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Abstract

A pressure pulsation phenomenon in positive displacement machinery and
resulting from that noise and vibration problems are well-known and still
unsolved issues. The article concerns modeling pressure pulsation dampers
used for fluid machinery, in particular in gas systems. The currently used
mathematical models based on the plane wave theory are verified in the
special laboratory conditions with no flow and no wave reflections at the
system outlet. The use of a compressor as an excitation source significantly
influences the characteristics of a damper installed in a system. In this study, a
measurement of common type dampers transmission loss characteristics with
the use of pressure transducers is proposed. The article discusses the influence
of boundary conditions in analytical models based on the plane wave theory
on the accuracy of dampers characteristics. Basing on the measurements
results some improvements in the analytical model are proposed.
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1 Introduction

Positive displacement machines used in fluid power technology such as
pumps and compressors are characterized by a cyclic operation consisting
of discharging the fluid volume from the suction side to the discharge port
by means of the working elements e.g. pistons [1, 2]. As a result of this
process, they generate periodically – variable flow, leading to flow and pres-
sure pulsation. It is a disadvantageous phenomenon because it may generate
excessive noise and vibrations in the system and negatively affect efficiency.
Many studies have been devoted to the research of noise problems in fluid
flow systems [3–6]. A movement of a piston in a positive displacement
machine generates pulsations at a fundamental frequency corresponding to
a crankshaft rotational speed. Valves and other components cause subsequent
harmonic pulsations with frequencies that are a multiple of the fundamental
frequency. Pressure pulsations propagate in a fluid as waves and interact
with the system by undergoing reflection or interference. As a result of
resonance, if the frequency of excitations from the compressor coincides with
the frequency of natural vibrations of the piping system, the amplitudes of
individual harmonics can be significantly increased.

In order to protect positive-displacement machines and the whole sys-
tem, pulsation dampers may be introduced. There are two main types of
passive dampers: dissipative and reactive. Dissipative dampers contain wave-
scattering elements in the form of perforated tubes or porous materials.
This type of silencer is commonly used to suppress noise in exhaust sys-
tems of internal combustion engines [7]. Reactive dampers principle of
operation is based on repeated wave reflection. This group includes side-
branch resonators and low-pass filters. The side-branch resonators include
quarter-wave, Helmholtz [8] and Herschel–Quincke resonators [9].

The second group of reactive dampers, low-pass filters, are mainly used
for machines with variable speed and operating under various conditions,
i.e. variable pressure and temperature. Low-pass filters pass low frequen-
cies below the cut-off frequency and suppress the higher frequencies. The
damping range results from the size of the damper (volume) and its natural
frequency. Four types of passive pulsation dampers (acoustic filters) are
most often used: single-chamber, single-chamber with an internal choke tube,
double-chamber with an internal baffle, double-chamber with a baffle and an
internal choke tube.

Reactive pulsation dampers, used in fluid systems, should be optimally
selected and arranged, and this procedure should result from the analysis of
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the operating conditions and the geometrical parameters of the installation.
The correct selection of dampers should allow increasing the reliability of the
system as well as minimizing the initial investment and operating costs. The
selection of the damper type is based on analytical or numerical calculations
and experimental tests.

The most common methods of modelling acoustic dampers are based on
the acoustic plane wave theory in time-domain and frequency-domain [2, 10].
Those one-dimensional models are especially useful while modelling long
sections of pipelines and whole fluid installations. The second approach is
based on the three-dimensional acoustic simulation involving the Helmholtz
equation solved by means of the finite element method (FEM) [11–14]. The
acoustic – based mathematical models are still widely used in the description
of reactive dampers and the majority of work has been done in the design of
engine mufflers [15–19].

The experimental tests involving dampers in gas systems with recipro-
cating compressor as an excitation force were described in [14, 20] and
concerned a system with a volume-choke-volume filter and a system with
a Helmholtz resonator.

