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Abstract 

This article deals with an application of the endoreversible thermodynamics theory of heat engine applied to micro-
fluid flow power converters (MFPC). An analogy is demonstrated between thermal and fluid flow efficiencies. Maxi-
mum power output and efficiency at maximum power are established for the device based upon the higher and lower 
pressure bounds. The linear and non linear fluid flows are considered with and without fluid friction losses. This paper 
provides theoretical limits for designing power flow converter. The best performances are obtained for linear fluid flow 
without flow losses. 
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1 Introduction 

During the past decades, micromachining technolo-
gy has become available to fabricate micron mechani-
cals systems. Micromachines have a major interest in 
many disciplines like aerospace, engineering and biol-
ogy Löfdahl (1999). In this article we limit our discus-
sion to power converters from fluid flow by an analogy 
with the endoreversible thermodynamic theory of heat 
engine. The study of irreversible thermodynamic cycles 
has been undertaken by many researchers like Cham-
badal (1957), Novikov (1958), Curzon (1975) and 
Bejan (1988). The efficiency of some heat engines was 
studied at maximum power conditions on the basis of 
Carnot cycle models with or without irreversibilities of 
finite rate heat transfer and internal irreversibilities of 
the working fluid as described in Chen (1994), Blank 
(1996) and Kodal (2000). An engine is a device which 
converts potential difference of internal energy (tem-
perature) into work and then into mechanical power. 
Similarly, we apply this physical principle to a pneu-
matic machine which converts a pressure drop into 
mechanic work. Many authors have exploited this idea 
and have derived the maximum power for a fluid flow 
with linear and non linear relations of pressure drop 
against flow rate (see Radchenco, 1994; Bejan, 1996; 
Chen et al, 1999). 
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A power flow converter is designed between two 

limits: a maximum power conversion and a maximum 
efficiency which corresponds to a reversible operation 
and zero power. Each of these bounds implies a specif-
ic relation of power conversion on the pressure of the 
two reservoirs between which the converter operates. In 
the present paper the nature of fluid flow (i.e. linear or 
non linear) and the losses by friction between the piston 
and the cylinder are taking into account. All the expres-
sions will be derived algebraically and illustrated nu-
merically. The aim of this paper is to find the optimal 
values of speed and pressures to provide maximum 
power output under optimal efficiency. 

2 Theoretical Model  

2.1 General Theory 

We consider a double acting piston cylinder as 
shown in Fig. 1. This linear pneumatic actuator consists 
of only a few parts and is corrosion proof. The filament 
wound barrel is non-corrosive and has a surface for free 
travel and minimum friction. Besides, the piston moves 
with friction thanks to the pressure difference P1 – P2 
maintained between its two faces. 
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Fig. 1: Microfluid flow power converter (MFPC) 

The working fluid (air) is admitted in the chamber 
with the pressure P i while the left face of the piston is 
submitted to the pressure P1. If we consider a non line-
ar flow resistance relation (see Radchenco (1994) and 
Bejan (1996)), the pressure drop (P i – P1) is written: 

 i 1 1
nP P K V− =  (1) 

Similarly, the fluid is ejected on right side of the 
piston with a pressure drop (P2 – Po), where P0 is the 
outlet pressure and: 

 2 0 2
nP P K V− =   (2) 

V is the instantaneous linear speed of the piston, K1 
and K2 are constant coefficients depending on duct and 
fluid properties and n is a coefficient which depends on 
the Reynolds number. The limit n = 1 corresponds to 
the linear flow when Eq. 1 and 2 obey the Poiseuille’s 
law. The exponent n increases as the Reynolds number 
increases and for a non linear flow in the fully rough 
regime the value of the exponent is n = 2 as described 
in Idelchik (1993), Comolet (1994) and Faisandier et al. 
(1999). 

The instantaneous power delivered by the piston to 
an external system is  

 ( )p 1 2 f fW P P AV P A V= − − ∆  (3) 

where the product ∆PfAfV represents the fluid power 
loss by friction. ∆Pf is the friction pressure loss in the 
gap between the piston and the cylinder. A is the front 
area of the piston and A f is the lateral friction area. If 
we consider the friction pressure is generated by a the 
viscous flow between two parallel surfaces ∆Pf is writ-
ten: 

 f
VP
d

µ∆ ≈  (4) 

where µ is the coefficient of viscosity of the lubricant 
and d the relative motion gap thickness. 

