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Abstract 

In fluid power systems, flow control is mainly achieved by throttling the flow across valve orifices. Lumped pa-
rameter models are generally used to model the flow in these systems. The basic orifice flow equation, derived from 
Bernoulli’s equation of flow, is proportional to the orifice sectional area and the square root of the pressure drop and 
is used to model the orifice coefficient of proportionality. The discharge coefficient, Cd, is often modeled as being 
constant in value, independent of Reynolds number. 

However, for very small orifice openings, Cd varies significantly and can result in substantial error if assumed 
constant. In this situation, modelers usually revert to graphs or look–up tables to determine Cd. This paper provides a 
closed form model for Cd as a function of the Reynolds number which can be applied to different types of orifices. 
Based on this model, a technique to evaluate flow given an orifice area and pressure drop without having to use itera-
tion is introduced. 
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1 Introduction 

The well known equation of the volumetric flow 
rate through an orifice (Fig. 1) is derived from Bernoul-
li’s equation by assuming (1) an incompressible fluid 
and (2) turbulent flow as 
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Cv, flow velocity coefficient (approximately 0.98). 
Cc, area contraction coefficient (equal to Avc/A). 
For sharp-edged orifices, it is 0.611. 
Avc, the cross-sectional area at vena contracta. 
Au, the cross-sectional area at upstream. 
Pu, the pressure at upstream. 
Pvc, the pressure at vena contracta. 

Because Au is much larger than A, the discharge co-
efficient, Cd, is almost equal to CvCc. 
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Fig. 1: Flow through a sharp-edged orifice 

Because in many situations, the flow through an ori-
fice is turbulent, the discharge coefficient, Cd, is com-
monly considered as a constant. Application of Eq. 1 
can also be extended to the case of laminar flow. In this 
case, the discharge coefficient is a function of the 
Reynolds number as well as the orifice geometry and is 
usually determined by experimental methods and pre-
sented graphically (Merritt, 1967). Viall et al (2000) 
experimentally determined the discharge coefficient of 
a typical spool valve. Borghi et al (1998) and Vescovo 
et al (2002) employed computational fluid dynamics 
(CFD) models to numerically compute the discharge 
coefficient and compared the computational and exper-
imental results. None of these studies or other CFD 
studies (Ellman et al, 1996; Gromala et al, 2002), etc. 
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developed a functional relationship between the dis-
charge coefficient and Reynolds number. A main rea-
son is that the Reynolds number also depends on the 
flow rate requiring an iterative numerical solution (Mil-
ler, 1996). 

This paper provides an empirical model of the dis-
charge coefficient with respect to square root of Reyn-
olds number. This empirical model can be directly ap-
plied to traditional graphically-expressed functions, 

( )d =C f Re , for sharp-edged orifices (such as that 
provided by Merritt (1967)), or to experimentally de-
rived discharge coefficients (such as that provided in 
this paper). The paper will also consider the determina-
tion of parameters in the generalized empirical model 
for an orifice. Finally, a new calculation method for the 
flow rate, which does not need iteration, with the em-
pirical model is developed. 

2 Empirical Modelling of Discharge Co-
efficient for Orifices 

From the literature, it is well known that there is a 
transition in a plot of discharge coefficient vs. Re  
from being proportional to the square root of the Reyn-
olds number, Re, at low Reynolds number, to being 
constant at high Re. Although the curve shapes vary as 
the orifice geometry varies, they can be approximated 
by an empirical model as an exponential function, i.e: 

 d
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where Cd∞ is the turbulent discharge coefficient for a 
specific orifice. δ is a laminar discharge coefficient, 
and is similar to the coefficient introduced graphically 
by Merritt (1967). 

Equation 3 is simple and the two parameters have a 
clear physical interpretation. Cd∞ is the turbulent dis-
charge coefficient because Cd converges to Cd∞ for 
high Reynolds numbers. δ is called as “laminar dis-
charge coefficient” because Eq. 3 can be approximated 
by d δ=C Re  at very small Reynolds numbers 
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However, Eq. 3 cannot always be satisfied for a va-
riety of orifices with different geometries, especially 
when fitting the transition from the laminar flow to 
turbulent flow. 

