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Abstract

The macroscopic geometry of ball seat valves is important for the quality of
the seal. This works discusses the influence of different geometric properties
on the contact area, the contact pressure and their relation to the leakage. The
leakage is calculated using the results of finite element method (FEM) calcu-
lations and Persson’s percolation based method. The following properties of
the seat are examined: the angle, the curvature and the eccentricity.

Keywords: Ball seat valve, contact, FEM, leakage, sealing.

1 Preface

This paper presents an extension of the results shown in [1].
Metallic seals play an important role in many different fields and appli-

cations. For example, they are used in valves, inside of screw fittings, and at
pistons of bent-axis-machines.

Yet there is still a lack of research on the hard-hard contact. For instance,
the leakage mechanism is not fully understood and the role of plasticity needs
to be determined.
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Nowadays, engineers design metallic seals based on experience. They use
over-designed components and contact pressures to guarantee seal tightness.
An optimization of metallic seals will lead to a cost reduction and lifetime
elongation.

In order to optimize metallic seals, one needs to quantify the influence
of the surface and the geometry in the contact. This work is a contribution
to this research. It focuses on the macroscopic effects of the geometry. They
alone are not enough to calculate the leakage. However, they are a required
preparation and allow on their own to predict which designs create the tightest
seals. This paper discusses the geometric properties of metallic ball seat
valves. The leakage is calculated based on FEM simulations of ball seat
valves and an exemplary measurement of a rough surface.

2 Theoretical Concepts

In this section, there is a brief introduction into the nature of rough surfaces.
There is also a summary of the leakage calculation method, which is used in
this work.

2.1 Rough Surfaces

Metallic surfaces are rough on a microscopic level. Surface roughness can be
described using the root mean square roughness hRMS or Rq [2]:

hRMS =
√
〈z2〉 (1)

Where z is the height profile of the surface.
It has been shown that most metal’s rough surface can be described

approximately as self-affine fractal. Fractal surfaces can be characterized by
their Hurst exponent H , also called roughness exponent [3]. H is related the
fractal dimension D via D = 2−H for lines or D = 3−H for surfaces.
D describes how much the perceived dimensionality changes with a change
of scale. For example, a perfect line has a dimension of 1. If this line
is irregular and rough inside its embedding plane, then it starts to fill a
two-dimensional structure. With increasing resolution the line approaches a
two-dimensional structure. If H approaches 1, the line will look more and
more like a surface [4].

There are several non-equivalent definitions for the fractal dimension.
One example is the Minkowski-Bouligand or box dimension. Let the plane
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Figure 1 Two self affine fractal surfaces with different fractal properties and Rq=1µm.

be divided into squares with side length L. N(L) is the number of squares
the line passes through. In this case, D is equal to:

D = lim
L→0

logN(L)

log(1/L)
(2)

D can be constructed analogous for fractal planes [5]. One of the benefits of
this definition of D is that it does suggest an algorithm to calculate it from
data. Another one is its simplicity.

Typical values for H in the case of steel surfaces lie in between 0.90 and
0.97 [6].

Surfaces with the same nominal roughnessRq can posses different fractal
properties. This is illustrated by Figure 1. It shows two artificially generated
perfectly self-affine fractal surfaces with the same roughness.

Due to the surface roughness, two rough planes which are apparently at
full contact have a reduced real contact area if they are investigated using
a higher resolution. This apparent area of contact depends on the materials’
properties, the contact pressure pC and the magnification ζ which is defined
as the fraction up to which surface wave lengths are included compared to the
length of the probe. The relationship between these quantities and the relative
real contact area P = A(ζ)

A0
is [7]:

P (ζ) = erf

(
pC

2
√
G

)
(3a)

G(ζ) =
π

4

(
E

1− ν2

)2 ∫ ζq0

q0

dqq3C(q) (3b)

Where E is the Young’s modulus, ν the Poisson’s ratio, q the surface wave
number, q0 the lower wave number cut-off and C(q) the surface roughness
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Figure 2 Surface roughness power spectrum C(q) of an isotropic metallic surface.

power spectrum which is defined as:

C(q) =
1

(2π)2

∫
d2x〈h(x)h(0)〉e−iqx (4)

C(q) can be related to the mean square roughness via [8]:

h2
rms = R2

q = 2π

∫
dqqC(q) (5)

In this work, C(q) has been calculated based on a surface measurement,
as seen in Figure 2. If the surface was perfectly self-affine fractal, the log-
log-graph would appear as a straight line. In this case, it posses a roll-off area
for low wave-vectors q and it cannot be described by a perfect line, either.