Let us consider the power i iW P AV=  received 
from the fluid at the inlet of the actuator. Then, the 
energy conversion efficiency of the fluid flow power 
converter is: 

( )
f

1 2 fp 1 2 f f

i ii

AP P PW P P AV P A V A
P AV PW

η
− − ∆− − ∆

= = =



 (5) 

The quantity iW  is analogous to the absorbed heat 
transfer rate of the heat engine (see Chen (1994), Kodal 
(2000)) and if we consider a reversible process without 

friction losses (µ = 0, then ∆Pf = 0) then 

( )p i orev
W P P AV= −  and the reversible efficiency of 

the fluid flow power converter is  

 
p rev 0

rev
ii

1 1
W P

PW
η = = − ≤




 (6) 

We found an analogy between the Carnot efficiency 
of the heat engine and the reversible efficiency of the 
fluid flow power converter where the pressures are 
analogous to the temperatures (Fig. 2). 

From Eq. 1 and 2 we obtain  

 1 1
1 i 2 0

2 2

K KP P P P
K K

= − +  (7) 

From Eq. 4 and 5,  

 1 i 2 fP P P K Vη= + +  with f
f

AK
d A
µ

=  (8) 

Combining Eq. 7 and 8 gives 

 
( ) 1

i 0 f
2

2
1

2

1

1

KP P K V
KP
K
K

η− + −
=

+
 (9) 

Substituting Eq. 9 into Eq. 7 yields 

 

2
i 0 f

1
1

2

1
1

KP P K V
K

P
K
K

η
 

+ + + 
 =

+
  (10) 

Then, substituting Eq. 10 into Eq. 1 one obtains the 
piston speed by solving the general non linear equation: 

 ( ) ( )1 2 f i 01 0nK K V K V P Pη+ + + − − =  (11) 

2.2 Linear Flow Resistance: n = 1 

When the flow resistance is expressed by a linear 
relations (n = 1), the solving of the Eq. 11 becomes 
simple and the speed of the piston is 

 
( )i 0

1
1 2 f

1P P
V

K K K
η− −

=
+ +

 (12) 

Combining Eq. 12 and 5 one finds the expression of 
the instantaneous power delivered by the piston to an 
external system 

 
( )i 0

p1 i
1 2 f

1P P
W AP

K K K
η

η
 − −

=  
+ +  

  (13) 

Equation 13 represents the instantaneous power 
versus the efficiency. The reservoir pressures P i and P0 
are fixed. The power presents two limits: 

 p1 0W =  (14a) 

for  
 0min ==ηη  (14b) 
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and for  

 0
max rev

i
1

P
P

η η η= = = −    (14c) 

Between these two limits, the piston output power 
has an optimal value. Taking the derivative of p1W  with 

respect to η and setting it to zero gives the maximum 
piston power output. 

From Eq. 13, one solves p1 0
W
η

∂
=

∂


 and finds the 

optimal value of the efficiency ηopt1 

 0
opt1

i

1 1
2

P
P

η
 

= − 
 

  (15) 

It is easily demonstrated that the second derivative 

of pW with respect to η is negative, 
2

p1
2 0

W

η

∂
<

∂


, so the 

optimal value of the efficiency ηopt corresponds to a 
maximum. Substituting Eq. 15 into Eq. 9, 10, 12, 13 
gives the optimal values of pressures P1 and P2, piston 
speed V and power pW : 

( ) ( )
( )

i 01 f
i 0 0

2 1 2 f
2 opt1

1

2

1
2 2

1

P PK KP P P
K K K K

P
K
K

−
+ + −

+ +
=

+
  (16) 

( )1 2 f 2
i o i 0

1 2 f 1
1 opt1

2

1

21
2

1

K K K KP P P P
K K K K

P
K
K

 + +
− + + + + =

+
  (17) 

 
( )

i 0
opt1

1 2 f2
P P

V
K K K

−
=

+ +
  (18) 

 
( )

2
i 0

p opt1
1 2 f 2

P PAW
K K K

− =  + +  
   (19) 