Therefore, another form of the discharge coefficient 
is proposed as 
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where the parameters, a, b, δ1 and δ2 are specific flow 
dependent coefficients to be determined. Equation 4 
can be applied to most types of orifice.  
 

Three types of orifices with the different geometries 
shown in Fig. 2 are modeled using the generalized em-
pirical model (Eq. 4). The sharp-edged orifice (Fig. 
2(a)) has zero length and near 180° trumpet mouth 
downstream. The spool orifice (Fig. 2(b)) has a 90° 
downstream mouth. The needle orifice (Fig. 2(c)) has a 
downstream mouth less than 90°. The shape of dis-
charge coefficient curves for each would be different 
and it is now necessary to consider the application of 
the empirical model (Eq. 4) to these typical orifices. 

 
(a) Sharp-edged         (b) Sharp-edged      (c) Needle valve 

 Orifice                     pool orifice                 orifice 

Fig. 2: Three types of orifice 

2.1 Application of the empirical model to typical 
curve of discharge coefficient 

Merritt (1967) has presented a “smooth” discharge 
coefficient curve with respect to square root of Reyn-
olds number for a typical sharp-edged orifice (Fig. 
2(a)). This smooth curve has been generated from ex-
perimental data. For this curve, the parameters, a, b, δ1 
and δ2 in Eq. 4 can be determined using the following 
mathematical manipulation. The laminar discharge co-
efficient, δ, the turbulent discharge coefficient, Cd∞, 
and the maximum discharge coefficient, Cdm, at a spe-
cific Reynolds number, Rem, can be found by applying 
an appropriate measurement on a given curve. The four 
parameters, a, b, δ1 and δ2 can be solved by applying 
the following four conditions common to most types of 
orifices: 
1. Initial condition: 

 d 0 1 0
=

= + + =ReC a b  (5) 

2. Laminar discharge coefficient condition: 
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For a sharp edged orifice, δ ≈ 0.2. 
3. Maximum value conditions: 
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Equation 5 through 8 can be solved to determine a, 
b, δ1 and δ2. These equations can be simplified into a 
non-linear algebraic equation of δ1 as 
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where 
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Equation 9 and 10 can be solved numerically. Pa-
rameters, a and b, can be determined by 
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Note that a maximum value of discharge coefficient 
does not always exist in the transition region from the 
laminar to the turbulent flow. In this case, Rem can be 
considered to be an intersecting point of two asymptote 
lines for the laminar and turbulent flow regions. Thus, 
the right hand side of Eq. 8 would not be zero, but 
some finite value, dmC . Equation 9 and 10 then become 
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and 
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The method is applied to the typical discharge coef-
ficient curve given by Merritt (1967) (pp. 44). The in-
put and output parameters for the model calculations 
are listed in Table 1. 

Table 1: Empirical model parameters for a typical 
coefficient curve 

Input 
Parameters 

Cd∞ δ Cdm mRe  
0.61 0.23 0.69 11 

Output 
Parameters 

A b δ1 δ2 
1.07 -2.07 0.077 0.15 

 
Using these parameters, the empirical model of the 

discharge coefficient for Merritt’s curve becomes 

 ( )0.126 0.246
d 0.61 1 1.07 2.07− −= + −Re ReC e e  (15) 

and is shown in Fig. 3. Excellent agreement between 
the original curve and the empirical model predictions 
is obtained. 

