of the simulation.

The value of either weighting factor did not show any major effect on
the resulting pressure distribution. However, the cavity fraction was strongly
affected by the choice of αθ. The resulting pressure distribution and cavity
fraction for different values of αθ are shown in Figure 4. For αθ = 0, large
oscillations can be observed. The reason for their occurrence is, that this value
of the weighting factor corresponds to a central difference scheme for θ. Since
the Reynolds equation reduces to an advection equation within cavitating
regions, a central difference scheme is expected to behave unconditionally
unstable. When increasing the weighting factor αθ to 0.5, it can be seen, that
the majority of the oscillations are dampened. However, close to the boundary
of the cavitating region, a small peak is still visible, which disappears when
choosing αθ = 1. In either case, there were no visible differences between
the results obtained using the combined approach and the Fischer-Burmeister
equation.

In order to investigate how the choice of the weighting factor affects the
formation of the cavitating region with respect to time, the integrated cavity
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Figure 3 Pressure p and cavity fraction θ within the gap at t = 5, 10, 15, 20. All results
were obtained using the implementation with the Fischer-Burmeister equation with αp = 0
and αθ = 1.

fraction Θ is examined for each time step. Θ describes the total cavity fraction
at each increment and is defined as:

Θ (t) =

∫
θ (x, t) dx (35)

Figure 5 shows the integrated cavity fraction Θ as a function of time for
different values of αθ. Surprisingly, even though the distribution of θ within
the cavitating region is strongly affected by the choice of the weighting factor
αθ, see Figure 4, the integrated cavity fraction is largely unaffected by the
choice of the weighting factor αθ. Furthermore, the integrated cavity fraction
is also unaffected by the choice of the implementation or αp.

In order to evaluate, how the convergence behavior is affected by the
choice of weighting factor or implementation scheme, the number of itera-
tions during the whole simulation is compared in Figure 6. Due to the huge
instabilities for αθ = 0, these results are excluded from the comparison.
It turns out, that the number of necessary iterations appears to be largely
unaffected by the choice of the weighting factors. Neither value of the
weighting factors leads to a considerable change in the number of iterations.
However, choosing the combined approach reduces the number of iterations
by about 20% in comparison to the Fischer-Burmeister equation. Most likely
this can be attributed to the fact, that when using the combined approach,
no additional equation is introduced. The other approach introduces the
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Figure 4 Pressure p and cavity fraction θ at t = 20. Comparison of the influence of the
weighting factor αθ . All results are using the implementation with the Fischer-Burmeister
equation with αp = 0.

Fischer-Burmeister equation, so that in this test case, each node has two
degrees of freedom, the pressure p and the cavity fraction θ, whereas in
the combined approach, each node has only one degree of freedom, the
auxiliary variable ξ. Thus, the equation system which has to be solved has
n dimensions for the combined approach and 2n dimensions when using the
Fischer-Burmeister equation, where n is the number of nodes.

4.3 Comparison and Discussion

In this chapter, the influence of the two weighting factors and the choice of the
implementation (Fischer-Burmeister equation vs. combined approach) has
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Figure 5 Integrated cavity faction Θ for different values of αθ . All results were obtained
using the implementation with the Fischer-Burmeister equation with αp = 0 and αθ = 1.
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Figure 6 Total number of iterations needed for the whole simulation (200 time steps) for
different values of the weighting factors αp, αθ as well as for the implementations using the
Fischer-Burmeister equation (FB) and the combined approach (CA).

been investigated for a rigid divergent gap. For studying how the cavitation is
affected by the aforementioned settings, both the total amount of cavitation
within the computational domain over time as well as the spatial distribution
of the cavity fraction θ has been examined. Furthermore, the number of
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iterations needed for each combination of parameters and implementation
has been compared.