2.3 Non Linear Flow Resistance: n = 2 

At higher Reynolds numbers the flow resistance is 
non linear. The solution of Eq. 11 with n = 2 gives the 
piston speed: 

 
( ) ( )( )
( )

2
f f 1 2 0 i

2
1 2

4 1

2

K K K K P P
V

K K

η− + − + − −
=

+
  (20) 
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Fig. 2: Analogy between an endoreversible heat engine (EHE) and  

a microfluid flow power converter (MFPC) without flow losses 
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Combining Eq. 20 and 5, one obtains the expression 
of the instantaneous power delivered by the piston: 

( ) ( )( )
( )

2
f f 1 2 0 i

p2 i
1 2

4 1

2

K K K K P P
W AP

K K

η
η
 − + − + − − =  +
  



  (21) 

Equation 21 represents the instantaneous power 
versus the efficiency. The reservoir pressures P i and P0 
are fixed. The power presents two limits: 

 p2 0W =  (22a) 

for 
 min 0η η= =  (22b) 

and for 

 0
max rev

i
1

P
P

η η η= = = −   (22c) 

These two limits are not dependent on the friction 
losses Kf , besides, between ηmin and ηmax the power 
presents a maximal value for ηopt2: 

( )( ) ( )( )
( )

2 2
f f f 1 2 i 0 1 2 i 0

opt2
1 2 i

3 6

9

K K K K K P P K K P P
K K P

η
− + + − + + −

=
+

  

  (23) 

Substituting Eq. 23 into Eq. 9, 10, 20 and 21 gives 
the optimal values of piston speed V, pressures P1 and 
P2, and power pW : 

( )( ) ( )( )
( )

2 2
f f f 1 2 i 0 1 2 i 0

opt2
1 2

5 4 3 12

6

K K K K K P P K K P P
V

K K

− + + − + + −
=

+
   

  (24) 

 

2
i opt2 0 f opt2

1
1 opt2

2

1
1

KP P K V
K

P
K
K

η
 

+ + + 
 =

+
  (25) 

 
( ) 1

i opt2 0 f opt2
2

2 opt2
1

2

1

1

KP P K V
KP
K
K

η− + −
=

+
  (26) 

( ) ( )( )
( )

2
f 1 2 0 i opt2 f

p opt2 i opt2
1 2

4 1

2

K K K P P K
W AP

K K

η
η

 + + + − − 
=  + 

 

   

   (27) 

3 Discussion 

In order to show the applicability of the model we 
analyzed the two limit cases, the linear flow (n = 1) and 
the non linear flow (n = 2) from a parametric study. 
Although many MEMS devices use different working 
fluids, dry air is used in this work. The outlet reservoir 

pressure P0 is set to 1 bar. The flow coefficients K1 and 
K2 are chosen to be 4x104 to match typical flows and 
geometrical characteristics encountered in MEMS tech-
nology. The coefficient of friction Kf is in the range 0 to 
infinity where the values 0 and infinity correspond to the 
cases of none and maximal friction losses respectively. 
Between these two values we set Kf to 4x104 to conserve 
the same influence on the pneumatic characteristics of 
the device than the flow coefficients K1 and K2.  

All expressions concerning the piston speed, the gas 
pressures, the power and the efficiency, depend on the 
fluid and geometrical flow resistances K1, K2 and Kf  
except for the linear flow optimal efficiency ηopt1. 
These expressions are compared with those obtained by 
the two different investigators Bejan (1996) and Chen 
et al (1999). 

3.1 Optimal Values 

The optimal values of pressure, speed, power and 
efficiency are plotted versus reservoir pressure P1. 
Results are presented on different diagrams. Optimal 
values present an increase with respect to the input 
pressure and we observe the bad influence of the irre-
versible friction losses Kf on the general performances 
of the converter (Fig. 3 to 7). If Kf → ∞: these optimal 
values tend to zero, friction losses being very im-
portant, except for the optimal efficiency. 