2.2 Application of the empirical model to experi-
mental data plot of discharge coefficient 

Although Fig. 3 is a commonly used plot of dis-
charge coefficient for a sharp-edged orifice, in practice, 
the clearance, chamfer, and other factors of valves (due 
to machining accuracy limitation) generate a different 
shaped curve. Thus, it is necessary to measure the dis-
charge coefficient for the orifice of specific valves. The 
method of the experimental determination of the dis-
charge coefficient, Cd, and the corresponding Reynolds 
number, Re, for an orifice are also based on the general 
flow equations:  

 d 2
ρ

=
∆

QC
A P

 (16) 

 
( ) hρ

µ
=

Q DA
Re  (17) 

where Q is the flow rate through the orifice, A is the 
cross-sectional area of the orifice, ∆P is the pressure 
drop cross the orifice, Dh is the hydraulic diameter, ρ is 
the fluid density and µ is the fluid absolute viscosity. 
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Fig. 3: Comparison between typical discharge coefficient 

and the empirical model predictions 

The experimental hydraulic circuit was so designed 
such that the pressure differential, ∆P, of the tested 
orifice could be adjusted. In order to create a variety of 
flow conditions, each of the orifice opening, x, the fluid 
temperature, T, and the pressure differential, ∆P, was 
set at different levels to carry out the experiment. The 
purpose of varying the fluid temperature, T, was to 
change in a controlled form, the fluid absolute viscosi-
ty, µ. The three variables were selected so that the ori-
fice flow condition could span the laminar, the transient 
and turbulent regions. For these different flow condi-
tions through the orifice, Q, ∆P, x, and T, are measura-
ble. A and Dh can be calculated from x, based on the 
orifice geometry. Consequently, the discharge coeffi-
cient, Cd, and the Reynolds number, Re, can be deter-
mined from Eq. 16 and 17. 

Experimental results for the discharge coefficient 
for a specific sharp-edged spool orifice used in the 
study are given in Fig. 4. The data was obtained for the 
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fixed orifice of a PC valve manufactured by Brand Hy-
draulics Inc (model: EFC12-10-12). 
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Fig. 4: Comparison between the measured results and 

empirical model of the discharge coefficient for a 
typical sharp-edged spool orifice 

The discharge coefficient of a typical needle valve 
orifice was also experimentally determined (Fig. 5) for 
a ¾" needle valve manufactured by Deltrol Fluid Prod 
(Model: EN-35). 
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Fig. 5: Comparison between the measured results and 

empirical model of the discharge coefficient for a 
typical needle valve orifice 

Consider the application of the empirical model to 
these two experimental results. It is noted that the 
mathematical method introduced in Section 2.1 cannot 
be applied to these experimental data because the input 
parameters, Cd∞, δ, Rem, Cdm, and dm

C , cannot be ac-
curately measured from the plot of the experimental 
data. Therefore, an alternate technical method is intro-
duced to evaluate the various coefficients from experi-
mental data with normal scatter. 

This alternative method of obtaining model coeffi-
cients, Cd∞, a, b, δ1 and δ2, is nothing more than the 
direct application of curve fitting. In this case, the typi-
cal parameters, Cd∞, Cdm, δ, Rem, and dm

C  do not need 
to be known. The solution of Cd∞, a, b, δ1 and δ2 
should make the following objective function a mini-
mum. 
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where w i is the weight coefficient at Re i. Cdi is the ex-
perimental discharge coefficient at the point Re i. The 
optimal method of searching multi-parameters is suita-
ble for solving Cd∞, a, b, δ1 and δ2 from the direct ex-
perimental results. It must be recognized, however, that 
a significant amount of computation is necessary be-
cause the curve fit using Eq. 18 includes five unknown 
parameters. Models generated using the curve fitting 
method (as well as the predicted values) were also il-
lustrated in Fig. 4 and 5. 

3 Application in Fluid Power Simulations 

In section 2 of this paper, a method has been pre-
sented for developing equations for directly calculating 
Cd as a function of Re from experimental data which 
has been smoothed or with experimental scatter. How-
ever, to make use of the curve for modelling purposes, 
iterative procedures must be used because the Reynolds 
number is a function of flow rate. This can be observed 
from the equation relating flow to pressure drop across 
an orifice obtained by substituting Eq. 4 into the gen-
eral flow Eq. 1 which gives 
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and the equation for Reynolds number expressed as a 
function of flow rate by 
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Consider a rectangular orifice of width, w, and 
opening of a small distance, x, where w >> x. Re can be 
expressed as 