2 Analytical Model

The simplest analytical model for determining the minimum chamber volume
of the pulsation damper is the Helmholtz model i.e. lumped parameter model.
The Helmholtz resonator theory can be applied to system components which
consist of short pipeline sections having small volumes. The system elements
are described by means of lumped parameters – acoustic compliance –
compressible gas in the volume of the damper acting as a spring, acoustic
inertance – incompressible plug of gas in the neck volume corresponding to
vibrating mass.

The natural frequency of a chamber damper f0 is given by:

f0 =
c

2π

√
S

LV
(1)

where: c – speed of sound, S – section area of outlet line, L – outlet line
length, V – damper volume.

The variable parameter depending on the type of working medium is the
speed of the sound wave propagation in the medium. The speed of sound in
liquids is greater than in gases. The higher the speed of sound, the higher
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the natural frequency of the damper. The speed of sound according to the
Newton-Laplace relationship is given by the formula:

c =

√
K

ρ
(2)

where: ρ – fluid density, K – bulk modulus:

K = −V ∂p

∂V
(3)

where: p – pressure, V – initial volume of gas.
The sound velocity for real gases can be determined from the formula:

c =

√
κZRT

M
(4)

where: κ – isentropic exponent, Z – gas compressibility coefficient, R – gas
constant, T – gas temperature, M – molar mass of gas.

The natural frequency of a damper f0 must be lower than the first
harmonic of pressure pulsation, and the cut-off frequency f above which the
low-pass filter will suppress the signal is given by the formula:

f =
√
2f0 (5)

The minimum volume of a chamber damper V can therefore be deter-
mined from:

V =
S · c2

2π2 · f2 · L
(6)

The limitation of the application of the model with lumped parameters
(the Helmholtz resonator theory) is the small dimensions of the damper
and the exhaust duct in relation to the highest harmonic wavelength of the
analyzed signal. The condition for obtaining the accuracy of the solution
is the length of the longest element of the damper not exceeding ij of the
wavelength of the highest harmonic. The Helmholtz resonator theory can
be used to determine the minimum volume of the damper and to determine
the natural frequency of the damper, however, for the correct analysis of
acoustic phenomena such as standing waves, a more advanced model is
needed, taking into account the long transmission line effect. Therefore,
models with distributed parameters (continuous system approach) should be
used [2, 21, 22]. This approach is based on the plane wave equation in one
dimension.
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A fluid flow in a three-dimensional gas system may be described by
mass, momentum and energy conservation equations, which include the
Navier-Stokes, continuity and state equations. However, due to the size of
industrial installations, it is common to reduce the mathematical description
to the one-dimensional problem. The geometric spatial model is replaced
by pipe sections of specific lengths and cross-sections. The basic condition
for reducing the model from 3D to the 1D description is the assumption
that at each cross-section of the pipeline, the gas parameters are the same.
By neglecting gas viscosity and thermal conductivity in the Navier-Stokes
equations, the Euler equations are obtained. With further assumption that the
flow velocity is much lower than the speed of sound, the Euler equations
reduce to the wave equation.

The use of the plane wave equation requires the following assumptions:

• constant and variable component of each variable can be separated over
time,

• values of variable components are small compared to average (below ±
20% of the average pressure),

• when deriving wave relationships, the constant component is omit-
ted and only variable components are modeled in time, assuming the
possibility of applying the superposition principle,

• a flow is one-dimensional, and waves of pressure pulsation do not
form transverse modes, i.e. no pulsations perpendicular to the axis are
generated in a pipeline.

Pressure pulsation in gaseous medium can be described by the damped
wave equation in the form:

∂2ξ

∂t2
+ ν

∂ξ

∂t
= c2

∂ξ

∂x2
(7)

where: ξ – displacement in x-axis, ν – equivalent viscous damping coeffi-
cient.

The value of ν can be determined from the Helmholtz-Stokes model:

ν =
2

D

√
2νω (8)

where: D – effective diameter of a pipe, ν – kinematic viscosity, ω – angular
frequency.