2.2 Leakage

If two rough surfaces are in contact, there are microscopic channels between
the planes due to the rough microscopic structure. In case of seals, some
of the channels percolate through the contact from the high pressure region
to the low pressure region. The leakage of a closed valve happens through
these channels. This mechanism is illustrated in Figure 3. In this figure, blue
regions symbolize areas of contact between the seat and the ball and white
regions symbolize areas that are not in contact.

Reference [9] describes this leakage mechanism. The flow through the
system of channels can be approximated via the 2D Bruggemann effective-
medium theory. In case of the geometry of a cylindrical valve, it can be
formulated as:

d
dΦ

Q =
σeff

AC(Φ)
∆P (6)
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(a) low ζ (b) high ζ

Figure 3 Sketch of the occurrence of percolation channels with increasing magnification ζ.
Light blue regions symbolize area of contact and white regions areas of no contact.

Where d
dΦQ is the density of leakage perpendicular to the contact edge at

cylinder angle Φ that is usually called the azimuthal angle, σeff is the effective
conductivity density and ∆P is the pressure drop. Ac(Φ) is the contact area
in radial direction at angle Φ. The conductivity σ is defined as:

Q = σ∆P (7)

where ∆P is a difference of pressure and Q is the volumetric flow rate.
σeff can be found by solving the following equation numerically:

σ−1
eff = −

∫
dζ
∂P (ζ))

∂ζ

2

σeff + σ(ζ)
(8)

Where σ(ζ) describes the conductivity of a percolation channel at magni-
fication ζ. The conductivity of a fluid with viscosity η through a channel with
height u(ζ) can be approximated using the throttle equation [10]:

σ(ζ) =
u(ζ)3

12η
(9)

This approximation assumes a constant normal contact pressure alongside
the channel. The pressure is not actually constant alongside the contact area,
but has instead a clear maximum at some point. An example for a real
pressure curve can be seen in Figure 8. Thus, the heights of the channels
are not actually constant. Their tightness varies with the contact pressure.
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Nevertheless, this approximation can still be used in most cases, because the
smallest height of the channel dominates the leak tightness.

The model can be refined by choosing a more accurate description of the
conductivity through such a channel. In either case, the conductivity is highly
dependent on the minimal height of the channels.

The height of the channel u(ζ) can be found using the real area of contact
A(ζ) and the average separation between the surfaces in contact ū(ζ):

u1(ζ) = ū(ζ) +
∂ū(ζ)

∂ζ

(
∂P (ζ)

∂ζ

)−1

P (ζ) ≈ ū(ζ) (10)

Reference [11] shows how ū(ζ) is derived:

ū(ζ) =
√
π

∫ q1

q0ζ
dq
∫ ∞
pcP (ζ)

dpq2C(q)ω(q, ζ)
e−[ω(q,ζ)p/E]2

p
(11a)

ω(q, ζ) =

(
π

∫ q

ζq0

dqq3C(q)

)−1/2

(11b)

Where C(q) is the surface roughness power spectrum, q0 and q1 are the
lowest and highest observed surface roughness wave numbers, E is both
material’s effective Young’s module.

If both materials are elastic and possess an elastic module, the effective
elastic module is defined by Equation (12):

E∗ =

(
1− ν2

1

E1
+

1− ν2
2

E2

)−1

(12)

The most important difference between the contact mechanics of metal-
lic seals and rubber seals is the influence of plasticity. In metallic seals,
microscopic plastic deformations reduce the leakage. The industry applies
this effect by impregnating metallic seals before usage. For this, a very
high normal force is applied to the valve for a short time. This changes
the surface’s properties at the contact area, which can be seen by the naked
eye [12].

After applying a normal force or a fluid pressure to a valve, the roughness
flattens out plastically on the area of contact [13]. A reduced roughness
leads to a smaller C(q), which in turn leads to smaller channels according
to Equation (11) and thus to a better sealing of the valve.



