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Abstract

Spools in hydraulic valves are prone to sticking caused by unbalanced
lateral forces due to geometric imperfections of their sealing lands. This
sticking problem can be related to the stability of the coaxial spool position.
Numerical methods are commonly used to study this behaviour. However,
since several parameters can influence the spool stability, parametric studies
become significantly computationally expensive and graphical analysis of the
numerical results in multidimensional parameter space becomes difficult.

To overcome this difficulty, in this work, an analytical approach for
studying the stability characteristics of the spool valve is presented. A
Rayleigh-Ritz method is used for solving the Reynolds equation in an approx-
imate way in order to determine an analytical expression for the lateral force
on the sealing lands. This analytical expression allows stability analysis of the
spool via analytical means which finally results in the expression of critical
axial velocity which demarcates the regions of stable behaviour. Simplicity of
the expression allows an immediate insight into the role of design parameters
in the stability of the spool. To verify the analytical model, a numerical model
for spool dynamics is developed in this work and the numerical results are
found to match the analytical model in terms of the stability behaviour of the
spool.
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1 Introduction

Spool valves are key components in hydraulic systems which are used to
control the direction the fluid flow by combining or switching the paths
through which the hydraulic fluid can travel. These valves consist of a spool
with two or more sealing lands connected by a central spool axle as shown
in Figure 1. Clearances in the order of few microns exist between the sealing
lands and the valve bore which allows the spool to move with minimal friction
while also enabling the sealing lands to perform the sealing function with
acceptable leakage.

In an ideal world, the spool sealing lands are perfectly cylindrical, and the
spool remains coaxial with respect to the valve bore during operation. How-
ever, in reality, the sealing lands suffer from geometric imperfections owing
to manufacturing errors. Further, clearances at the sealing lands may allow
the spool to move away from its coaxial position. These seemingly small
deviations from the ideal scenario result in high radial forces on the spool.
In the best-case scenario, these forces stabilize the spool back to the coaxial
position. However, in the worst-case scenario, the radial forces destabilize
the spool position and press the spool into the bore wall. The latter scenario
results in the valve sticking phenomenon [1] (also referred to as hydraulic
locking) which is highly undesirable. A classical solution to mitigate this
phenomenon is to machine pressure balancing circumferential grooves on the

Figure 1 Typical spool valve.
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sealing land [2, 3]. However, it remains a topic of interest to study these radial
forces and determine the geometric and operating conditions that may lead to
an inherently stable behaviour of the spool motion. This forms the goal of
this research work.

Researchers in the past have investigated the radial forces on spools and
the sticking phenomenon via different means starting from the experimental
investigations by Sweeney [4]. Blackburn et al. [5] and Merritt [6] proposed
analytical approaches based on 1D assumptions (the flow in the gap between
the sealing land and the valve bore was assumed to be axial) to estimate the
pressure field in the fluid film around the sealing lands and, thus, the radial
force on the spool. The approach was further improved by Viersma [7] by
taking peripheral flow into consideration. However, fully accurate solutions
for the pressure field in such a fluid film can only be determined by using 2D
form of Reynolds equation of lubrication [8] as demonstrated by Borghi [9]
and Milani [10].

Nevertheless, a key challenge with current approaches of using the
Reynolds equation for such problems is the fact that the equation must be
solved via numerical methods, especially when the geometric imperfections
exist and/or when the spool is eccentric and tilted with respect to the valve
bore. This is due to the presence of the non-uniform conductivity term in
the equation which is given by the third power of the gap height. However,
critical limitations of such numerical methods are exposed in the parametric
study procedures aimed at establishing the stability characteristics of the
spool. In particular, there are several parameters that potentially influence
the dynamic behaviour of the spool such as the nominal clearance, pressure
difference, spool axial velocity and additional parameters characterizing the
geometric imperfections. A complete parametric study, then, involves several
numerical simulations which are computationally expensive. Furthermore,
comprehension of results via graphical representations become cumbersome
owing to the parameter space dimensionality.

To overcome these challenges, the authors propose an alternate approach
based on analytical methods. Recently, the authors presented a closed form
solution for radial forces on stationary spools with sealing lands exhibiting
conicity errors [11]. The solution was obtained by employing Rayleigh-Ritz
method [12] on 2D Reynolds equation. In this work, the authors extend this
approach to non-stationary spools, i.e. spools with axial, radial and angular
motions. Further, from the analytical solution of radial force, the conditions
for the dynamic stability of spools are determined. The closed form analytical
nature of this result makes the influence of the relevant parameters obvious.
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The results obtained from this analytical approach are verified by a numerical
model (also developed in this work) where Reynolds equation and spool
dynamics equations are numerically solved.