It has been shown that within the context of the divergent gap test case,
there were no noticeable differences between the different values of the
weighting factor αp. Both the pressure distribution and the total amount
of cavitation were the same regardless of the choice of it. However, the
weighting factor αθ had a strong influence on the stability of the simulation.
For αθ = 0, large oscillations of the cavity fraction θ occurred. These
were strongly reduced for αθ = 0.5 and disappeared entirely for αθ = 1.
The integrated cavity fraction Θ did not show any major dependence on
the choice of both weighting factors. Even in the case of the simulations
with αθ = 0, where large instabilities of the cavitation occurred, the overall
amount of cavitation within the computational domain was nearly the same
as for the other simulations. The number of necessary iterations was also
largely unaffected by the choice of either weighting factor. However, the
simulations with the combined approach took about 20% less iterations to
complete than the simulations using the Fischer-Burmeister equation. Besides
the considerable difference in the number of necessary iterations, there were
no noticeable differences between the two implementations regarding the
simulation results. This shows that the combined approach has the potential
of reducing computational effort, especially considering that the size of
the equation system, which needs to be solved, is only half as large when
compared to the other approach.

5 EHL Simulation of a Hydraulic Seal

In this chapter, the results of the previously discussed implementations are
presented and compared for an EHL simulation of a hydraulic seal. Here, it
is of particular interest, how the choice of the cavitation model and numerical
scheme affects the cavity fraction θ and to what extend a certain setup causes
or prevents oscillations. Furthermore, the influence on the other variables of
the EHL model is evaluated, by comparing the gap height, pressure distribu-
tion and friction force of the different setups. The computational efficiency
of the different implementations is negligible in these considerations. It was
found, that the time for calculating the solution did not differ considerably, if
the solutions were converging. This can be attributed to the fact that the FEM
calculation of the deformation of the seal takes considerably more time than
the solution of the Reynolds equation. Thus the choice of the implementation
of the cavitation model does not carry a considerable weight, when only
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Figure 7 Schematic of the chosen test case. The movement of the nodes at the boundary
surface is inhibited in x-direction. The figure was taken from [4].

considering the computational efficiency of the whole EHL simulation in this
particular application.

For comparing the performance, a two dimensional test case was selected,
see Figure 7. This test case consists of an elastomeric cylinder, which repre-
sents the seal, pressed against a surface, representing the rod. After applying
the force and calculating the initial deformation, the rod is accelerated with a
constant acceleration arod. The parameters used within this chapter are shown
in Table 3. Linear elastic material behavior was chosen for the rubber for
the sake of simplicity. Due to the high stiffness of steel compared to rubber,
the deformation of the rod was neglected entirely. Note, that since relative
pressures are used for the simulation, the vapor pressure pvapor was set to
−0.1 MPa corresponding to an absolute pressure of 0 bar. The flow factors
used in this simulation correspond to a sandblasted, thus isotropically rough,
surface with a root mean squared roughness of Rq = 2 µm.

The schemes introduced in 3.4 are applied for calculating the first deriva-
tive of the pressure. As it has been noted, that |Pep| < 2 during the whole
simulation, the hybrid scheme does not lead to results different from those
obtained using the central scheme. Furthermore, as expected earlier, the
results obtained using the exponential and power law scheme do not show
any considerable differences. Thus, only the central, upwind and exponential
scheme are used for discretizing the first derivative of the pressure for the test
cases discussed in this chapter.
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Table 3 Parameters of the simulated test case

Total Number of Nodes nn 14645

Total Number of Nodes in contact nn,contact 400

Total Number of Elements nelem 14181

Avg. Distance between Contact Nodes ∆xavg 0.01 mm

Diameter of the Seal dseal 5 mm

Simulation Time ttotal 10 s

Acceleration of the Rod arod 50 mm/s2

Density of the Fluid ρfluid 874.5 kg/m3

Dynamic Viscosity of the Fluid ηfluid 0.112 N s/m2

Young’s Modulus Rubber Erubber 4.5 MPa

Poisson’s Ratio Rubber νrubber 0.48

Density of Rubber νrubber 940 kg/m3

Vapor Pressure pV apor −0.1 MPa

Applied Load FL 1.55 N

It has been observed, that the main stability issue of the simulation are
oscillations of the cavity fraction θ. Therefore, the results are compared
regarding the maximum value of the cavity fraction θmax at each increment
and regarding the integrated cavity fraction Θ as defined in Equation (35).