Geometry of Ball Seat Valves 179

AC

pC

Figure 4 Sketch of the apparent contact area of a ball seat valve.

One can introduce the important effects of microscopic plasticity into
the calculations by reducing the spectral density of the surface C(q) by a
correcting factor [14].

Cpl(q) =
[
1−

(
Ppl(ζ)

)6]
C(q) (13)

Where Ppl is the contribution to the relative contact area P by plastic
deformations, see [15].

The most important properties for calculating leakage, which are deter-
mined using simulations in the macroscopic scale are the contact area in
radial direction and the maximum of the contact pressure distribution along
the radial direction. The contact pressure determines the tightness of the
microscopic channels. A higher peak of the contact pressure and a larger
contact area lead to a reduction in leakage. According to Equation (9), the
leak tightness is∝ AC whereAC is the radial contact area and approximately
∝ exp(βpC) with some constant β. The meaning of AC and pC is illustrated
in Figure 4.

Due to their major impact on the sealing mechanism, the calculation of
these quantities are subject to this paper.

In physical valves, the leakage decreases with time, because of particles
in the fluid blocking the channels, so that the leakage decreases with rising
contamination [12]. This effect is not included in this work.

3 Computational Methods

In this paper, the elastic problem is solved computationally using the finite
element method (FEM). The numerical results are validated using an analytic
approximation. Based on the contact pressure distribution and on a surface
scan, the leakage is calculated using Persson’s method.
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3.1 Analytic Contact Mechanics

In order to verify the results of the FEM calculation, the data has been com-
pared with semi analytical results. Reference [16] describes how the contact
problem can be solved for rotationally symmetric non-adhesive frictionless
static contacts. This analytic method allows for the inclusion of plasticity, as
well.

Other works have shown, that softened contact models are better in
describing rough surfaces [17]. Soft contact relations assume, that some
forces are compensated by elastic deformations of the surface asperities,
rather than by deformations of the bulk material. Yet, there are no analytical
methods to exactly calculate the contact pressure distributions using a soft
contact relation. Still, good results for low contact pressures can be achieved,
by assuming that only the asperities of the surfaces deform elastically
excluding the bulk deformations.

In his work, Persson calculated a relation between the contact pressure p
and the distance of planes u [18]. He found out, that there is an exponential
relation between the variables: p(u) ∝ exp(−bu), with a constant constant
b which depends on C(q). Together with the geometry of the surfaces and
the total normal force, this can be used to calculate the contact pressure
distribution.

For this calculation, the fact is used, that the ball is squeezed onto the seat
with a force, which is equal to the area of the circle formed by the contact
area times the fluid pressure:

FN = 2πR2
ball sin2 φpfluid (14)

For the simplicity, it is assumed that the system can be described locally
as the contact between a cylinder and a flat plane. This leads to the following
equations, if bulk deformations are neglected:

p(x) = p0 exp(− x2

2s2
) (15a)

s2 = γRballhRMS (15b)

p0 = tanφ
Rballpfluid

2s
√

2π
(15c)

Here, γ is a constant, which is≈ 0.4. It has been shown that this simplifi-
cation leads to good agreement with the numerical FEM [19]. A consequence
of this simple model is, that the results do not depend on the material’s elastic
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Figure 5 Approximative analytic dependency of the maximal contact pressure on different
quantities.

properties. It is not possible to define a hard contact area using a soft contact
model, because the contact pressure will never vanish completely for any
point on the surface. As explained in Section 2.2, an approximation for the
contact area is needed. In this case, a possible approximation would be 2s,
where s is the deviation of the Gaussian bell curve in Equation (15). With
this simple model, the radial contact area does not depend on the contact
pressure.

How the maximal contact pressure of the fluid pressure depends and the
seat’s angle φ can be seen in Figure 5. This graph can be used to validate the
results obtained using the FEA method.

3.2 FEM Implementation

The elastic contact problem has been solved using the Abaqus FEM suite by
Simulia. Depending on the model, either a 3D model of the valve or a 2D
cylindrically symmetrical model is used. A triangular or a tetrahedral mesh is
used respectively. Second order elements are used in order to account for the
roundness of the ball and the valve realistically. In case of the 2D model the
element type CAX8R has been used; the 3D model consists of elements of the
type C3D15. The deformations which are applied on the 3D model conserve
some of its symmetries. Therefore, only one fourth of the model needs to be
simulated.

