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Abstract 

The present paper responds to the following aim: to define a model, which can predict quite well the static character-
istic of a bellow spring. In detail an analytical non-dimensional model of the bellow spring is obtained. It can describe 
the axial force and the effective area apart from its geometric size. The typical parameters of this model are spring geo-
metrical ratio and number of convolutions. No detailed information about membrane characteristic is required. Internal 
volume and spring stiffness equations are then analytically derived. 

At last a dynamic model of the spring is developed using the static characteristics previously defined. This tool 
would be useful for particular applications that involve dynamics as a keyword, such as vibration isolators, vehicle sus-
pensions and actuators. 
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1 Air Spring Description 

The “bellow” type air spring is made up of an axial 
symmetric reinforced rubber membrane moulded in one 
or more superposed convolutions, and of two metallic 
flanges connected to its ends. Some examples of bellow 
springs are reported in Fig. 1. When the spring is work-
ing, the deformation of each convolution allows com-
pression or rebound stroke. Springs with more than one 
convolution, usually to a maximum of three, are con-
structed to obtain high strokes without excessively strain-
ing membrane material.  

 
Fig. 1: Commercial one- and two-convolution springs 

Air springs are intended as vibration isolation systems 
on stationary machinery, as vehicular suspensions and, at 
last, as mechanical actuators. In the first case the spring is 
used to limit forces transmitted to the founda- 
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tion, if the machinery is a vibration source, or to limit 
the vibrations transmitted to the machinery if the foun-
dation is a vibration source. 

In the second case, that is vehicular suspension, the 
spring must assure comfort (i.e. isolation of vibration 
coming from the track to the vehicle), vehicle roll and 
yaw control and suitable contact forces between tyre and 
track, thus to guarantee an adequate trajectory control in 
every dynamic situation. 

At last the third case, that is air spring used as actua-
tor, regards the spring capability to exert forces on its 
ends even in transverse or angular off-axis configuration. 

The characteristics of one spring strongly depend on 
its dimensions, number of convolutions and membrane 
material behaviour. Usually in commercial component 
catalogues, the exerted force F at constant pressure and 
the internal volume both versus spring height h are given. 
Figure 2 shows an example for a Firestone 224 spring 
with two convolutions. 

The effective area, as defined in Eq. 1, is often re-
ported instead of the F versus h graph. 

 EFF
FA
p

=  (1) 

where p is the internal relative pressure. 
Effective area is an ideal area on which the internal 

pressure p is supposed to act, balancing external force F. 
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This area is roughly independent of pressure p, because 
the membrane is not sensitively deformed by internal 
pressure. Starting from experimental data of F versus h 
shown in Fig. 2, it is usual to determine, through Eq. 1, 
the curve visible in Fig. 3.  
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Fig. 2: Firestone 224 two-convolution spring, static char-

acteristic (p = 20 psi = 1.38 bar) 
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Fig. 3: Firestone 224 spring effective area 

If possible, it is better to determine the effective area, 
averaging experimental data acquired in different pres-
sure conditions. Through the curves shown in Fig. 2 and 

3, it is possible to completely define the bellow spring. 
Those curves can only be obtained via experiments or 

complex calculations (non-linear or FE models) based on 
a specific problem. 

A vast number of papers about air springs can be 
found in literature, in spite of this no article presents a 
concise analytical method to analyse this kind of compo-
nents. 

A concise list of articles regarding air spring applica-
tions is reported in bibliography. The authors of the pre-
sent paper have vastly studied the field of air-spring ap-
plications for vehicular purpose. Quaglia et al (1994) 
investigated a hydro-pneumatic suspension system, and in 
1998 air suspension are used to control lateral dynamic of 
high-speed trains. A vast and deep analysis is developed 
in the field of pneumatically damped air suspensions 
which achieve damping effects using an external tank 
connected to the air spring through an orifice (Quaglia et 
al, 1999, 2000, 2001). 

One of the forerunners about the study of gas suspen-
sions (Cavanaugh, 1961) presented a vast synthesis. 
Detailed studies about energetic aspects and general-
purpose air spring models are reported by Kornhauser et 
al (1993 and 1994). 