The wave equation solution is known in the form of:

ξ(x, t) = A1e
−axej(ωt−kx) +B1e

axej(ωt+kx) (9)
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where: k – wave number: k = ω
c = 2π

λ , a – damping factor: a = ν
2c , j –

imaginary unit: j =
√
−1, A1, B1 – complex constants calculated on the

basis of boundary conditions.
Defining the wave propagation coefficient as γ = a+ jk and taking into

account the above relations, the equations of pressure and flow pulsation may
be obtained:

p(x, t) = −ρc2 ∂ξ
∂x

= ρc2γ[A1e
−γx −B1e

γx]ejωt (10)

q(x, t) = jωS[A1e
−γx +B1e

γx]ejωt (11)

The 1D analyses for the present study were performed on the basis of the
script written in Matlab environment. The wave equations were solved in the
frequency domain with the assumption that the long transmission line may
be represented by a linear acoustic four-pole network with two inlets (P0 and
Q0) and two outlets (PL and QL). The transmission loss characteristic of a
damper can be then computed using the transfer matrix approach:[

Q0

P0

]
=

[
A B
C D

] [
QL
PL

]
(12)

where:

A = coshγL = D (13)

B =
1

Z
sinhγL (14)

C = ZsinhγL (15)

– acoustic wave impedance:

Z =
ρc2γ

jωS
(16)

The diagrams of dampers modelled with simple elements of specified
lengths and diameters are presented in Figure 1.

The following transfer matrices describe the specified types of dampers:

• A single chamber damper:[
AT BT
CT DT

]
=

[
A1 B1

C1 D1

] [
A2 B2

C2 D2

] [
A3 B3

C3 D3

]
(17)
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a) 

b

c) 

Figure 1 Schematic of analysed dampers: (a) a single chamber damper, (b) a damper with
an internal choke tube and (c) a damper with an internal baffle and a choke tube.

• A damper with an internal choke tube:

At the branch junction:

QL2 = Q03 +Q04 (18)

PL2 = P03 = P04 (19)

The point impedance for the side branch tube:

Z3 =
P03

Q03
(20)

From the branch side condition it is obtained:

QL2 =
P03

Z3
+Q04 (21)

PL2 = P04 (22)

In matrix form: [
QL2
PL2

]
=

1 1

Z3

0 1

[Q04

P04

]
(23)

Thus, combining all equations, the transfer matrix for a damper with a
choke tube is:[

AT BT
CT DT

]
=

[
A1 B1

C1 D1

] [
A2 B2

C2 D2

]1 1

Z3

0 1

[A4 B4

C4 D4

]
(24)
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• A damper with an internal baffle and a choke tube:[
AT BT
CT DT

]
=

[
A1 B1

C1 D1

] [
A2 B2

C2 D2

]1 1

Z3

0 1

[A4 B4

C4 D4

]

×

1 1

Z5

0 1

[A6 B6

C6 D6

] [
A7 B7

C7 D7

]
(25)

For the known Q0 and the open end boundary condition PL = 0 any
damper geometry may be described as follows:[

Q0

P0

]
=

[
AT BT
CT DT

] [
QL
0

]
(26)

while with the anechoic boundary condition Z = 0 the equations take the
form of: [

Q0

P0

]
=

[
AT BT
CT DT

] S

c0 · ρ0
1

PL (27)

3 Experimental Approach

The test stand for experimental research comprised a single piston air com-
pressor together with an electric motor and an inverter to control the rotational
speed. The piston compressor operated in the range of 1000 – 2000 rpm.
Air was used as the working medium in the system. Dynamically variable
pressure was measured with a system consisting of two industrial pressure
transducers along with a signal processing and recording system. The first
pressure transducer was mounted on the discharge side of the compressor
at the inlet of the damper, while the second one was placed at the outlet of
the damper. At the end of the line an opened choke valve was mounted. In
the system, the suction and discharge temperatures of the compressor were
measured in order to assure the same temperature for each test, which at the
beginning of each measurement was 23◦C. The test stand and a schematic of
measurement points are depicted in Figure 2.