The contact is implemented using a soft contact model in both cases,
which allows an overlap of one surface plane into the other. In order to
achieve convergence of the model and to allow the software to define a contact
area, a cutoff of the exponential contact relation is needed. This cutoff is
chosen to be ±3hRMS.
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Figure 6 Convergence test for the 2D case. The maximal pressure in the contact area is
converging with higher mesh-density.

It is important to perform a convergence test in order to ensure meaningful
results. In this work, the contact area and the contact pressure are of special
interest. Therefore, convergence needs to be ensured for these quantities. The
convergence has been tested examining the change of the maximum of the
contact pressure, see Equation (16), with increasing mesh density.

pmax = max
r

(pc(r)) (16)

The contact pressure is a better variable to check for convergence than
the contact area, because the contact area is linked directly to the number of
elements at the contact.

An example for a convergence test is depicted in Figure 6. The fluctu-
ations decrease with a rising number of elements in the contact area. The
density of notes is illustrated in Figure 7. It shows two different meshes of
the same model with a different average density of nodes.

3.3 Evaluation of the Simulated Results

The leakage depends on the contact pressure and contact area. It is mainly
influenced by the radial part of the contact area AC , the tangential part of
the contact area Ucircle and the maximum of the contact pressure pmax. The
tangential contact area can be calculated directly from the geometry. The
other properties can be gathered from the finite element analysis.

Figure 8 illustrates how the variables are defined and suggests how they
can be obtained from the results of a simulation. The pressure distribution in
radial direction has a Gaussian shape. Persson’s method is dependent on an
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(a) ≈1 node per mm (b) ≈10 nodes per mm

Figure 7 Meshes of the 2D FEM model with a different node-density on the edge of the
seat. At the top of the ball, a uniform load has been applied. The bottom and the right edge of
the seat are fixed by boundary conditions. The whole model is constrained by the rotational
symmetry.

7.5 8.0 8.5 9.0 9.5 10.0

distance [mm]

0

2

4

6

8

10

co
n
ta
ct

p
re
ss
u
re

[M
P
a]

pmax

AC

data

fit

Figure 8 Gaussian fit of contact pressure in radial direction.

arbitrary choice of a radial contact area. In this work, the choice AC = 2σP
has been used, where σP is the deviation obtained as a fitting parameter. It
should be close to the analytic deviation s seen in Equation (15).

4 Results

The following section shows the results of the FEM calculation. A realistic
ball seat valve has been calculated. A sketch of the valve can be seen in
Figure 9.
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Figure 9 Sketch of the ball seat valve.

Table 1 Geometric specifications of the valve

Property Value

radius of ball Rball 20mm

inner seat radius Rseat 7.5mm

angle of slope φ π/4

out-of-roundness of seat 3µm

fluid pressure pfluid 1.0MPa

Young’s module E 209GPa

hardness of seat 609 HV 0.2

Poisson’s ration ν 0.3

The geometric specifications listed in table 1 have been used if not stated
otherwise. The listed specifications are typical for industrial ball seat valves.

The elastic properties of the materials have been taken from literature.
The seat’s hardness has been measured using Vicker’s method. Only the
hardness of the softer body is important, which, in this case, is the seat.

4.1 Influence of the Fluid Pressure

The fluid pressure is implemented by applying a force on top of the ball.
According to Equation (14), the force can be set to a value, so that it has the
same effect as a static fluid pressure acting on the ball.

Figure 10 depicts the results of the calculations with variable pressure.
The calculations are in good agreement to the semi-analytic calculations seen
in Figure 5. Due to the increased computational cost, the following quantities
are analyzed using the axially symmetric model only.

The contact area has been set to the distance of the first and the last
node of the mesh which are in contact. These values have been compared
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Figure 10 Influence of the fluid pressure on the maximal radial contact area and the maximal
contact pressure.
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Figure 11 Influence of the fluid pressure on the total contact area.

to Abaqus’ output variable CAREA which represents the whole contact area in
mm2, and they are compatible, see Figure 11.