Some examples of gas-springs in vehicular suspen-
sions are reported by Bachrach et al (1983) and Toyofu-
ku (1999). Examples of vibration isolation are given by 
Gee-Clough (1968) and Soliman et al (1966), and at last 
gas spring used as controlled force actuators are de-
scribed by Stein (1995). 

The present paper responds to the following aim: to 
define a model, which can predict quite well the static 
characteristic of a bellow spring. In detail an analytical 
non-dimensional model of the bellow spring is obtained. 
It can describe the axial force and the effective area apart 
from its geometric size. The typical parameters of this 
model are spring geometrical ratio and number of convo-
lutions. No information about membrane characteristic is 
required. Internal volume and spring stiffness equations 
are then analytically derived. 

At last a dynamic model of the spring is developed 
using the static characteristics previously defined. This 
tool would be useful for particular applications that in-
volve dynamics as a keyword, such as vibration isolators, 
vehicle suspensions and actuators. 

The scheme of a bellow spring is shown in Fig. 4, 
given that radius r has the same value for the end plates 
and for the internal rings and that the superposed convo-
lutions are identical. 

Referring to Fig. 4, for multiple-convolution springs it 
is possible to analyse one single convolution, obtaining L: 

 
( )F A2 1h h n h

L
n

− − −
=  (2) 

From here on the study will be done for single-
convolution bellow, leaving the case of multiple-
convolution to paragraph 4, where the model will be 
validated with experimental data. 

The spring geometrical ratios are linked to the non-
dimensional parameter δ, defined as follows: 
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Fig. 4: Bellow spring scheme 

A high δ stands for slim springs, while a low δ stands 
for squat springs, as it is shown in Fig. 5. 

The model here developed can be used for designing 
purpose. It can predict the static characteristic and it can 
evidence, thanks to its non-dimensional formulation, the 
effect of dimension (r), dimension ratio (δ = LF /r), and 
number of convolution (n). 

For spring choice purpose, the model could be useful 
to estimate the most suitable spring type (through param-
eters r, δ and n) for the specific application, before con-
sulting any commercial catalogue. 

At last the model can be used for spring dynamic 
analysis, that is important for vehicular suspension, vibra-
tion isolator and actuator design. 

 δ  = L F /r = 3 

δ  = L F /r = 1 

  
Fig. 5: Air spring geometrical ratios 

2 Static Non-dimensional Ideal Model 

The analytical static model must be able to express 
the force exerted by the spring as a function of its 
height, given internal pressure and geometrical ratio, 
(δ). Equilibrium equations of simplified geometry 
membrane and end plates are used. 

The model is based on the following simplifying 
hypotheses: 
• the membrane has a circular contour with curvature 

radius R, in longitudinal sections; 
• the membrane stress distribution can be approxi-

mated transforming the closed axial symmetric 
contour in an open surface with the same longitu-
dinal contour (as shown in Fig. 6) and assuming in-
finite fibres axial stiffness, while membrane cir-
cumferential stiffness is negligible. 

These hypotheses lead to a significant analytical 
simplification. However, the comparison of analytical 
results and data from a manufacturer, for a number of 
commercial springs, is presented in paragraph 3. It 
shows the soundness of initial assumptions together 
with further simplifications used in paragraph 2.1. 

2.1 Static Characteristic Derived from Equilibrium 
Equations 

The analytical model for a single lobe air spring is 
developed. This model will be easily extended to mul-
tilobe springs through Eq. 2. 

Longitudinal stress and geometrical aspects of the 
membrane can be obtained from Fig. 6, where the geo-
metrical simplification is applied. 

  
Fig. 6: Simplified geometry obtained from axial symmetric 

convolution 

The forces acting on the simplified membrane con-
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tour are shown in Fig. 7, leading to the following equi-
librium equation: 
 2π 2 2π sinp L r t rτ φ=  (4) 

so longitudinal axial stress τ  is: 

 
2 sin

L p
t

τ
φ

=  (5) 

It is now clear that fiber axial stress τ increases as 
internal pressure p increases, and that it is a function of 
convolution length L and auxiliary angle φ. These two 
quantities, L and φ, are mutually dependent and this will 
be explained through geometrical considerations. 