Experimental tests of pressure pulsation were carried out using different
configurations of the damper with exchangeable internal attenuating ele-
ments. The required volume of the chamber damper was calculated following
the Helmholtz resonator theory, by considering the lowest operating speed of
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Figure 2 Test stand for pressure pulsations measurements under different operating
parameters.

Figure 3 Chamber damper with different internal attenuation elements.

the compressor. The chamber damper (Figure 3) was constructed as a cylinder
with two demountable flanges with removable internal elements: two sleeves
(1) positioning an internal baffle with a choke tube (2) and an internal tube
mounted into a flange (3). The internal elements are designed to be mounted
in different configurations.
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a) b) 

Figure 4 A damper with a choke tube (a) and a damper with internal baffle and choke tube
(b) used in the tests.

For the current study, three configurations of the damper were used:

• a single chamber damper without internal elements: internal diameter
D = 200 mm, and chamber internal length L = 650 mm,

• a damper with a choke tube: tube length equal to half of the chamber
length L3 = 325 mm and tube internal diameter equal to the internal
diameter of the connecting pipe d = 24 mm (Figure 4a),

• a damper with an internal baffle and a choke tube: a baffle mounted in
the center of a chamber, lengths and diameters identical to those in the
second configuration (Figure 4b).

The tests were carried out for three rotational speeds of the compressor:
1000 rpm, 1500 rpm and 2000 rpm generating different flows of gas. At the
end of the line, the opened choke valve was mounted. The static pressure
in the system depended on the flow resistance. The measurement cases and
operational parameters are listed in Table 1.

4 Results

The comparison of the simulation and measurement results was based on the
determination of the transmission loss characteristics function (TL), which
describes the decrease of the acoustic signal power between the inlet and the
outlet of the pulsation damper. A TL graph is usually obtained by using a fre-
quency sweep of the excitation source, microphones for measuring the sound
signals and anechoic boundary condition at the end of a test pipe assuring
no wave reflections, which in the literature is known as the two-microphone
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Table 1 Measurement cases and operational parameters
Rotational Static Pressure

LC Damper Type End Condition Speed n [rpm] p [bar]
1 Chamber damper Fully opened choke valve 1000 1.53

2 1500 2.30

3 2000 2.93

4 Damper with an 1000 1.57

5 internal 1500 2.35

6 choke tube 2000 2.87

7 Damper with an 1000 1.50

8 internal baffle 1500 2.27

9 and a choke tube 2000 2.90

method [11, 13, 14]. In this research a different approach was used. The TL
characteristics were obtained individually for each compressor speed by FFT
of the damper inlet pressure measured signal divided by FFT of the damper
outlet pressure measured signal:

TL = 20 · log P0

PL
[dB] (28)

where: P 0 and PL are the Fourier transforms of the pressure-time histories
of the incident and the transmitted waves respectively.

For the open pipe condition PL = 0, the TL function in analytical model
was calculated as a ratio of Q0 and QL:

TL = 20 · log Q0

QL
[dB] (29)

where:Q0 is the amplitude of a harmonic volume velocity input andQL is the
amplitude of a harmonic volume velocity output, both of which are a function
of frequency.

If the amplitude of the pulsation at the outlet is much greater than the
amplitude of the pulsation at the inlet, the TL function reaches the minimum,
which indicates the damper resonance – amplification of the pulsation in
a given frequency. The maximum of a TL function determines the highest
attenuation for a given frequency.
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4.1 Analytical Model with Anechoic and Open Pipe Boundary
Condition

In Figures 5–7 the comparison between measured and analytical models with
boundary conditions of Z=0 and P=0 is presented.

