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Abstract 

Modelling hydraulic control systems that contain flow modulation valves is highly influenced by the accuracy of the 
equation describing flow through an orifice. Classically, the basic orifice flow equation is expressed as the product of 
cross-sectional area, the square root of the pressure drop across the orifice and a “flow discharge coefficient”, which is 
often assumed constant. However, at small Reynolds numbers (such the case of valve pilot stage orifices), the discharge 
coefficient of the flow equation is not constant. Further, the relationship between the flow cross-sectional area and the 
orifice opening are extremely complex due to clearances, chamfers, and other factors as a result of machining limita-
tions. In this work, a novel modification to the flow cross-sectional area is introduced and the resulting closed form of 
the flow equation is presented. As a secondary benefit, an analytical form of the orifice flow gain and flow pressure 
coefficient can be obtained. This closed form equation greatly facilitates the transient and steady state analysis of low 
flow regions at small or null point operating regions of spool valve. 

Keywords: pilot valve, flow control, orifice, flow rate equation, discharge coefficient, Reynolds number 

1 Introduction 

In many fluid power applications, spool valves are 
used to modulate flow to a load. This flow can be quite 
large and demonstrate turbulent behavior. Under these 
conditions, the discharge coefficient is known to be 
constant and independent of the Reynolds number. 
However in other applications, the flow through the 
valve can be very small and show a strong dependency 
on the Reynolds number. Such applications of low flow 
rate are often found in pilot valves of two stage valves 
or in compensators of pumps and motors. For these 
kinds of applications, it is very difficult to model the 
flow rate because the flow cross-sectional area around 
the null position often cannot be exactly defined or 
because the flow may not be turbulent. Due to these 
difficulties, other means such as experimental tech-
niques are often used to model the flow (Bitner, 1986). 
Chaimowitsch (1967) developed a flow model for a 
rectangular orifice as a function of pressure drop and 
geometry parameters (clearance, chamfer angle, open-
ings, the maximum lap, etc.). The model is difficult to 
use due to its extremely complex form. Therefore, an 
accurate and relatively simple analytical expression of 
flow is absolutely essential in order to develop a com-
plete dynamic model of any hydraulic control system. 
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Consider the classical square-type orifice flow 
equation. As derived from Bernoulli’s equation, flow is 
proportional to the product of the orifice width, the 
orifice opening, the square root of the pressure drop 
and a flow coefficient which is defined as the discharge 
coefficient. The equation is derived by assuming the 
fluid is inviscid, incompressible, one dimensional and 
turbulent. Thus, 

 PxwCQ Δ2
d ρ

=  (1) 

In most applications, for large Reynolds numbers, 
Cd, is modelled as being constant. Merritt (1967) sug-
gests that the application of the general turbulent flow 
equation (Eq. 1) can also be extended to the case of lam-
inar flow. However, the discharge coefficient, Cd, is now 
a function of the Reynolds number, as well as the orifice 
geometry. Cd is usually determined experimentally and 
presented graphically. However, in Wu (2002), a closed 
form model of the discharge coefficient was developed 
for different types of orifice geometries. This closed 
form expression for a square-type orifice is 
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The advantage of Eq. 2 is that it is possible to dif-
ferentiate the flow rate to obtain flow gain, Kq = ∂Q/∂x, 
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and flow pressure coefficient, Kc = ∂Q/∂P, for use in 
transient and stability studies. Palmberg (1985) and Wu 
(2002) showed that stability in a load sensing system is 
influenced by the parameters Kq and Kc, which are 
important factors in determining the overall pump gain 
and dynamic behavior of the pump. Others (Krus, 
1988; Lantto, 1990, 1991; Peterson, 1996) have also 
shown that stability is influenced by overall pump gain. 