 2 ρ
µ
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QRe
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Substituting Eq. 21 into Eq. 19 gives 
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where 

 2X x P
ρ

= ∆  (23) 

An iterative solution to this equation is required for 
all combinations of the variable, X. This means that, for 
each time step in a simulation, a series of interactions 
must be implemented as follows. Given a specific value 
for X, the initial flow rate, Q0, is calculated using the 
discharge coefficient for large Reynolds numbers, Cd∞. 
This would be used to calculate an initial Reynolds 
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number, Re0 which would be used to calculate a new 
Cd, and subsequently, a new Q. The process is repeated 
until the difference in calculated flow rate between iter-
ations reaches some accepted value. 

Alternatively, for a specific value of X, it is possible 
to solve for Cd “off line” before the simulation is in 
fact started. This requires that the converged value of 
Cd be plotted as a function of some convenient varia-
ble. In this work, the initial Reynolds number Re0 is 
used. This essentially eliminates the need for time con-
suming iterative solutions during dynamic simulation. 
The process requires calculating Re0 off line (from X), 
using iterations to find the converged value for Cd and 
then plotting Cd vs. 0Re . To use this new plot, either 
a look-up table or a functional empirical relationship 
can be used. 

To demonstrate this, the off line process was ap-
plied to the sharp-edged orifice of Merritt (1967). This 
is shown in Fig. 6. It is noted worthy that the shape of 
the curve is similar to the original Cd vs. Re  curve. 
Thus Eq. 4 could be used to approximate the curve with 
reasonable accuracy. 
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Fig. 6: The modified discharge coefficient of the sharp-

edged orifice 

4 Conclusions 

This paper provides an empirical discharge coeffi-
cient model of flow rate through orifices. It can be ap-
plied to a variety of orifices with different geometries. 
Two approaches for solving the parameters in the em-
pirical model are also developed. They can be applied 
to the “smooth” representations of the discharge coeffi-
cient and to experimentally determined Cd (with scat-
ter) as a function of the Reynolds number. A simple 
method of using an off line value of Cd vs. the initial 
Reynolds numbers is introduced for use in modelling 
applications. This reduces the need for on line itera-
tions. As a final note, the closed form of discharge co-
efficient as a function of Reynolds number makes it 
possible to mathematically manipulate the orifice flow 
rate equation, such as differentiating the flow rate to 
obtain the analytical expression of the flow gain, Kq, 
and pressure sensitivity, Kc. This is extremely im-
portant in determining stability criterion using small 

signal analysis of hydraulic systems at small orifice 
openings. 
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Nomenclature 

A orifice cross-sectional area [m2] 
a, b coefficients in the empirical model [-] 
Au flow cross-sectional area at upstream [m2] 
Avc flow cross-sectional area at vena con-

tracta [m2] 
 

Cc area contraction coefficient [-] 
Cd discharge coefficient  

∞dC  turbulent discharge coefficient  
Cdm maximum of discharge coefficient  

dmC  tangent of discharge coefficient at 
mRe  

 

Cv velocity coefficient [-] 
Dh hydraulic diameter [m] 
∆P pressure drop cross orifice [Pa] 
Pd downstream pressure [Pa] 
Pu upstream pressure [Pa] 
Pvc pressure at vena contracta [Pa] 
Q volumetric flow rate [m3/s] 
Q0 initial volumetric flow rate calculated 

from the turbulent discharge coeffi-
cient, Cd 

[m3/s] 

Re Reynolds number [-] 
Rem Reynolds number at maximum value 

or a specific point 
[-] 

Re initial Reynolds number calculated 
from Q0 associated with the turbulent 
discharge coefficient, Cd∞. 

[-] 

S orifice perimeter [m] 
w rectangular orifice width [m] 
w i weight  [-] 
X variable associated with x, ∆P and ρ. [-] 
x orifice opening [m] 
δ laminar discharge coefficient [-] 
δ1, δ2 attenuation coefficients of the empiri-

cal model 
[-] 

µ absolute viscosity [Pas] 
ρ fluid density [kg/m³] 
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