This paper is structured into 5 sections including this introduction section.
In Section 2, the analytical model for the radial force on the spool is obtained
via the Rayleigh-Ritz method. Section 3 presents the stability analysis of the
spool valve with two sealing lands. In Section 4, details of the numerical
model are presented, and the analytical predictions of spool stability are
verified. Finally, the summary and key conclusions of the paper are provided
in Section 5.

2 Analytical Model for Radial Force on Spool

2.1 Gap Geometry at the Sealing Land

Figure 2 shows a sealing land in a spool bore that is offset from the bore axis
by a distance z and is tilted by an angle θ. Further, the sealing land exhibits
a conical shape. As shown in Figure 2, the diameter at one end of the sealing
land is d1, whereas, the diameter on the other end is d2 (6= d1). The conicity
of the sealing land can be defined as

k =
d2 − d1
L

(1)

Figure 2 Geometry and position of the sealing land in a spool valve considered in this
work. The coordinate systems for the valve bore and the sealing land are (xG, yG, zG) and
(xB , yB , zB), respectively.
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For such a geometric configuration, the height of the gap between the
sealing land and the valve bore is

h = h0 −
kx

2
− (θx+ z)cosφ (2)

where h0 is the nominal radial gap height (h0 = (D − d1)/2), x is the
axial coordinate and φ is the azimuthal coordinate (from +z axis). Detailed
derivation of the gap height expression is present in Ref. [11].

2.2 Variational Form of the Reynolds Equation and Ritz
Approximation

As the gap height between the sealing land and the valve bore is of the order of
few microns, the pressure in the fluid film in this gap is governed by Reynolds
equation of lubrication:

∂

∂x

(
h3

η

∂p

∂x

)
+

∂

R2∂φ

(
h3

η

∂p

∂φ

)
+ 6u

∂h

∂x
− 12

∂h

∂t
= 0 (3)

where, R = D/2, u is the axial velocity of the spool and

∂h

∂t
= −(ωx+ v)cosφ (4)

where, ω and v are the angular and linear velocities of the sealing land,
respectively (also indicated in Figure 2).

The Reynolds equation (Equation (3)) can be transformed into the
following variational form:

δΠ = 0; Π =

∫ 2π

0

∫ L

0

h3

η

(
∂p

∂x

)2

+
h3

R2η

(
∂p

∂φ

)2

− 12u
∂h

∂x
p+ 24

∂h

∂t
p dxdφ (5)

The existence of a variational formulation allows the usage of Rayleigh-
Ritz method to obtain the best approximation of the solution. In this case, the
following Ritz ansatz is used to describe the pressure field:

p(x, φ) = a00 + a01
x

L
+ a02

(x
L

)2
+

(
a10 + a11

x

L
+ a12

(x
L

)2)
cosφ

(6)
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Employing the boundary conditions: p(x = 0) = p1, p(x = L) = p2,
the pressure expression simplifies to:

p(x, φ) = p1 +
p2 − p1
L

x+

(
x2

L2
− x

L

)
(a02 + a12cosφ) (7)

The coefficients a02 and a12 can be determined by invoking the stationar-
ity of Π (in Equation (5)) with respect to these coefficients, i.e.

∂Π

∂a02
= 0;

∂Π

∂a12
= 0 (8)

The resulting expressions of a02 and a12 are lengthy and hence, are
not shown here. However, the smallness of k, z, θ, v, ω allows us to take
a truncated Taylor series of the solutions with respect to these variables
up to the first non-vanishing order. This results in the following compact
expressions for a02 and a12:

a02 =
3kλ

(
R∆pµ2 + 0.5ηλu

)
8µ3R

(9)

a12 =
15λ

[
Rθkµ2λ+ µ2 (4θµ+ kz)

]
∆p

8Rµ4 (λ2 + 10)

+

15ηλ2[λω(3kλ+ 8µ)R2

+ (−6k(θu− v)λ− 8µ(θu− 2v))R− 6kuz]

32R2µ4(λ2 + 10)
(10)

where λ = L/R, µ = h0/D and ∆p = p2 − p1.