 φ τ⋅t⋅2⋅π⋅r 

φ 

T=2⋅π⋅r⋅t⋅τ 

F 

p ⋅ A 

τ⋅t⋅2⋅π⋅d 

p⋅L⋅2⋅π⋅r 

 
Fig. 7: Equilibrium schemes of membrane and upper plate 

Figure 7 shows forces acting on the spring upper 
plate. Its axial equilibrium equation puts out the rela-
tions between external force F, internal pressure p and 
spring configuration, as a function of angle φ. 

Vertical equilibrium equation is derived: 
 2π cost r F p Aτ φ + =  (6) 

Putting Eq. 5 into Eq. 6, force F is obtained, with 
reference to angle φ and length L: 

 π cos
sin
L pF p A r φ

φ
= −  (7) 

Geometrical aspects 

Equation 7 can be simplified finding the relation be-

tween auxiliary angle φ and length L. 
Some considerations can be done looking at Fig. 6. 

First, fibers are considered longitudinally non-
extendable, so fiber length LF is constant during spring 
stroke. Second, a section of spring membrane is sup-
posed to be a circular arc, with radius R. This arc sub-
tends an angle, which value is 2φ. 

Thus two geometrical relations are derived, the first 
from fiber infinite stiffness hypothesis: 
 F2R Lφ =  (8) 

the second from trigonometric considerations: 
 2/LsinR =⋅ φ  (9) 

using Eq. 8 and 9, it can be derived that: 

 F
sinL L φ

φ
=  (10) 

So the substitution of Eq. 10 into 7 leads to: 

 2 F cosπ LF p A p r
r

φ
φ

= −  (11) 

Introducing now FA as the force exerted by internal 
pressure acting on end plate surface: 

 2
AF p A p r= = π  (12) 

and geometrical ratio parameter δ = LF/r into Eq. 11, 
the following non-linear equation system is obtained, 
using Eq. 10 for geometrical aspects: 

 A

F

cos1

sin

F
F

L
L

φδ
φ

φ
φ

 = −

 =


 (13) 

This equation system expresses the non-dimensional 
spring force (F/FA) versus non-dimensional spring 
length (L/LF). 

Remembering Eq. 8 and neglecting some mathemat-
ical calculations, it is possible to obtain from Eq. 13: 

 
A

A

0 cos PUSHING
2

0 cos PULLING
2

F rR
F

F rR
F

φ

φ

≥ ⇔ ≤

< ⇔ >

 

these relations say that until the centre of the circular 
membrane contour is outside the circle of radius r/2 the 
spring pushes, in the other case he spring can only exert 
a pulling force. 

In Eq. 13 auxiliary angle φ is still used to link the 
two equations. It is not possible to find one single equa-
tion to express non-dimensional force versus non-
dimensional length, because in the second equation 
auxiliary angle φ cannot be analytically derived, as a 
function of L/LF. 

Non-dimensional length function y = y(φ) is intro-
duced: 
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F

sinLy
L

φ
φ

= =  (14) 

Function y(φ) cannot be analytically inverted, but it 
can be approximated with a reversible function y1(φ). A 
quadratic expression is chosen: 

 bay += 2
1 φ  (15) 

In order to calculate appropriate coefficients a and 
b, Eq. 15 must cross two points of the exact solution 
Eq. 14. 

The first point is φ = 0, which corresponds to max-
imum extension condition and cylindrical membrane 
shape (Fig. 8 left), from Eq. 14: 
 1)0( =y  (16) 

having y(0)=y1(0) first coefficient is found to be b=1. 
 

φ = 0
L = LF

φ = π/2
L = LF⋅2/π

φ

 

Fig. 8: Spring in φ=0 and φ=π/2 conditions 

The second point is φ = π/2, which corresponds to a 
half-circle membrane shape (Fig. 8 right), the exact 
solution says: 

 2(π / 2)
π

y =  (17) 

having y(π/2)=y1(π/2), coefficient a is derived. 

 3

8 4π
π

a −
=  (18) 

Approximating function y1 is then: 

 2 2
1 3

8 4π 1 1
π

y aφ φ−
= + = +  (19) 
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Fig. 9: Comparison between φ and φ1 

Inverse relation expresses φ versus spring length L: 

 F
1

1
L

L
a

φ −
=  (20) 

A comparison between exact Eq. 11 and approxi-
mate Eq. 20 solution can be seen in Fig. 9. 