At small orifice openings around the null point, 
Eq. 1 and 2 are often invalid. This is because the actual 
flow cross-sectional area, A, is not defined due to clear-
ances, chamfers and other factors which result from 
machining limitations. Figure 1 shows a comparative 
plot of an ideal flow rate based on Eq. 1 or 2 and a 
measured flow rate about the null point. It is evident 
that a significant error between the measured and ideal 
flow does occur at the null position. Further, for the 
curve illustrated in this figure, the flow gain, which 
from Eq. 1 or 2 should be constant for x > 0, is not con-
stant in actual practice. For x < 0, the theoretical flow 
gain is zero, but in actual practice is still a positive, 
finite value. Thus, it is necessary to develop an empiri-
cal expression that will approximate the typical flow 
rate for –α < x < α. To do this, it is necessary to accu-
rately model the orifice area in some empirical func-
tion.  

Q

x

Actual flow rate

Predicted flow
rate (Eq. 1)

−α α

Q0

 
Fig.1: Comparison of measured and ideal flow rates for a 

typical pilot valve 

The objective of this paper is to present an empiri-
cally modified closed form of the flow cross-sectional 
area, A, which would replace wx in Eq. 2 and which 
could be used to accurately model the flow equation in 
the null region. This empirical form will allow the flow 
orifice equation to be valid at small openings (positive 
and negative), as well as large spool displacements, x. 

2 Modelling of the Cross-sectional Area 
of an Orifice 

The model of flow cross-sectional area of an orifice, 
A(x), is highly dependent on the geometry of the orifice 
(often defined as “square”, “crescent”, “short slot tube” 
etc). This study assumes that the orifice is rectangular, 
which is the most common types. Other types can be 
modelled in a similar fashion. Figure 2 illustrates a typ-
ical rectangular orifice in a spool valve. At the null 
position, the existence of clearances result in null posi-
tion flow; thus at x = 0, an equivalent flow cross-
sectional area must be defined. In the absence of any 
chamfers on the land, the cross-sectional area is 

 ( )
4

π2
1

2
2 DDA −

=  (3) 

where D1 and D2 are the diameters of the spool and 
sleeve respectively. For convenience, the cross-
sectional area, A, can be alternatively expressed in 
terms of the clearance between the spool and sleeve, c, 
and the average diameter, D. In order to do this, con-
sider the relationships as follows (see Fig. 2) 
 cDD −=1  (4) 

 cDD +=2  (5) 

Substituting Eq. 4 and 5 into Eq. 3 gives  
 πA D c wc= ⋅ =  (6) 

where w is defined as the width of the square orifice at 
the null position and is equal to the average of the pe-
rimeters of the spool and sleeve. c is defined as the 
height of the square orifice. It is noted that Eq. 6 has 
the same form as the cross-sectional area term, wx, in 
Eq. 2. However, at the null position, A would be zero 
but in practical applications, the existence of spool 
clearances means this is not valid. 

 
Fig. 2: Flow cross sectional areas of a rectangular orifice 

The flow cross-sectional area due to clearances is 
even larger than wc at the null position due to cham-
fers. The height of the rectangular orifice is, in fact, d0, 
instead of c (see Fig. 3b). Assuming that the chamfer 
angle radius is r. The height of the orifice, d0, can now 
be expressed as 

 ( ) rrcrd 242 22
0 −++=  (7) 

 
Fig. 3: The enlarged scenario of the spool and sleeve 

chamfers 

When the spool is not at null position (see Fig. 3a 
and 3c), the height, d0, becomes 
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Therefore, the cross-sectional area becomes 
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However, it is not convenient to use Eq. 9 in Eq. 2, 
because: 
• Equation 9 is valid only for a known quarter circu-

lar chamfer. Whereas the actual land chamfer ge-
ometry would not be known,  

• Equation 9 includes two parameters, r and c which 
would be very difficult to measure and 

• Equation 9 is complex and piecewise. 
When the spool displacement, x, is less than –2r, 

the orifice cross-sectional area in Eq. 9 becomes con-
stant and subsequently for a constant pressure drop, the 
flow rate would become a constant (Eq. 2). However in 
reality, the flow rate is not constant but decreases as the 
lap increases (Fig. 3a). This is because the orifice now 
becomes a short slot tube and hence the coefficients 
(i.e., Cd∞, a, b, δ1 and δ2) in the discharge coefficient 
model for a typical square orifice become invalid. For 
the above reasons, it is necessary to consider develop-
ing an empirical flow area model that reflects the be-
haviors of Eq. 9 for x > -2r and approximates the flow 
of short slot tube orifice for x < -2r in the same flow 
rate model. 