Analysing the results of the comparison between analytical models and
measured data a better agreement may be seen in the case of open pipe
P = 0 boundary condition than an anechoic Z = 0 condition for all analysed
damper constructions. The plane wave theory model with P = 0 boundary
condition properly describes the TL functions minima for a chamber damper
and a damper with a choke tube at 265 Hz, 342 Hz, 531 Hz. The first
minimum of analytical TL functions is related to the resonant frequency of a
damper resulting from Helmholtz resonator theory, however, it is not visible
in the measurements. The level of attenuation is predicted properly in the
case of the first two analysed dampers, however in the case of a damper with
an internal baffle and a choke tube (Figure 7), the theoretical transmission
loss values are much higher than in the measurements. The analytical model
with the assumption of the free flow of gas (P = 0) at the end of the system
indicates the transmission loss function maxima at 266 Hz for a damper with
a choke tube and at 533 Hz for a damper with a baffle and a choke tube. This
phenomenon results from the mathematical description of closed volumes 3

0 100 200 300 400 500 600
f [Hz]

-60

-40

-20

0

20

40

60

80

TL
 [d

B]

Chamber damper - theoretical model Z=0
Chamber damper - theoretical model P=0
Chamber damper - measurement at 1000 rpm
Chamber damper - measurement at 1500 rpm
Chamber damper - measurement at 2000 rpm

Figure 5 Transmission loss characteristics of a chamber damper.
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Figure 6 Transmission loss characteristics of a damper with an internal choke tube.
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Figure 7 Transmission loss characteristics of a damper with a tube and a baffle.
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and 5 (Figures 1b,c) in these types of dampers, which theoretically creates
the side branch resonator. In the measurements this phenomenon does not
exist for analysed system parameters, and therefore an improvement in the
analytical model was proposed.

4.2 An Improved Analytical Model with an Open Pipe Boundary
Condition

The proposed changes in the analytical model include a different approach to
the closed volumes inside dampers with internal attenuating elements (choke
tubes, baffles). In the transfer matrix method, the four-pole matrices describ-
ing each system element are multiplied and closed volumes are described as
branch tubes with QL = 0 at the end (Equations (18)–(24)). The condition of
the complete closing of the pipeline means that, the flow pulsation is damped
and the wave is fully reflected in the same phase. In the real system, in
the authors’ opinion, it is a considerable simplification, as the wave may be
reflected only partially. Thus, the authors have proposed some considerations
regarding the change in signal analysis in the analytical model.

In the improved model, it is assumed that the flow and pressure wave
signals may be added at the cross-section of the internal choke tube, which is
graphically depicted in Figure 8.

The transfer matrix for a damper with a choke tube is described as:

T = (M1 ·M2 +M1 ·M3) ·M4 (30)

where: M1 – M5 – the four pole matrices described by the A, B, C, D
coefficients as in Equations (12)–(15).

The damper with a choke tube and a baffle is described as:

T = (M1 ·M2 +M1 ·M3) · (M4 +M5) ·M6 ·M7 (31)

In Figures 9 and 10 the results of the comparison between measured data,
the standard and the improved analytical models are shown.

Figure 8 Indication of the surfaces of signals summation.
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TL
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B]

Figure 9 Transmission loss characteristics of a damper with a tube – a comparison with the
improved analytical model.
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Figure 10 Transmission loss characteristics of a damper with a tube and a baffle – a
comparison with the improved analytical model.
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5 Conclusions

In the research, the problem of determining the transmission loss characteris-
tics of passive pressure pulsation dampers, with consideration to the boundary
conditions of the system was investigated. The geometrical parameters of
the dampers in connection with the operating and boundary conditions have
an impact on the change in the transmission loss characteristics which is
invisible in the standard acoustic method of measurements (such as the two-
microphone method). The analytical method based on the plane wave theory
is still widely used in fluid systems in order to describe pulsation phenomena,
because of its simplicity and robustness of calculation, which is important
for large systems. In the article, an attempt has been made to change the
measurement method and the mathematical description in order to catch the
flow phenomena occurring in the real system during operation. The changes
in the analytical model assume that the wave signals in the inlet and outlet
surfaces of the internal choke tubes of dampers may interfere and strengthen
to some extent, and therefore the summation of signals from the damper
flange side and closed volume inside a damper is proposed. That approach
improves the agreement between the model and the measurements especially
in the case of closed volumes in a damper construction, eliminating the
theoretical side branch resonator effect. Further research will concern the
considerations regarding the ratio of the transmitted and reflected waves in
the analyzed point, i.e. at the open ends of choke tubes.
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