Figure 9 shows that the difference is always less 
than ±5° when the spring works in the range L ≅ (0.4 ÷ 
1) LF. 

Inserting quadratic expression Eq. 20 into Eq. 13, 
non-dimesional force with respect of non-dimensional 
spring length y is directly obtained: 

 

F

A

F

1
cos

1
1

L
L

a
F
F L

L
a

δ

 
− 

 
 
  
 ≅ −

−
 (21) 

Equation 21 evidences that the static behaviour de-
pends on non-dimensional parameter δ = LF/r, always 
positive, which stands for spring “slimness”. 

Figure 10 shows how the approximated characteris-
tic Eq. 21 varies when parameter δ changes. 

It is clear that all the curves cross one single point 
with co-ordinates (2/π, 1). This configuration corre-
sponds to auxiliary angle φ = π/2. This means that F = 
FA, in equilibrium Eq. 7, because stress τ vector has no 
vertical component, referring to Fig. 7. 

When “slimness” parameter δ increases the curve 
slope increases and, as a consequence, the intersection 
with abscissa axis moves to the left. 

This means that for high values of δ the spring starts 
to exert traction forces (F < 0) in a more contracted 
configuration. For infinite “slimness” δ force inversion 
point corresponds to y = L/LF = 2/π (φ = π/2). 

The simplified model described by Eq. 21 has an 
obvious limit: it says that if φ would be zero (or L/LF = 
1), the membrane curvature will be null, and traction 
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force F and stress τ will become infinite. This comes 
from the simplifying assumptions and puts in evidence 
that the model does not work properly when the spring 
is highly extended. 

It is now necessary to compare the results given by 
Eq. 21 with experimental data, particularly from cata-
logues of commercial springs. Thus, to check the 
soundness of above hypotheses and simplifications. 

Equation 21 represents the characteristic of effec-
tive area, defined in Eq. 1: pressure p is constant, so it 
can be stated that: 

 EFF

A

AF
F A

=  (22) 

 

 
Fig. 10: Force characteristic F/FA versus non-dimensional length y 

3 Non-dimensional Model Validation 
with Data from Manufacturer  

In this paragraph the validation of analytical model 
is presented, particularly referring to isobaric force 
curves and effective area curves, derived from commer-
cial spring catalogues. 

The comparison below reported regards air springs by 
CF-Gomma, but a larger investigation has involved com-
ponents of the main producers. The whole validation 
activity gave results comparable to those reported here. 

The parameters necessary to plot the analytical 
curve F versus L, using the following relation: 

 

F

EFF

A

F

1
cos

1
1

L
L

a
AF

F A L
L

a

δ

 
− 

 
 
  
 = ≅ −

−
 (21bis) 

(where 2F
A, ,L F p A A r

r
δ π= = = ), are here report-

ed: 
p = spring internal relative pressure, 
r = end plate and internal ring radius, 
LF = constant longitudinal fiber length. 
While p and r can be directly read in the spring data 

sheet, LF is not immediately known, although it can be 
obtained with the appropriate equilibrium equation. 

Figure 11-up shows the geometric configuration of 
one convolution when φ = π/2, fiber axial stress direc-
tion is perpendicular to external force. This can be 
balanced only by FA = p A. 

These considerations also emerge in Fig. 10, be-
cause all the curves must cross the common point y = 
L/LF = 2/π and F/FA = 1. 

 

high δ 

low δ 
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φ  = 90° 

τ t 2 π r 
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F 

F A 

h 90 h  
Fig. 11: Spring configuration for F = FA, and correspond-

ing point on Force vs. height curve 

Starting from this consideration, it is possible, for any 
given isobaric characteristic, to derive height h90, corre-
sponding to φ = π/2. In this case the exerted force F is 
equal to FA = p A, this is schematically shown in Fig. 11 
(right). 