Any empirical model requires experimentally gen-
erated data. Considering Fig. 2, if the spool is fixed at a 
certain position, the pressure drop across the orifice, 
∆P, and the flow rate through the orifice, Q, are readily 
measured. The flow cross-sectional area, A, can be es-
timated by Eq. 1 (accounting for the changing Cd as in 
Wu (2002)). As in any experimental procedure, meas-
urement error will have an effect on the estimated value 
of A. This results in the vertical scatter in the data in 
Fig. 4. Any error in estimating Cd will also contribute 
to the scatter. 
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Fig. 4: The measurement and modelling of the orifice flow 

cross sectional area 

The objective is to find an empirical relationship be-
tween the flow cross-sectional area, A, and the spool 
displacement, x, which will best fit the experimental 
results. There are many functions that can be used to fit 
the data, including an nth order polynomial. However, the 
function that would be most desirable is one that would 
satisfy the following constraints: 
• The functional form should be as simple as possible. 
• The function should not include more than two pa-

rameters (one would be ideal) in addition to the ori-
fice width, w (w = Dπ). These parameters should 
have some physical significance. 

• The fit should be acceptable at large spool dis-
placements as well as in the region about the null 
position. 

In this study, an empirical model which satisfies the 
above criteria is proposed as 
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where w is the width of the square type orifice and d0 is 
a parameter which can be related to the equivalent ori-
fice height at the null position (refer to Fig.3 b). The 
clearances and chamfers influence the model though 

the term, 
0e1

1
d
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−
. Because it is difficult to obtain d0 

analytically from Eq. 7, d0 is experimentally deter-
mined from 
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Fig. 5: The measurement and modeling of the orifice flow 

cross sectional area about the null position 

In Eq. 12, N is the number of measurements at different 
pressure drops, ∆P i. Cd is determined by Wu´s (2002) 
model. For non-rectangular orifice, w varies with posi-
tion. In this case, Eq. 10 is used with a small non-zero 
valve displacement to generate another equation in w 
and d0 from which an effective valve width can be cal-
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culated. In Fig. 4, Eq. 10 is plotted as the solid line for 
the valve used in this study. Figure 5 shows more 
closely the information in Fig. 4 about the null position. 

The model must satisfy the following boundary 
conditions: 
• When x is a large negative number (large lapped 

amounts), A → 0 and ∂A/∂x = 0. 
• When x = 0, A = wd0.  
• When x is a large positive number (large open-

ings), A → wx. 
From Fig. 4 and 5, it is apparent that the first and 

third boundary conditions are satisfied. When x = 0, Eq. 
2 tends to 0/0. Applying L′Hopital rule to Eq. 10 gives 
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Thus, the second condition is satisfied. 
Equation 13 and Fig. 5 indicate that, although the 

null position is a singular point, Eq. 10 is continuous. 
As a consequence, the flow rate equation (Eq. 2) is also 
continuous. 

3 Analytical Model of the Flow Gain and 
Flow Pressure Coefficient 

Using the modified form of Eq. 10 for the flow 
cross-sectional area, the flow through the orifice be-
comes 
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where X = x/d0. X is a dimensionless variable. 
The flow gain and the flow pressure coefficient can 

be obtained by differentiating Eq. 14 with respect to the 
opening, x, and pressure drop, ∆P. As developed in 
Appendix A, the closed forms for Kq and Kc become 
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It is apparent that the “modification” quantity, ε, is 
also a function of the Reynolds number (Eq. 17). It can 
be shown that at Re = 0, 5.0=ε  (Note: as Re → 0, Cd 

→ 0 as well). For a typical sharp-edged orifice, ε is 
plotted in Fig. 6 and varies from 0.5 at very low Reyn-
olds numbers to zero at large Reynolds numbers. It 
should be noted here that at x = 0, Eq. A12, A13 and 
A14 (see Appendix A) should be used rather than Eq. 
15, 16 and 17. A simple “IF” statement can be used to 
facilitate this in a dynamic simulation. 