5.1 Results Using the Fischer-Burmeister Equation

In this section, the influence of the chosen scheme and weighting factor αθ
on the results obtained using the Fischer-Burmeister equation are compared.
Figure 8 shows the deformation of the seal for the different schemes at t =
10 s. It can be seen, that there is a steep minimum of the gap height h. There
are only minor deviations between the different schemes, e.g. at 1.7 mm.

The resulting pressure distribution is depicted in Figure 9. Here, it can
also be seen, that there are only minor differences in the curves. A comparison
of the friction force Ffric plotted against the rod velocity vrod is presented in
Figure 10. Besides minor oscillations occurring at different velocities, there
are no qualitative differences in the friction behavior. These similarities were
observed for all weighting factors, implementations and schemes investigated
in this contribution. Thus, the focus of the investigation is on how the
simulation setup affects the oscillations of the cavity fraction.

Figure 11 shows the influence of the weighting factor αθ on the integrated
cavity fraction. For all values of αθ, at the start of the simulation the plot is
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Figure 8 Comparison of the gap height at t = 10 s for different schemes with αθ = 0.5
using the implementation with the Fischer-Burmeister equation.
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Figure 9 Comparison of the fluid pressure distribution at t = 10 s for different schemes
with αθ = 0.5 using the implementation with the Fischer-Burmeister equation.

rather uneven, becoming smoother with increasing time. However, oscilla-
tions at high frequency can be observed, especially at t = 5 s and t = 7 s
with αθ = 0. With increasing αθ values these oscillations are considerably
reduced. Also, the total value of Θ decreases slightly.

Figure 12 shows the plot of θmax for different weighting factors αθ. It
can be seen, that the plots show oscillations with high and low frequencies,
especially forαθ = 0. The low frequency oscillations have a larger amplitude.
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Figure 10 Comparison of the total friction force Ffric plotted against the rod velocity vrod
for different schemes with αθ = 0.5 using the implementation with the Fischer-Burmeister
equation.
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Figure 11 Comparison of the integrated cavity fraction Θ for the central difference scheme
with different αθ as a function of time using the implementation with the Fischer-Burmeister
equation.

This can be attributed to the fact, that the position of the maximum cavity
fraction propagates with time due to the varying deformation of the seal.

It has been noticed that the cavity fraction looks similar to a Gaussian
hill. Since the cavity fraction propagates slightly during the simulation, the
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Figure 12 Comparison of the maximum value of the cavity fraction θmax for the central
difference scheme with different αθ plotted against time using the implementation with the
Fischer-Burmeister equation.

maximum of the cavitation hill also propagates. If the maximum of the exact
solution would be between two nodes, both nodes would show a rather high
value of the cavity fraction. However, if the maximum of the exact solution is
located exactly at the position of a single node, the value at this node would
be considerably higher. Thus, even if there were no numerical deviations and
with a perfect approximation to an exact solution, which looks like a Gaussian
hill, the maximum of the cavity fraction θmax would still show oscillations
due to the discretization. These low frequency oscillations can be observed in
all plots in this contribution. However, both the shape and the magnitude of
them is affected by the choice of numerical methods.

As Figure 12 shows, the value of θmax is significantly smaller in results
obtained with higher values of αθ. Furthermore, the amplitude of the high
frequency oscillations is also reduced considerably. This behavior is typical
and could be observed for all schemes and implementations investigated in
this paper.