2.3 Force and Torque Evaluation

The pressure field (Equation (7)) can be integrated over the fluid film to
obtain the force acting on the sealing land. As the pressure is symmetric with
respect to the x − z plane, there is no force in y direction (into the page as
per Figure 2). As k and θ are very small, the axial force (in x direction) is
negligible. The force in z direction is:

Fz = −
∫ L

0

∫ 2π

0
pRcosφdφdx (11)
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Figure 3 Tilted spool with two perfect sealing lands is stable if pc > pe.

⇒ Fz =
5λπL

64Rµ4 (λ2 + 10)
{(3λ3ηkR2 + 8R2ηµλ2)ω

+ (−6Rηkuλ2 + (−4R2k∆pµ2 − 8Rηuµ)λ− 16µ3R2∆p)θ

+ (6λ2ηkR+ 16Rηµλ)v + (−6ηkλu− 4Rkµ2∆p)z} (12)

2.3.1 Special case: Steady state conditions
For the steady state scenario, i.e., u = v = ω = 0, the force expression
becomes:

Fz =
5π∆pλL (Rθkλ+ 4θRµ+ kz)

16µ2 (λ2 + 10)
(13)

From this result, following interpretations about the spool stability can be
drawn:

• For parallel displacement (z 6= 0, θ = 0), the spool is stable if k∆p < 0.
The resulting force is always in the direction opposite to the parallel
displacement, pulling the spool back to its central position.

• For perfect sealing land (k = 0), a parallel displacement (z 6= 0, θ = 0)
does not result in any force. On the other hand, any tilt with a negative
∆p results in a stabilizing force. This means that, in the case of a spool
with two perfect sealing lands with the pressures shown in Figure 3, the
spool is always stable if pc > pe and unstable if pc < pe.

2.3.2 General case: unsteady conditions
To analyse the dynamic behaviour of the spool, the net force and torque on the
spool with multiple sealing lands must be determined. In this work, a spool
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Figure 4 Geometry and position of a spool with two sealing lands considered in this work.
The coordinate systems for the valve and the spool are specified by superscripts G and B,
respectively.

with two sealing lands is considered, the geometric parameters of which are
illustrated in Figure 4.

Here, the net force and net torque are

F = Fz,1 + Fz,2; T = 0.5(L+ l)(Fz,2 − Fz,1) (14)

Where Fz,1 and Fz,2 are determined from Equation (12) by apply-
ing appropriate coordinate transformations. In particular, the coordinate
transformations for Fz,1 are:

θ1 = −θ; ω1 = −ω; z1 = z − θl

2
; v1 = v − ωl

2
; u1 = −u

(15)

and that for Fz,2 are:

θ2 = θ; ω2 = ω; z2 = z +
θl

2
; v2 = v +

ωl

2
; u1 = u

(16)

The expressions for F and T are reported below:

F = Fz · z + Fθ · θ + Fv · v + 0 · ω (17)

where,

Fz =
5πLλk∆p

8µ2 (λ2 + 10)
(18)

Fθ =
5πLλ2ηu

8Rµ4 (λ2 + 10)

{
3

2
Rkλ+ 2Rµ+

3

4
kl

}
(19)
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Fv =
5πLλ2η

8µ4 (λ2 + 10)

{
−3

2
kλ− 4µ

}
(20)

T = Tz · z + Tθ · θ + 0 · v + Tω · ω (21)

where,

Tz =
15πLλ2ηku(L+ l)

32Rµ4(λ2 + 10)
(22)

Tθ =
5πLλ(L+ l)∆p

32µ2(λ2 + 10)
{2Rkλ+ 8Rµ+ kl} (23)

Tω = −5πLλ2η(L+ l)

64µ4(λ2 + 10)
(3kλ+ 8µ)(Rλ+ l) (24)

It is to be noted that in above expressions, the conicities of the two sealing
lands are assumed to be identical and mirrored with respect to the centre of
the spool (e.g. both sealing lands in Figure 4 have negative conicity).