Equation 14, 15 and 16 are the general forms of the 
flow rate through a square orifice, the flow gain and 
flow pressure coefficient respectively, which can be 
applied to cases of laminar flow, turbulent flow, as well 
as the transition from laminar to turbulent flow. For 
both laminar flow and turbulent flow, Eq. 15 and 16 
can be simplified as follows. 

As the orifice opening, x, and/or the pressure drop, 
∆P, increase, the Reynolds number increases. Cd and ε 
converges to Cd∞ and 0 respectively. If x >> d0 (i.e., X 

>> 1), the term, ( )( )
( )21

e11
X

X

e
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⋅+− , also converges to 1. 

As a result, the flow gain becomes the well-known 
form of 

 PwCK Δ2
dturbulentq ρ∞=  (18) 

and the flow pressure coefficient becomes the familiar 
expression 
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It would appear from Eq. 19 that Kc could become 
infinite when ∆P = 0. This is not true as Kc is always a 
finite value. When ∆P approaches zero, the flow rate is 
very small and the flow becomes laminar. Therefore, 
Eq. 19 is really not applicable. In this situation, the 
Reynolds number is very small and thus Eq. 16 should 
be used under the limit, Cd approaches zero. Thus, as 
shown in Appendix B, the closed forms of the flow 
gain and the flow pressure coefficient under laminar 
flow conditions are 
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where δ is the laminar discharge coefficient, as defined 
in Wu (2002). Under these conditions, it can be ob-
served that the flow pressure coefficient, Kc, is inde-
pendent of the pressure drop, ∆P, across the orifice 
under the laminar flow conditions. 

When x = 0, the flow rate (leakage) is through the 
clearances and hence is small. The flow is usually lam-
inar. Therefore, Eq. 20 and 21 are applicable. The flow 
gain and the flow pressure coefficient at x = 0 thus be-
come 
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Equation 14, 15 and 16 can also be extended to the 
case of non-rectangular orifices. The general forms of 
the flow rate, the flow gain and the flow pressure coef-
ficient for any type orifice can be expressed by 
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where A(x) represents the ideal area as a function of the 
orifice opening (without considering clearances and 
chamfers). Cd employs Wu´s (2002) model. X and w 
represent the area ratio of the ideal area function, A(x), 
and the practical leakage area, A0, at the null position, 
and the equivalent orifice width respectively, i.e., 
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Fig. 6: The modification of the discharge coefficient for 

orifice flow gain and flow pressure coefficient 

4 A Comparison of the Analytical and 
Experimental Results 

The orifice flow rate models expressed by Eq. 14, 
15, and 16 can be verified experimentally. A pilot valve 
was used in the experimental verification (Fig. 7). With 

the orifice opening, x, fixed, the flow rate, Q, and the 
pressure drop, ∆P = Pu−Pd, were measured. Experi-
mental results of flow through a pilot valve with a cres-
cent orifice were obtained and illustrated using the 
function, Q(x) at a specific pressure drop, ∆P, and the 
function, Q(∆P) at a specific opening, x. 

 
Fig. 7: A simple spool orifice 

In order to calculate the flow rate using the empiri-
cal model provided in this study, parameters for the 
cross-sectional area model, w and d0, and parameters 
for the discharge coefficients model, Cd∞, a, b, δ1 and 
δ2, must be known. Although the cross-sectional area is 
a crescent type (see Fig. 7), experimental results indi-
cate that, within small orifice openings, such as less 
than 1 mm (in this study), the orifice could be approx-
imated as a rectangular type. For the pilot valve used in 
this study, the identified model parameters, w and d0, 
are listed in Table 1. Wu´s (2002) research indicated 
that model parameters of the discharge coefficient, Cd∞, 
a, b, δ1 and δ2, were highly dependent on the orifice 
geometry, such as “sharp-edged”, “short slot tube”, or 
“needle valve” types. In this study, the pilot valve used 
was a sharp-edged type and the model parameters are 
also given in Table 1. 