Given height h90, the corresponding single lobe 
length L90 can be derived, for a spring having any num-
ber of convolution, from Eq. 2: 

 
( )90 F A

90
2 1h h n h

L
n

− − −
=  (2bis) 

Fiber length can be consequently derived using   Eq. 
10: 

 F 902
L Lπ

=  (23) 

Now all the necessary elements to solve Eq. 21bis are 
known. Therefore a comparison between analytical re-
sults and data from a commercial catalogue can be done. 

In particular, it is decided to compare manufacturer 
and analytical curves of spring effective area, because 
this will be shown as an important element in the calculus 
of air-spring stiffness. 

 

 
Fig. 12: Comparison of manufacturer data and analytical curves 

Table 1: Catalogue data for the analysed springs 

Spring T116 Spring T29 Spring T322 

Single convolution (n = 1) Double convolution (n = 2) Triple convolution (n = 3) 

Effective flange radius 
r = 67.5 mm 

Effective flange radius 
r = 240 mm 

Effective flange radius 
r = 114 mm 
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Geometrical ratio  
δ = LF/r = 2.0653 

Geometrical ratio  
δ = LF/r = 0.6507 

Geometrical ratio  
δ = LF/r = 0.9868 

Static height 
hST = 100 mm 

Static height 
hST = 190 mm 

Static height 
hST = 260 mm 

φ = π/2 

Height 
h90 = 121 mm 

φ = π/2 

Height 
h90 = 220 mm 

φ = π/2 

Height 
h90 = 280 mm 

Force (p = 6 bar) 
FA = 8.59 kN 

Force (p = 6 bar) 
FA = 108.5 kN 

Force (p = 6 bar) 
FA = 24.6 kN 

 

The curves are reported in Fig. 12 for three com-
mercial models of air spring, with respectively one, two 
and three convolutions. 

The catalogue data and the parameters used to de-
scribe the model are reported in Table 1 for the ana-
lysed springs. 

In particular, static height hST is the nominal height 
suggested by the constructor. This value is quite close 
to h90, this confirms that the membrane contour in this 
configuration is approximately half a circumference. 
For tested springs, the value of hST is always minor than 
h90, therefore these springs are normally intended to 
work around a compressed configuration. 

The analytical model well reproduces the manufac-
turer data, particularly for short strokes. When high 
strokes are reached, the membrane real shape does not 
exactly correspond to a circumference arc, because of 
the unpredictable deformations of rubber and of the 
membrane clamping in the upper and lower flanged 
joints. This leads to the visible divergence between 
analytical results and manufacturer curves. 

4 Air-Spring Stiffness Analytical Evalua-
tion 

The analytical procedure to calculate the stiffness of 
an air-spring with n convolutions and constant air-mass 
is below reported, the notation refers to the two-lobed 
spring scheme in Fig. 13: 

 

( )
( )

EFF

F A

EFF

EFF
EFF

2 1

1 1

1

F p A
h n L h n h dh n dL

d p AdF dFK
dh n dL n dL

dAdp A p
n dL dL

=


= + + − ⇒ =

 = − = − = − =

  = − +   

 (24) 

where p corresponds to relative pressure: 
  p = P − PAMB. 

  
Fig. 13: Scheme for air spring stiffness calculation 

The two derivative terms can be analytically ob-
tained using the described simplified model. 

Effective area derivative, can be obtained remem-
bering Eq. 14, 20, 21 and 22: 

 
[ ]

EFF EFF

EFF 1

1

1 1
2

1 1 1

F
1

sin cosπ
2

1

dA dA d dy
dL d dy dL
dA d dy
d dy dL

r
a

L
L
a

φ
φ

φ
φ

φ φ
φ φ φ

φ φ

 = ≅



= =

  

= = +     

 − ≅ =



 (25) 

Pressure derivative, under the hypothesis of poly-
trophic transformation of exponent γ and using sub-
script i for fluid initial conditions, is obtained: 

 
[ ] i i

1

i i

PVdp dP dV
dL dL dLV

PVP
V

γ

γ

γ

γ

γ
+

 −
= = =



 =



 (26) 

If the analytical stiffness is calculated for the sug-
gested static height hST, corresponding to subscript 0, 
the final relation is: 
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( )

0 EFF0
0

0 0

EFF
0 AMB V A

0

1 P A dVK
n V dL

dAP P K K
dL

γ
= − − +




+ − = +


 (27) 

Two contributions to spring stiffness can be evi-
denced: one linked to volume variation, which is KV, 
and the other linked to the effective area variation, 
which is KA. 