 
Fig. 3: Optimal power versus input pressure. Linear flow: 

n = 1, non linear flow: n = 2, K1 = K2 = 4x104 and 
Kf = 4x104 for the case Kf  > 0 

 
Fig. 4: Optimal efficiency versus input pressure. Linear 

flow: n = 1, non linear flow: n = 2, K1 = K2 = 
4x104 and Kf = 4x104 for the case Kf  > 0 
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Fig. 5: Optimal pressure P1 versus input pressure. Linear 

flow: n = 1, non linear flow: n = 2, K1 = K2 = 
4x104 and Kf = 4x104 for the case Kf  > 0 

 
Fig. 6: Optimal pressure P2 versus input pressure. Linear 

flow: n = 1, non linear flow: n = 2, K1 = K2 = 
4x104 and Kf = 4x104 for the case Kf  > 0 

 
Fig. 7: Optimal piston velocity versus input pressure. 

Linear flow: n = 1, non linear flow: n = 2, K1 = K2 
= 4x104 and Kf = 4x104 for the case Kf  > 0 

Sample results are shown on Fig. 4 where the effi-
ciency is plotted versus input reservoir pressure for 
several values of losses characteristics. The efficiency 
increases with the input reservoir pressure. One demon-

strated that only the optimal efficiency ηopt1 (Eq. 15) is 
independent of the flow characteristics K1 and K2 when 
the flow is linear and one found expressions consistent 
with or complementary to those obtained by Bejan 
(1996) and Chen et al (1999). 

If one considers friction losses are negligible (Kf = 
0), Bejan (1996) and Chen et al (1999) demonstrated that 
for a linear flow (n = 1) and for a non linear flow (n = 2). 

 0
opt

i
1

1
Pn

n P
η

 
= − 

+  
  (28) 

In this work, the maximal efficiency becomes simi-
lar to Eq. 28 and from Eq. 15 and 23 with Kf = 0 for a 
linear flow, n = 1 in Eq. 28,   

 0
opt1

i

1 1
2

P
P

η
 

= − 
 

   (29) 

In this case, the optimal power efficiency is exactly 
the half of the reversible efficiency ηrev (Eq. 6) for a 
non linear flow, n = 2 in Eq. 28, 

 0
opt2

i

2 1
3

P
P

η
 

= − 
 

  (30) 

Equation 29 and 30 represent the quality of the 
thermomechanical power conversion in the optimal 
flow conditions. These two expressions are analogous 
to the maximal efficiency of a heat engine without 
internal irreversibilities founded by Curzon (1975) and 
Kodal (2000). 

 C
max

H
1

T
T

η = −   (31) 

where TC and TH are the cold sink and the hot source 
temperatures respectively. 

Optimal pressures and piston speed expressions 
(Eq. 16 to 18 and Eq. 24 to 26) are consistent to those 
obtained by Chen (1999) in both cases of linear and 
non linear flows. The efficiency decreases if friction 
losses are not negligible, (Kf > 0) but if Kf  → ∞, the 
corresponding curve presents an evolution identical to 
the linear case described by Eq. 29. In this case, the 
piston moves slowly and therefore the flow becomes 
linear. Kf  is analogous to the internal irreversibility of 
the heat engine (see Chen et al (2001), Gordon (1992) 
and Radcenco et al (1993)). 

3.2 Output Power and Speed versus Efficiency 

The qualitative behavior presented in Fig. 8 appears 
to be common to almost thermal converters like heat 
engines (see Curzon (1975), Blanck (1996), Chen 
(1994), Kodal (2000), Chen et al (2001), Gordon 
(1992) and Radcenco (1993)), thermoelectric genera-
tors (Nuwayhida et al (2000), Chen (2000)) chemical 
processes (Chen (1998) and Le Goff (2000)). The loop 
behavior in Fig. 8 can be understood from analyzing 
the two limits of low and high pressure reservoir opera-
tion. At low pressures or when P i = P1 both power and 
efficiency vanish because the piston does not move: 
there is no pressure difference between its two faces. At 
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this point, the pressure is shunted directly from the high 
pressure level reservoir to the low pressure level reser-
voir with no net power produced. In the theory of heat 
engine, this point corresponds to the called thermal 
short-circuit limit described by Gordon (1992). At high 
pressure, fluid frictions increases more rapidly than the 
power output, so power output vanishes at finite rates 
of pressure input. Hence efficiency vanishes too be-
cause the reversible limit is reached with maximal 
efficiency (Eq. 14 and 22). A reversible cycle takes 
infinite time or infinite heat exchange surface area to 
complete and consequently the output power falls 
down. Fig. 8 shows that an increase in the friction coef-
ficient Kf results in an decrease of the output power 

pW  both for the linear and the non linear flows. The 
power converter is more efficient if the flow is linear 
because the power output is greater than in the non 
linear flow case due to the increase of fluid friction. If 
Kf → ∞ the power output tends to zero, friction losses 
being very important. In MEMs technology, the dimen-
sions are very small then the frictions losses become 
very important. Figure 8 and 9 show that the increase in 
the friction coefficient Kf creates power loss and speed 
loss more important in the case of linear flow than in 
the case of non linear flow. 