With rising fluid pressure the normal force increases. The increased
normal force leads to a larger contact area and a higher pressure peak. An
increase in these quantities will lead to a reduction of the leakage according
to Section 2.2. This has also been shown experimentally [12]. In this case, the
pressure drop between the cavity above and below the seal increases, as well.
This leads to an overall decrease in leakage for higher fluid pressures.

The calculated leakage can be seen in Figure 12. The graph shows a linear
increase of the leakage for a rising fluid pressure. For very high pressures the
leakage decreaes due to the dominance of plastic deformation.
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Figure 12 Influence of the fluid pressure on the leakage.
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Figure 13 Influence of the angle on contact.

4.2 Influence of the Angle

In another series of simulations the influence of the angle of the conical seat
on the contact area has been analyzed.

The results can be seen in Figure 13. With angle φ, both the contact
area and the peak of the contact pressure increase. The fluid pressure is kept
constant in this simulation. With increasing angle, the area of the circle which
is bordered by the contact edge increases, as well. This leads to a rising
normal force according to Equation (14). The change in normal force is most
probably the reason for the rise of both quantities. In consequence, a steeper
angle will lead to smaller leakage.
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Figure 14 Relation between the maximum of the contact pressure and the effective normal
force.

Figure 14 shows that for an approximately constant force very steep and
very flat angles provide better sealing. The radial contact area relative to the
normal force has a similar U-shape. Therefore, with constant normal force
both flat angles and steep angles will increase the seal tightness.

In reality though the force is not the controlled variable, but the fluid pres-
sure. Thus, Figure 13 gives a better overview of which geometries provide the
better sealing properties. This leaves steep angles as the optimal geometry for
seats with respect to sealing.

A problem with this consideration is the increased circumference Ucircle

of the contact circle which can also be called the tangential contact area. The
leakage is going to increase linearly with the circumference and thus linearly
with the circle’s radius. This is an antagonist to the increased contact pressure.
Figure 15 depicts their relation. It can bee seen, that the ratio AC

Ucircle
decreases

with increasing values of φ. From this perspective we expect an increased
leakage for steeper angles.

This problem can only be solved exactly by calculating the leakage based
on the results under the consideration of the surfaces’ properties.

Figure 16 shows the relative change of leakage depending on the seat’s
angle. It can be seen, that the leakage increases by up to 20 % for steep angles
and is decreased by up to 60 % for small angles. At least for this specific
surface, small angles provide a better seal tightness.
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Figure 16 Influence of the seat’s angle φ on the leakage compared to the leakage at φ = 45°.

4.3 Curvature

Another possible geometric property of a ball seat valve is the curvature of a
spherical seat. Let δ be the maximal distance between the sealing surface
of the seat without curvature and the bend curvature. δ > 0 denotes a
convex surface and δ < 0 a concave surface. The meaning of this variable
is illustrated in Figure 17.

Figure 18 depicts the influence of the deviation δ on the contact area and
the contact pressure. The contact area is higher for concave seat surfaces,
whereas the maximum of the contact pressure is lower as compared to convex
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Figure 17 Seats of different curvature.
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Figure 18 Influence of the seat’s curvature.

surfaces. A higher maximum in contact pressure suppresses leakage while
a smaller radial contact area AC results in a higher leakage. The optimal
configuration needs to be found by a concrete calculation of the leakage.

Figure 19 depicts the calculated leakage depending on the curvature. It
can be seen, that convex surfaces provide a better sealing for this specific
surface. The change in seal tightness has only a small dependency on the
curvature as compared to the angle.

4.4 Out-Of-Roundness

The technical definition of the out-of-roundness is the difference between two
radii of two circles which enclose the physical circle. The physical non-ideal
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Figure 19 Influence of the curvature δ on the leakage compared to the leakage without
curvature δ = 0.

ΔR
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Figure 20 Illustration of out-of-roundness.

circle does not leave the enclosing circles at any point. The concept of the
technical out-of-roundness ∆R is illustrated by Figure 20.