Referring to the definition of effective area, it is 
likely to state that: 

 EFF0
0 0

1 dV dV A
n dL dh

= ≈  

so the stiffness can be expressed as follows: 

 

( )

2
0 EFF0

0
0

EFF
0 AMB V A

0

1

P AK
V

dAP P K K
n dL

γ
= − − +




+ − = +


 (28) 

From here on, two ways can be taken. In the first 
case, this formula can be directly used to calculate the 
static height stiffness, extracting the necessary data 
from experimental curves of effective area and volume. 
In the second case, Eq. 28 together with Eq. 25 is used 
to determine the air-spring stiffness through the analyti-
cal definition of angle φ0, corresponding to height hST. 
The approximated relation for φ is: 

 
0

F
0 10

1
L

L
a

φ φ −
≅ =  (20bis) 

L0 can be obtained from hST: 

 ( )ST F A
0

2 1h h n h
L

n
− − −

=  (2bis) 

Stiffness Eq. 28 can be evaluated once volume V0 is 
analytically known. It can be obtained through the pro-
cedure reported in the following paragraph. 

4.1 Air-spring Volume Analytical Expression 

With reference to the volume of a circular cylindri-
cal barrel, Guldino’s formula is used according to the 
above-described geometrical definitions. The following 
equation system is obtained, for a single lobe spring: 

 

3

1CONV

2
2F F

F

F
1

2π
12

cos 1 cos π
4 2

1

LV

L L Lr r L
L

L
L
a

φ φ
φ φ φ

φ φ

  = + 
    + − − +   

   

 − ≅ =


  (29) 

For an air spring with n lobes, the relation found is: 

 ( ) 2
TOT 1CONV A1 πV n V n r h= + −  (30) 

The flanges contribution to total volume is neglect-
ed, while the volume given by internal rings is consid-
ered. 

4.2 Validation of Volume Approximation 

The validation of volume analytical equation is de-
veloped with reference to data from the manufacturer of 
CF-Gomma T26 spring. The parameters reported in 
Table 2 are used in Eq. 29 and 30. 

Table 2: Data for the analysed spring 
Spring number of convolutions n 2 

Static height hST 165 mm 

End plates diameter d = 2r 135 mm 

Longitudinal fiber length LF 95.7 mm 

Upper and lower plate height hF 20 mm 

Internal ring height hA 25 mm 
 
Analytical results and volume curves from the man-

ufacturer are compared in Fig. 14. Catalogue data are 
quite well approximated. Analytical volumes are nor-
mally bigger than those from the manufacturer, but the 
difference is sufficiently small near the operating height 
hST = 165 mm. 
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Fig. 14: Analytical volume vs. data from the manufacturer 

Once volume mathematical expression is confirmed 
by manufacturer data spring stiffness around static 
height configuration can be evaluated. 

4.2 Spring Stiffness Numerical Calculation 

Stiffness evaluation can be done with reference to 
the above-derived equations. Supposing an internal 
pressure P0 = 3 bar, the data reported in Table 3 are 
respectively obtained putting effective area data from 
the manufacturer and volume diagrams directly in Eq. 
28 and using the above-described analytical procedure 
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through Eq. 25, 28, 29 and 30. 

Table 3: Stiffness from manufacturer exp. data and 
analytical analysis (CF-GOMMA T26 
spring) 

 KEXP 
[kN/m] 

KAN  
[kN/m] 

Error % 
[(KAN–KEXP)/KEXP] 

γ = 1 49.147  45.545  -7.33% 

γ = 1.4 59.737  56.392  -5.6% 

 

5 Air Spring Analytical Dynamic Model-
ling 

The developed analytical model can be also used to 
simulate air spring dynamic behaviour. A block scheme 
of the air spring dynamic model is reported in Fig. 15. 
Model inputs are instantaneous spring height and enter-
ing mass flow, which can be null for some application. 
Starting from initial conditions, the model calculates the 
instantaneous exerted force.  