Table 1: Model parameters 

d0(mm) w(mm) ∞dC  a δ1 b δ2 

0.025 4 0.63 -0.99 0.20 -0.01 3.7 

 
Figure 8 shows a comparison of the flow rate using 

Eq. 14 and the experimental results for orifice flow 
rates at small openings (x > 0) and small lapped 
amounts (x < 0) for a pressure drop of 5 MPa. All the 
experimental data is contained in the region between 
the two dashed lines. Although the empirically calcu-
lated flow is not a perfect fit to the experimental re-
sults, it is far superior to that obtained using the more 
common model, as illustrated in Fig. 8. Figure 9 shows 
a comparison at large orifice openings. It is clear that 
the representation of the empirical model at large ori-
fice openings is excellent. 

Figure 10 shows a comparison of the empirically 
predicted and measured flow rates as a function of 
pressure drop across the orifice at the null position (x = 
0). The tangent on the curve represents the flow pres-
sure coefficient at operating points, x = 0 and ∆P = 6 
MPa. Figure 11 also shows a comparison of the flow 
rate as a function of pressure drop across the orifice at 
an opening of 0.5 mm. 
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Fig. 8: Comparison of model-based and experimental re-

sults of orifice flow rate at ∆P = 5MPa (for small 
openings (x > 0) and small lapped amounts (x < 0)) 
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Fig. 9: Comparison of model-based and experimental re-

sults of orifice flow rate at ∆P = 5MPa (for large 
openings) 

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

Pressure drop ∆P  (MPa)

Fl
ow

 ra
te

 Q
(l/

m
)

MPaPx
c P

QK
6,0 =∆=∆∂

∂
=

Predicted orifice flow rate (Eq.14)
Measured results for flow rate

 
Fig. 10: Comparison of model-based and experimental re-

sults of orifice flow rate at x = 0 

Figure 12 shows a comparison of the orifice flow 
gains, Kq, based on the empirical model and experi-
mental results. The two curves plotted with “triangles” 
represent experimental flow gains, i.e. the slopes of the 
upper and lower dashed lines shown in Fig. 8 and 9. 
The experimental results show a flat region at about x = 
0.2 mm. This is attributed to the fact that Kq (experi-
mental) is obtained graphically and in this region, small 
variations can lead to large errors in the slope. 

Figure 13 compares the orifice flow pressure coeffi-
cients, Kc, based on the empirical model and slope val-
ues obtained from the experimental results. The solid 
line represents the predicted results from the empirical 
model. The scatter evident in the experimental results 
of Fig. 13 is attributed to the process of differentiation 
of the experimental data, which also has a significant 
amount of scatter. 

There is a relatively good agreement between the 
empirical model predictions and the experimental re-
sults. The determination of Kq and Kc using Eq. 15 and 
16 is a valid approach. 

0

2

4

6

8

10

12

0 2 4 6 8 10

Pressure drop ∆P  (MPa)

Fl
ow

 ra
te

 Q
(l/

m
)

Predicted orifice flow rate (Eq.14)
Measured results for flow rate

MPaP
x

c P
QK

4
5.0

=∆
=∆∂

∂
=

 
Fig. 11: Comparison of model-based and experimental re-

sults of orifice flow rate at x = 0.5 mm 
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Fig. 12: Comparison of modeled and experimental flow gain 

with the pressure drop of 5 MPa 
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Fig. 13: Comparison of modeled and experimental flow pres-

sure coefficient with the orifice opening of 0.5 mm 
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5 Conclusions 

The flow rate through a pilot valve usually is small 
due to small orifice openings. A problem occurs in us-
ing the classical orifice flow equation in this case. The 
discharge coefficient is not a constant due to laminar 
flow conditions. In addition, it is difficult to determine 
the actual orifice cross-sectional area about the null 
position due to clearances, chamfers, and machining 
limitations. This paper provides an empirical flow 
cross-sectional area model that includes only one pa-
rameter, d0, or only two parameters, d0 and w, for non-
rectangular orifice. In practice, Cd must also be meas-
ured (for example, Wu (2002), which requires meas-
urement of other parameters). It is thus possible to dif-
ferentiate the flow equations with respect to the orifice 
opening and pressure drop in order to obtain the flow 
gain and flow pressure coefficient of the pilot valve. 
Thus, the discontinuity problem of applying the tradi-
tional flow rate model at x = 0 no longer exists. A com-
parison between experimental and empirical models 
show that this approach is valid. 