In this work, valves of are analyzed based on their eccentricity ε, assum-
ing elliptic deformations. Ellipses can be created systematically to fit a given
out-of-roundness. Another advantage of the eccentricity as compared to the
definition of out-of-roundness is the independence of the radius. At smaller
radii, the same out-of-roundness has a greater impact than for larger ones.
This is especially useful for seats, because they possess a range of different
radii along their surface.
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a

b

Figure 21 Sketch of an ellipse.

The eccentricity for an ellipse with a semi-major-axis a and a semi-minor-
axis b, see Figure 21, is defined as:

ε =

√
1−

(
b

a

)2

(17)

The eccentricity ε corresponding to the technical out-of-roundness ∆r at
radius R can be found via:

ε2 = 1−
(
R−∆r

R+ ∆r

)2

(18)

Measurements of the roundness of physical valves have shown that seats
do indeed possess a very small elliptic deviation. In case of the physical rep-
resentation of the seat, which is modeled in this work, the out-of-roundness at
the lower radius is approximately 3 µm. This corresponds to an eccentricity
of ε ≈ 0.04.

Elliptic seats can only be analyzed using three-dimensional simulations.
They are far more computational expensive as compared to two-dimensional
calculations. This is why the following calculations are performed using a
lower accuracy and fewer samples as for the 2D simulations.

The simulations revealed that the full contact between the ball and the seat
is lost at an eccentricity of ε ≈ 0.09. This corresponds to an out-of-roundness
of 48 µm. At this point, no sealing at all can be provided with the given fluid
pressure.

The point of an ellipse which is most far from its center is called the
vertex. The closest point is called the co-vertex.

In Figure 22 is an example for a contact curve. The contact pressure can be
seen as in relation to the azimuthal angle Φ. Φ = 0 equals the co-vertex and
Φ = π

2 = 90◦ equals the vertex. The maximal contact pressure is reached at
the co-vertex and the minimal contact pressure at the vertex. The coarseness
of the graph is a spurious effect due to the mesh not being fine enough. It can
be refined using more computing resources.
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Figure 22 Curve of pressure along the horizontal contact circle for ε = 0.04.
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Figure 23 Change of the ratios of contact properties between the vertex and the co-vertex
with increasing eccentricity.

Figure 23 shows how the contact area and the peak of the pressure of
the co-vertex change with changing eccentricity relative to the vertex. The
contact pressure and the radial contact area are the smallest at the edge which
is formed by the vertex. This is why this point is most responsible for the
leakage. The radial contact area and the contact pressure at the vertex is
depicted in Figure 24.

Both the maximal contact pressure and the radial contact area decrease
non-linearly with increasing eccentricity. This is why the eccentricity is
potentially very important for the leakage. The exact influence needs to be
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Figure 24 Influence of the seat’s eccentricity on the contact area and the contact pressure at
the vertex.
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Figure 25 Influence of the seat’s eccentricity on the leakage.

determined by a full calculation of the leakage under the consideration of the
surfaces’ properties. The results of this calculation is shown in Figure 25.

For small eccentricities of below ε ≈ 0.04 the increase in leakage
is negligible. Above that, the leakage increases drastically with increasing
out-of-roundness, until the ball loses contact at the vertex. Therefore, a
small out-of-roundness is not important for the production of tight valves,
unless the eccentricity surpasses a certain critical value, which might depend
on the material’s properties and the roughness of the surface. The exact
dependencies of the this threshold need further investigation.
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5 Outlook and Further Considerations

The influence of the geometry on the contact pressure and the contact area
can be calculated using finite element analysis. Their effects on the leakage
have been calculated using an exemplary surface. The seat’s angle has a large
impact on the tightness. At constant fluid pressure, smaller angles reduce the
leakage. The curvature of the seat has a small impact compared to the angle.
The eccentricity does not influence the leakage meaningfully up to a certain
threshold.

Future works can also provide more detailed simulations of three-
dimensional. This way properties which cannot be reflected in a two-
dimensional model such as the out-of-roundness can be calculated more
accurately. Resources can also be used to analyze the effects an eccentricity
has on the influence of the angle or curvature of the seat.

The techniques which have been used in this work to analyze ball seat
valves can be applied to other geometries of valves using hard-hard contact,
as well.

This paper sets the first step towards a full and accurate calculation of
leakage at ball seat valves. The here presented results can be used as a tool
on developing an optimized seat geometry.
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