Before comparing the effects of different schemes, the distribution of
the Péclet number regarding the pressure Pep is investigated, because most
of the presented schemes adjust the weighting factor for the pressure αp
depending on the Péclet number regarding the pressure Pep. The exemplary
distribution of Pep and the calculated αp are shown in Figure 13 for the
exponential scheme. It can be seen, that the Péclet number takes values close
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Figure 13 Distribution of the Péclet number Pep and the weighting factor αp of the pressure
p for the exponential scheme with αθ = 0.5 at t = 10 s using the implementation with the
Fischer-Burmeister equation.

to zero, except at the positions x = 1.5 mm and x = 3.5 mm. There, Pep
is positive and negative, respectively, with a magnitude of less than one. It
can be observed, that the weighting factor adjusts accordingly, leading to an
inverted shape of the curve of αp.

After investigating the influence of αθ, the differences between the con-
sidered schemes are investigated. Therefore, Figures 14 and 15 show plots
of Θ and θmax obtained using different schemes and αθ = 0.5. Here, the
central and exponential scheme show a similar behavior, indicating that the
weighting factors obtained are close to zero, which can also be observed in
Figure 13.

Nevertheless, there are noticeable differences: first of all, both Θ and
θmax are smaller when using the exponential scheme. Secondly, the curves
obtained with the exponential scheme are slightly shifted to the left. Conse-
quently, the results generated with the upwind differences, which use weight-
ing factors αp strictly higher in magnitude than the exponential scheme, are
even lower in magnitude and shifted to the left. Another difference between
these curves is, that the peaks of the low frequency oscillations are smoother
when using higher magnitudes of αp. However, regarding the high frequency
oscillations of the cavity fraction, there is no visible difference between
the schemes. This is reasonable, since the oscillations of the cavity fraction
should not be affected by the difference scheme used for the pressure.
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Figure 14 Comparison of the integrated cavity fraction Θ for different schemes with αθ =
0.5 as a function of time using the implementation with the Fischer-Burmeister equation.
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Figure 15 Comparison of the maximum value of the cavity fraction θmax for different
schemes with αθ = 0.5 as a function of time using the implementation with the Fischer-
Burmeister equation.

5.2 Results Using the Combined Approach

When investigating the implementation using the combined approach, it was
discovered that is more prone to parameter and scheme changes than the
implementation using the Fischer-Burmeister equation. Several parameter
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Figure 16 Comparison of the integrated cavity fraction Θ for the central difference scheme
with different αθ as a function of time using the combined approach.

combinations did not achieve convergent results with the combined approach.
For example the results obtained using the upwind scheme did not converge
and are thus not shown in this section. Furthermore, for several schemes,
larger values of the weighting factor αθ were necessary in order to achieve
convergent results. However, in some cases, excessive values of αθ also did
not lead to convergent results.

Figures 16 and 17 depict the influence of different values for αθ when
using the central difference scheme. As with the implementation using the
Fischer-Burmeister equation, a higher value of the weighting factor reduces
the high frequency oscillations and leads to an overall smoother curve of the
integrated cavity fraction Θ.

A comparison of the different schemes is shown in Figures 18 and
19 regarding Θ and θmax respectively. Again there are high and low fre-
quency oscillations visible. The amplitude of the high frequency oscillations
is slightly higher when using the central scheme. As for the implementa-
tion using the Fischer-Burmeister equation, the values obtained with the
exponential scheme are slightly lower and shifted to the right.

5.3 Comparison and Discussion

In this section, the differences between the two investigated implementations,
the Fischer-Burmeister equation on the one hand and the combined approach
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Figure 17 Comparison of the maximum value of the cavity fraction θmax for the central
difference scheme with different αθ as a function of time using the combined approach.
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Figure 18 Comparison of the integrated cavity fraction Θ for different schemes with αθ =
0.5 as a function of time using the combined approach.

on the other, are shown. Figure 20 depicts the integrated cavity fraction Θ for
two different values αθ compared for the two different approaches using the
central scheme. The curves using the combined approach show higher values
and more severe oscillations.