Nomenclature 

A orifice cross-sectional area [m2] 
A0 orifice cross-sectional area at the  
 zeroed orifice opening [m2] 
a, b coefficients in the empirical model  
 Cd, or polynomials [-] 
Cd discharge coefficient [-] 
Cd∞ turbulent discharge coefficient [-] 
d height of square type orifice [m] 
d0 height of square type orifice at the  
 null position [m] 
Kq flow gain  
Kq0 flow gain at the zeroed orifice opening  
Kc flow pressure coefficient  
Kc0 flow pressure coefficient at the zeroed  
 orifice opening  
N the number of experiments [-] 
Pd downstream pressure [Pa] 
Pu upstream pressure [Pa] 
∆P pressure drop across orifice [Pa] 
Q volumetric flow rate [m3/s] 
Re Reynolds number [-] 
w rectangular orifice width [m] 
x orifice opening [m] 
X dimensionless orifice opening [-] 
α a small orifice opening   
δ laminar flow discharge coefficient [-] 
δ1 δ2 attenuation coefficients of the empiri-

cal model modification associated 
with discharge coefficient 

[-] 

ρ fluid density [kg/m3] 
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Appendix A 

Derivation of the general form of flow gain and flow 
pressure coefficient through orifices 

For simplicity, the orifice flow equation (Eq. 2) can 
be re-expressed as 

 PACQ Δ2
d ρ

=  (A1) 
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where  

 













⋅+⋅+= ∞∞

−−

∞

Re
C

Re
C baCC d

2

d

1

ee1dd

δδ

 (A2) 

 
0e1 d

x
xwA
−

−

=  (A3) 

For a rectangular orifice with width w, when the or-
ifice opening, x, is much less than width w (i.e., x << 
w), the Reynolds number can be expressed as (Wu, 
2002) 
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Differentiating Eq. A1 with respect to orifice open-
ing, x, gives 
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X is a dimensionless number (X = x/d0). Substitut-
ing Eq. A6 and A7 into Eq. A5 gives 
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The first term in the right hand side can be consid-
ered as the product of a coefficient, ε, and ∂Q/∂x. Kq 
(i.e. ∂Q/∂x) is then solved to be 
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Similarly, differentiating Eq. A1 with respect to 
pressure drop, ∆P, gives 
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It is notable that when x = 0 (hence X = 0), Q, Kq 
and Kc show the form of 0/0. Similar to Eq. 13, the 
value of Q, Kq and Kc at the null position can be calcu-
lated by 
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Appendix B 

Derivation of the flow gain and the flow pressure 
coefficient for the laminar flow through orifices 

Equation 2 is an empirical orifice flow equation that 
can be applied to both laminar and turbulent flow. Eq. 
15 and 16 are the flow gain, Kq, and the flow pressure 
coefficient, Kc, developed from Eq. 2. When the flow 
through orifices becomes laminar, the Reynolds num-
ber of the orifice flow is very small and the discharge 
coefficient can be approximated by its linearization 
model, i.e., 

 ReC δ=d  (B1) 

where δ = −a⋅δ1 − b⋅δ2. Substituting Eq. A4 into Eq. 
B1 gives 
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Replacing Eq. A2 by Eq. B2, Eq. A1 becomes 
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or 
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Squaring both sides of Eq. B3 results in the laminar 
flow equation of an orifice as 
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Equation B4 shows a linear relationship between 
the orifice flow and pressure drop. Eq. B4 can be com-
pared to Eq. (3-39) of Merritt (1967) (note: the term of 
4x2w is same as 2DhA in Merritt). The only difference 
is that the term of the exponential function, 
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 exists in the denominator of Eq. B4. 

Differentiating Eq. B4 with respect to x and ∆P 
gives the flow gain and the flow pressure coefficient at 
the laminar flow condition as 
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