 
Fig. 8: Power versus efficiency. Linear flow: n = 1, non 

linear flow: n = 2, K1 = K2 = 4x104 and Kf = 
4x104 for the case Kf  > 0 

 
Fig. 9: Optimal speed of the piston versus efficiency. Line-

ar flow: n = 1, non linear flow: n = 2, K1 = K2 = 
4x104 and Kf = 4x104 for the case Kf  > 0 

4 Conclusion 

This paper analyzed the accuracy of the optimiza-
tion of a power fluid converter by considering the re-
sults obtained between two limits: the linear and the 
non linear flows with and without flow losses. We 
showed the analogy between the fluid power converter 
and the heat engine by the way of a theoretical devel-
opment in finite time thermodynamics analogy. Flow 
losses affect the performances of the device and must 
be considered in the analysis. In each case of flow the 
optimal values of speed, power, pressures and efficien-
cy are established. We demonstrated the bad influence 
of the friction losses, especially in MEMs technology, 
both for the linear and the non linear flows on the max-
imal power output under optimal efficiency. This paper 
provides theoretical limits for designing power flow 
converter. 

Nomenclature 

A Front area of the piston [m2] 
Af Lateral friction area   [m²] 
D Relative motion gap thickness [m] 
D Diameter of the cylinder [m] 
Kf Fluid conductance [Pas/m] 
Km Thermal conductance at the cold 

sink 
[W/K] 

KM Thermal conductance at the hot 
source 

[W/K] 

K1 Fluid conductance at the inlet of 
the actuator 

[-] 

K2 Fluid conductance at the outlet of 
the actuator 

[-] 

N Coefficient depending of the 
nature of the flow 

[-] 

P i Inlet pressure of the reservoir [Pa] 
Po Outlet pressure of the reservoir [Pa] 
P1 Pressure at the left face of the 

piston 
[Pa] 

P2 Pressure at the right face of the 
piston 

[Pa] 

1 opt1P
 

Optimal pressure at the left face 
of the piston for linear flow [Pa] 

2 opt1P
 

Optimal pressure at the right face 
of the piston for linear flow [Pa] 

1 opt2P
 

Optimal pressure at the left face 
of the piston for non linear flow [Pa] 

2 opt2P
 

Optimal pressure at the right face 
of the piston for non linear flow [Pa] 

TC Temperature of the cold sink [K] 
TH Temperature of the hot source [K] 
V Speed of the piston [m/s] 
Vopt1 Optimal speed of the piston for 

linear fluid flow  
[m/s] 

Vopt2 Optimal speed of the piston for 
non linear fluid flow 

[m/s] 

V1 Speed of the piston for linear 
fluid flow 

[m/s] 

V2 Speed of the piston for non linear 
fluid flow 

[m/s] 
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iW  
Fluid power at the inlet of the 
actuator [W] 

pW
 

Instantaneous power delivered by 
the piston [W] 

p opt1
W

 
Optimal piston power for linear 
fluid flow [W] 

p opt2
W

 
Optimal piston power for non 
linear fluid flow [W] 

p rev
W

 
Reversible piston power  [W] 

∆P Pressure difference [Pa] 
∆Pf Pressure difference losses due to 

piston-cylinder friction 
[Pa] 

η Efficiency [-] 
ηCarnot Carnot efficiency [-] 
ηmin Efficiency  [-] 
ηmax Efficiency at maximum power [-] 
ηopt Optimal efficiency [-] 
ηopt1 Optimal efficiency for linear 

fluid flow 
[-] 

ηopt2 Optimal efficiency for non linear 
fluid flow 

[-] 

ηrev Efficiency for reversible condi-
tions 

[-] 

µ Dynamic viscosity of the lubri-
cant 

[Pas] 
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