3 Stability Analysis of the Spool Dynamics

The system of equations governing the spool motion is[
m 0
0 J

](
z̈

θ̈

)
=

(
F
T

)
(25)

Substituting Equations (17) and (21) in above system of equations,[
m 0
0 J

](
z̈

θ̈

)
+

[
−Fv 0

0 −Tω

](
ż

θ̇

)
+

[
−Fz −Fθ
−T z −Tθ

](
z
θ

)
= 0 (26)

3.1 Effect of Inertia Terms

To assess the significance of the inertia terms, following non-dimensionalisa-
tion is adopted:

z = ζh0; θ = β
h0
L

; J = J̃ |∆p|πt2el2L; u = ũ
s

te
; s = σR;

m = m̃L|∆p|πt2e; k = k̃
h0
L

; l = l̃R; η = η̃|∆p|teµ2; t = τte

(27)
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The resulting system of equations is:[
m̂ 0

0 Ĵ

](
ζ ′′

β′′

)
+

[
F̂ζ̇ 0

0 T̂β̇

](
ζ ′

β′

)
+

[
F̂ζ F̂θ
T̂ζ T̂β

](
ζ
β

)
= 0

(28)

where,

()′ =
d

dτ
() (29)

m̂ = m̃µ; Ĵ = J̃ l̃2µ (30)

F̂ζ̇ =
5λ2η̃(3k̃ + 4)

8(λ2 + 10)
; F̂ζ = −5k̃ sign(∆p)

4(λ2 + 10)
;

F̂θ = −5σũη̃{(3k̃ + 2)λ+ 1.5k̃l̃}
8(λ2 + 10)

(31)

T̂β̇ =
5λ2η̃(3k̃ + 4)(l̃ + λ)

2

32(λ2 + 10)
; T̂ζ = −15λ2η̃k̃σũ(l̃ + λ)

16(λ2 + 10)
;

T̂β = −
5(l̃ + λ)sign(∆p)

{
(k̃ + 2)λ+ 0.5k̃l̃

}
8(λ2 + 10)

(32)

It is notable that all the terms are∼ O(1) except the inertia terms where µ
is present. As µ = h0/D = O(10−3), the inertia terms play little role in the
dynamic behaviour of the spool motion. Thus, inertia terms will be neglected
in the analysis going forward. This step significantly simplifies the analytical
computations in the next subsection and allows final closed form expressions
for the stability of the system.

3.2 Conditions for the Stability of the Spool

Upon neglecting the inertia terms, the system of equations (Equation (28))
transform into the following form:

DX′ + KX = 0 (33)

⇒ X′ = (−D−1K)X (34)
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Now, the dynamical properties of this system are fully characterized by
the eigenvalues of the matrix −D−1K, which are determined to be:

Λ1,2 =
A±
√
B + Cũ2

G
(35)

where,

A = sign(∆p)(2k̃l̃ + 3k̃λ+ 4λ) (36)

B = λ2(k̃ + 4)
2

(37)

C = 3η̃2k̃λ2σ2(l̃ + λ)(3k̃l̃ + 6k̃λ+ 4λ) (38)

G = η̃λ2(l̃ + λ)(3k̃ + 4) (39)

For real valued eigenvalues, the stability of the system requires Λ1,2 < 0.
This is satisfied for the following two conditions:

#1. A < 0, B < A2, C > 0, G > 0 ,−
√
A2 −B
C

< ũ <

√
A2 −B
C

(40)

#2. A < 0, B > A2, C < 0, G > 0,


−
√
−B
C
< ũ < −

√
A2 −B
C√

A2 −B
C

< ũ <

√
−B
C

(41)

These conditions essentially put certain limits on the axial velocity of
the spool for different geometric and operating conditions to ensure a stable
behaviour. The conditions on variablesA,B,C,G specified in Equations (40)
and (41) are mainly driven by the value of conicity and hence, it is better to
visualize these conditions with respect to the conicity parameter (Figure 5).
The figure shows that when k > 0, the requirements on all the variables
imposed in condition 1 are automatically satisfied (except the sign of A).
On the other hand, for k < 0, requirements on all the variables imposed in
condition 2 are satisfied as long as k > −4h0/(6L+3l). One exception is the
negativity requirement for A in these conditions which demands a negative
∆p (i.e. pc > pe in Figure 4).
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Figure 5 Regions of stability conditions with respect to conicity k. Within each region, the
axial velocity limits of Equations (40) and (41) need to be satisfied to ensure stability. G = 0
location depends on the relative values of L and l.