Regarding the weighting factor αθ, it is evident that higher values of
αθ lead to a reduction of oscillations and are therefore a suitable tool for
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Figure 19 Comparison of the maximum value of the cavity fraction θmax for different
schemes with αθ = 0.5 as a function of time using the combined approach.
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Figure 20 Comparison of the integrated cavity fraction Θ for the central scheme with
different values for αθ and different implementations (Fischer-Burmeister (FB) and Combined
Approach (CA)).

stabilizing the values of θ, e.g. see Figure 12. This is in line with the
results of Chapter 4 and also reasonable, since in the regions with cavitation,
the equation reduces to an advection equation, where upwind schemes (i.e.
|αθ| = 1) are expected to produce convergent results. However, in some
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simulations, such as the one using the combined approach and the exponential
scheme, a value of αθ = 1 did in fact not lead to convergent results. This
can possibly be attributed to effects related to the transition from the region
without cavitation to the region with cavitation.

When comparing the schemes for the first derivative of the pressure p,
it can be seen that the higher the magnitude of αp, the smoother the low
frequency oscillations of the cavity fraction. Furthermore, these curves are
slightly shifted to the left. However, the high frequency oscillations are
largely unaffected by the choice of difference scheme. Therefore, it can be
concluded, that the choice of difference scheme for the weighting factor for
the cavity fraction αθ is of higher importance than the choice of difference
scheme for the pressure αp, which is, again, in accordance with the results of
Chapter 4.

The presented implementation using the Fischer-Burmeister equation has
proven to be more robust than one using the combined approach, since in
the latter case, more simulations did not reach convergence. The tendency
of the combined approach to cause more severe and thus potentially critical
oscillations can also be observed in Figure 20. However, this implementation
has the potential to decrease the computation time. This has been shown
in Chapter 4 for the divergent gap test case, where the combined approach
delivered the same results as the Fischer-Burmeister equation but reached
convergence after fewer iterations. Yet the effect could not be observed for the
full EHL simulation investigated in this chapter. Nonetheless, this potential
might possibly be further explored by calculating the Péclet number not for p
and θ individually, but for ξ itself. Using this concept, the adjustment of the
difference schemes at the transition from cavitating to non-cavitating regions
and vice versa might lead to more stable and smooth results for the combined
approach.

6 Conclusion and Outlook

This contribution has shown the influence of different implementations
and numerical schemes on the solution of the Reynolds equation with the
JFO cavitation model with application to EHL simulations of translational
hydraulic seals. It was shown, that the results of the gap height and pressure
distribution are essentially unaffected by the choice of implementation or
scheme. Therefore, the focus was on determining the influence on the oscil-
lations of the cavity fraction. In the investigations, higher weighting factors
for the cavity fraction lead to a reduction of the oscillations.
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When comparing the different approaches, there were noticeable differ-
ences in stability. In this contribution, the stability of the approach with the
Fischer-Burmeister equation has been less prone to parameter changes than
the combined approach. When using the latter, several parameter combina-
tions were not able to produce convergent results for the full EHL simulation.
However, while investigating the divergent gap test case, the simulations
using the combined approach reached convergence faster than the ones using
the Fischer-Burmeister equation.

There is still potential for further investigations. On the one hand, a
test of the implementations within more benchmark cases might provide
additional insight into the performance of the different approaches. Both
equally application-oriented and additional simple test cases could serve the
purpose to understand, why the Fischer-Burmeister equation performed better
in the EHL test case, whereas the combined approach converged faster during
the simple test case. On the other hand, different numerical schemes, such as
second and higher order schemes, and different functions for θ(ξ) are also
promising additions to the introduced approaches. In addition, considering a
single Péclet number for ξ instead of two individual ones for the pressure p
and the cavity fraction θ might lead to a further reduction of the oscillations.
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