In the scheme reported in Fig. 15, the two blocks 
containing the described analytical model are evidenced 
with grey colour, and can completely substitute experi-
mental data mapping. 

“Analytical Effective Area” block calculates the 
value of AEFF from spring height, using Eq. 21bis, 
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Fig. 15: Block scheme of the air spring dynamic model 

“Analytical Volume” block calculates spring vol-
ume using Eq. 29.  

“Continuity Equation” block is defined as follows: 

 
( ) ( ) ( )

1

G i

i

R T P PP G V h
V h P V h

γ
γγ γ
−

 
= + − 

 
   (31) 

It calculates the spring internal pressure gradient 
with the fed-back absolute pressure instantaneous value 
and the numerically calculated volume time derivative. 
Numerical integration of the “Continuity Equation” 
output, leads to exerted force, obtained in “External 
Force” block, through the following equation: 
 F = (P − PAMB) AEFF (32) 

The described model can simulate the dynamic be-
haviour of any air spring once the “slimness” ratio δ, 
the flange radius r, the number of convolutions n, and 
the thickness of internal rings and end plates are known. 
No other experimental data is needed. 

This can be particularly useful, because the influence 
of the main geometric parameter variation can be moni-
tored when the spring is inserted in a complex model. 

In order to give only an example of model’s use the 
air spring in Fig. 16 is utilized as an actuator, to lift the 
sprung mass m.  

 
Fig. 16: Test scheme for dynamic model 

In this case the dynamic model of Fig. 15 is a block 
of a complete model of the system that include the 
dynamic of the sprung mass and friction forces of the 
vertical guide. The model parameters, related to air 
spring CF-Gomma T26, are reported in the previous 
Table 2. The sprung mass m is equal to 30 kg. The 
simulation data and experimental data are compared in 
Fig. 17.  
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Fig. 17: Simulation results of dynamic model 

The results shown in Fig. 17, confirm that the pro-
posed model is a useful tools for preliminary design 
consideration. The restrictive hypotheses adopted in the 
model development and the limited number of model 
parameters, from one point of view leads to an easy to 
use and a general purpose model, but from the other a 
certain level of inaccuracy is implicit. To obtain more 
accurate results different and more complex models are 
required, but those models needs many detailed param-
eters, for example related to rubber’s characteristics, 
and in this way they lose the analytical plainness. 

6 Conclusions 

The present paper gives some useful analytical tools 
to describe bellow air springs. In particular effective 
area and exerted force functions are derived in a non-
dimensional form. The tools to analytically evaluate 
internal volume and spring stiffness are given as well. 
Finally, the structure of an air spring dynamic model is 
presented. 

 
These proved to be good instruments both for pre-

liminary spring design and for the analysis of complex 
mechanical systems with air springs. 

Indeed the described analytical equations can pre-
dict the effect of spring geometrical parameters on its 
static and dynamic behaviour, on the other hand they 
form a complete model which can be used in specific 
applications, such as vehicular suspensions, vibration 
isolation and force actuation. 

The comparison between model and experimental 
data of springs with different geometrical ratios, num-
ber of convolutions and producer, confirmed the 
strength of the obtained analytical equations. 

Nomenclature 

F Spring exerted force [N] 
h Spring height [m] 
hF Flanges height [m] 
hA Internal rings height [m] 

P Spring internal absolute pressure [Pa] 
PAMB External ambient absolute pressure [Pa] 
p Spring internal relative pressure [Pa] 
AEFF Spring effective area  [m2] 
L Single convolution length [m] 
n Spring number of convolutions [-] 
LF Membrane fiber length [m] 
r External plates and internal rings 

radius  
[m]  

A End plate area  [m2] 
FA Force exerted by pressure p vs. 

plates area 
[N] 

δ Spring “slimness” non-dimensional 
parameter 

[-] 

t Membrane thickness [m] 
R Curvature radius [m] 
φ Curvature arc half-angle [rad] 
τ Membrane axial stress [N/m2] 
a, b Quadratic approximations con-

stants 
[-] 

K Spring stiffness [N/m] 
V Spring internal volume [m3] 
γ Polythropic exponent [-] 
T Air temperature [°K] 
RG Gas constant  [J/(kg⋅K)] 
G Spring input mass flow [kg/s] 
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