A third condition can be obtained by considering the case of complex
eigenvalues (i.e. ũ2 > −B/C). In this case, the stability of the system is
ensured when C < 0 and A/G < 0. As per Figure 5, when C < 0, G >
0. Thus, A needs to be negative to ensure A/G < 0. On inspection, this
condition is identical to condition 2 (Equation (41)) in terms of the ranges of
A,B,C, G. Thus, condition 2 and 3 can be combined to obtain the following:

#2. A < 0, B > A2, C < 0, G > 0,


ũ < −

√
A2 −B
C

ũ >

√
A2 −B
C

(42)

The stability conditions obtained in previous paragraphs are summarized
in Figure 6. For positive conicity, if the magnitude of the axial spool velocity
remains under a critical value (ucrit), the spool will exhibit a stable behaviour.
On the other hand, for negative conicity, the spool velocity needs to be higher
than this critical value to ensure stability. The expression of the critical axial
velocity is

ucrit =

√
A2 −B
C

=
|∆p|h20

6Lη

√
(2L+ l)k + 4h0

(2L+ l)k + 4
3h0

(43)
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Figure 6 Stability map in k − u parameter space. Parameter values chosen to obtain this
plot: ∆p = −99 bar, h0 = 10 µm, L = 15 mm, l = 15 mm, η = 0.028 Pas.

This analytical formulation for critical axial velocity is a significant
outcome of this research. The simple formula clearly establishes the rela-
tionships between parameters such as height of the gap, length of the spool,
pressure difference, fluid viscosity and the critical axial velocity. This for-
mulation along with the stability map (Figure 6) is enough to describe the
stability characteristics of a spool valve with two sealing lands.

It is notable that although both conditions, 1 and 2, lead to the stable
behaviour of the spool, only condition 1 encompasses u = 0 (stationary
spool). Thus, from the practical point of view, condition 1 gives a useful range
of operation for the spool valves.

4 Verification with a Numerical Model

A numerical model for spool dynamics is developed in this work to verify the
stability predictions from the analytical model. The numerical model consists
of a finite difference model for the determination of pressure in the fluid film
around the sealing lands of the spool. This model is coupled with the spool
dynamics model for the determination of instantaneous position and velocity
(linear and angular) of the spool.

4.1 Finite Difference Model

The fluid film around the sealing land is unwrapped and discretized into
Nx points in x direction (axial direction) and Nφ points in φ direction
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Figure 7 Discretization of the unwrapped fluid film.

(circumferential direction) as shown in Figure 7. A finite difference method
is employed on the Reynolds equation (Equation (3)) to obtain the following
set of algebraic equations:

h3i,j
∆x2

pi−1,j +
h3i,j
R∆φ2

pi,j−1 −

{
h3i,j + h3i+1,j

∆x2
+
h3i,j + h3i,j+1

R∆φ2

}
pi,j

+
h3i,j+1

∆x2
pi,j+1 +

h3i+1,j

∆x2
pi+1,j = −6ηu

(
∂h

∂x

)
i,j

+ 12η

(
∂h

∂t

)
i,j

(44)

where,(
∂h

∂x

)
i,j

= −k
2
− θcosφj ;

(
∂h

∂t

)
i,j

= −(ωxi − v)cosφj (45)

Equation (44) is a system of linear equation in pi,j applicable for
all the points in the computational grid except for {(1, j), (Nx, j)| j ∈
{1, . . . , Nφ}} points where the pressures are known from the boundary
conditions (p(x = 0) = pc, p(x = L) = pe as per Figure 4). The system
of equations is solved to obtain the pressures at all the grid points.

4.2 Equations of Motion Model and Solver

The pressure at the grid points is numerically integrated via 2D trapezoidal
method to determine the force in z direction and the torque with respect to
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the centre of the spool. The integrand for the force calculation is −pRcosφ,
whereas that for the torque calculation is −(l/2 + x)pRcosφ.

If Fz,1, T1 and Fz,2, T2 are the force-torque pairs calculated for the sealing
lands 1 and 2 in Figure 4, then, the net force on the spool is F = Fz,1 + Fz,2
and the net torque on the spool is T = −T 1 + T2. The opposite signs of
T1 and T2 come from the mirrored orientation of the coordinate system for
sealing lands 1 and 2 in Figure 4.

The equation of motion for the spool dynamics is then solved implicitly
in time to account for the small inertial effect which gives the system a high
stiffness:

Xn −Xn−1 −∆tFn = 0 (46)

where,

X =


v
z
ω
θ

 ;F =


F/m
v

T/J
ω

 (47)

4.3 Results from the Numerical Model and Comparison with
Analytical Prediction

The numerical model described in the previous subsections is used to conduct
simulations to study the stability behaviour of the spools. Table 1 shows the

Table 1 Simulation cases used to compare the analytical and numerical results
Case 1 2
L 15 mm

D 10 mm

l 15 mm

h0 10 µm

pc 100 bar

pe 1 bar

η 0.028 Pas

k 0.000267 −0.000267

Stability prediction from −0.56 < u < 0.56 (m/s) u < −1.81 m/s, u > 1.81 m/s
analytical model
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Figure 8 Evolution of the spool position with time for simulation case 1 in Table 1.

simulation cases that represent the two conditions for stability presented in
Section 3.2. Simulations are conducted with a small initial perturbation of
the spool (z = 1 µm, θ = 10−4 rad) from its coaxial position.

For simulation case 1, as per the analytical model, the spool is stable for
−0.56 < u < 0.56 (m/s). Figure 8 shows the temporal evolution of the spool
position for this case with two axial velocities u = 0.4 m/s and u = 0.6
m/s, the former lying in the stability region and the latter outside. From the
figure, it is clear that the spool goes to its coaxial position when u = 0.4 m/s,
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Figure 9 Evolution of the spool position with time for simulation case 2 in Table 1.

whereas it goes away from the coaxial position when u = 0.6 m/s. This is
consistent with the analytical prediction.

Similarly, for simulation case 2, the analytical model predicts stability in
the range: u < −1.81 m/s and u > 1.81 m/s. To verify this, simulations
were conducted for u = −2 m/s and u = −1.5 m/s. The temporal evolution
of the spool position for these two axial velocities is presented in Figure 9.
The results show that the spool is stable for u = −2 m/s and unstable for
u = −1.5 m/s, which is again consistent with the analytical prediction.
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5 Summary and Conclusions

Spool valves often suffer from the dynamic instability of the spool with
respect to its coaxial position in the valve bore. This results in the spool stick-
ing to the bore walls causing large sticking forces. This phenomenon is signif-
icantly affected by the geometric imperfections (arising from manufacturing
errors) in the sealing lands of the spool.

In this work, the stability of the spool valves with geometric imperfection
in the form of conicity error on the sealing lands is investigated via analytical
methods. A Rayleigh-Ritz method is employed on the Reynolds equation of
lubrication to determine an analytical expression of the radial force on the
sealing lands. From this information, the net force and torque on a spool
with two sealing lands is evaluated and a stability analysis is conducted to
determine the conditions for the stable behaviour of the spool motion.

The analysis indicates that for positive conicity error, the spool will be
stable if the magnitude of spool axial velocity stays under a critical value.
On the other hand, for negative conicity error, the spool will be stable if the
magnitude of spool axial velocity remains higher than a critical value. In this
work, these findings have been verified via a numerical model for the spool
valve dynamics.

The analytical model developed in this work has a key advantage in terms
of the simplicity of the stability conditions. The model proposes simple ana-
lytical formulations for spool stability which allows a compact understanding
of the role of design parameters. Thus, it can be easily used by valve designers
in developing spool valves with better stability characteristics, for instance,
by a proper conical shaping of the sealing lands.

Nomenclature

D Diameter of the valve bore
d Diameter of the spool sealing land
F Force
h Height of the gap between the sealing land and the valve bore
J Moment of inertia of the spool
k Conicity of the spool sealing land
l Distance between the two sealing lands
L Width of the spool sealing land
m Mass of the spool



Stability Analysis of Spools with Imperfect Sealing Gap Geometries 401

p Pressure
R Radius of the valve bore
T Torque
t Time
u Axial velocity of the spool
v Velocity of the spool along +z direction
x Coordinate direction along the axis of the valve
z Radial offset of the spool with respect to the valve bore axis
Greek letters
η Fluid viscosity
θ Angular offset of the spool with respect to the valve bore axis
Λ Eigenvalue
λ L/R
µ h0/D
Π Functional of the variational problem
φ Azimuthal coordinate from +z axis
ω Angular velocity of the spool
Superscripts
B Spool body frame of reference
G Ground frame of reference
Subscripts
c Center
e Edge
o Nominal
1, 2 Identifier for the sealing lands
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