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Abstract 

A new central differencing finite volume scheme is investigated for solution of unsteady hydraulic problems as wa-
ter hammer in pipe systems. Special time stepping procedure similar to Runge-Kutta algorithm is used to stabilize this 
second order scheme. It is monotonized by adding dissipative terms including second and fourth derivatives of the con-
served variables, with coefficients proportional to derivatives of pressure or volumetric flow, which keeps the second 
order of accuracy in smooth flow regions. The one-dimensional unsteady incompressible equations are solved for a wa-
ter hammer situation, and results are compared to existing analytical solutions. Results are also compared with numeri-
cal results of classical characteristic method, which is proved to be fairly accurate. The scheme could easily be general-
ized to two-dimensional case. Finally this procedure is used for analysis of the shut down procedure of a hydraulic sys-
tem. Components of the system are modeled and effects of important parameters on the performance are studied. 
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1 Introduction 

The very high-pressure pulses or shocks caused by 
rapid flow rate change in a pipe or a system of pipes 
(also called water hammer) could result in catastrophic 
breaking of the hydraulic transmission lines and may 
also destruct equipment and components installed on 
the line. The rapid change is a result of performance of 
pumps, turbines, and valves in the hydraulic system. 
Water hammer can reach pressure levels far exceeding 
the over pressure rating of our components. This phe-
nomenon is mostly a function of six parameters: length, 
diameter, velocity, the rapid change characteristic time, 
and the fluid density and sound speed. Of course most 
other system components and properties will also have 
contribution to this phenomenon. To protect a system 
from water hammer damage, three systems are usually 
used to eliminate or control the pressure rise. These are 
surge tanks, slowing operation and pressure snubbers. 
To estimate the amount of this pressure rise and effect 
of different devices in control of it, we may use numer-
ical simulation of the flow field and components.  

Many researchers have simulated this unsteady 
phenomenon. During 1920-1950 graphical methods 
were extensively used to solve the water hammer equa-  
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tions. In these methods, convective and friction terms 
are neglected, which may be quite effective. Also their 
application for a system of pipes is difficult. Streeter 
(1988) applied the characteristics method to the water 
hammer equations. Many people since then have used 
characteristics method with different sets of assump-
tions. Lai (1988) and Katopodes and Sterlkoff (1978) 
also used this method for their analysis. 

During 1980s many people used finite difference 
and finite volume formulations to simulate this flow 
pattern. The main advantages of these methods in the 
respect to classic method of characteristics (MOC) are 
higher accuracy, ease of usage especially if one needs 
to increase the spatial dimensions, ease of boundary 
condition application and easier simulation of other 
hydraulic components, although usually the computa-
tional speed of the MOC is higher. Some of these 
methods are: Garcia-Navaro (1986), Fennema and 
Chaudhry (1987), Rao and Latha (1992) and Nujic 
(1995) (using Lax-Friedrich's scheme), and Savic and 
Holly (1993) (using Godunov scheme). Leaf and Cha-
wala (1979) also presented the finite element solution 
of this problem. They showed that, other than simpler 
boundary conditions applications, this formulation has 
no advantage to other schemes. Recently shock-
capturing finite difference schemes, which are original-
ly applied to the gas dynamic Euler equations, are also 
used. These schemes apply an upwind difference for-
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mulation to the linearized Riemann problem. Finite 
volume formulation has certain advantages in simula-
tion of physical phenomena including discontinuities. 
Also, they could be easily applied to structured and 
unstructured grids and do not require coordinate trans-
formation. In hydraulic applications, it was first used 
to solve unsteady free surface problems. Bellos and 
Sakkas (1991), Zhao (1994), Garcia-Navaro et al 
(1994) and Mingham and Causon (1998) have pre-
sented some results in this regard. 

In gas dynamics community, these schemes have a 
longer history of usage, which returns to 1970s. Some 
of the most important results in this field are intro-
duced by Roe (1981) and Jameson and Turkel (1981), 
who used upwind and central differencing schemes, 
respectively. One of the main advantages of the finite 
volume schemes is that one virtually can incorporate 
any parts of the physics of the flow field that he wish-
es (like unsteady viscous momentum and heat transfer 
effects), but of course he should pay for this ease of 
usage, since he solves the equations in the physical 
space. 

In this paper, we have developed this central dif-
ferencing finite volume scheme for the hydraulic 
equations, especially for simulation of unsteady flow 
in a system of pipes. Most high order accurate FVM 
schemes suffer from non-monotonicity near disconti-
nuities like a pressure jump. This scheme also keeps 
the monotonicity of pressure distribution near the 
pressure jump. For this reason, this scheme is well suit-
ed for discontinuities simulation, like a very rapid 
pressure rise in a water hammer. The scheme is sec-
ond order accurate, except in the vicinity of disconti-
nuities, where it is of first order of accuracy. To stabi-
lize the scheme, based on Fourier analysis, a special 
multi-staging procedure is used which is very similar 
to the Runge-Kutta time integration. The second and 
fourth order derivatives of conserved variables with 
coefficients proportional to the second order deriva-
tives of pressure and flow rate are used as dissipative 
terms to make the solution near the discontinuities 
monotone. These will make this second order scheme 
only first order accurate in the non-smooth regions. 

Here, the governing equations are first introduced. 
Then fundamentals of central differencing finite vol-
ume schemes and how they are applied to the hydrau-
lic equations are presented, and after explaining how 
initial and boundary conditions are applied, and how 
we march through the time, two applications are 
shown. The first application is the solution of the hy-
draulic equations in a simple pipe, for which the exact 
solution is known, and the numerical results are com-
pared with the known results. The second application 
is a pipe with a control valve at one end, where its 
effect on the flow field in different situations will be 
studied and compared with other verified numerical 
schemes. At the end a hydraulic system, including a 
damping sphere with an on-off valve at one end, is 
simulated, and a parametric study on performance of 
the system is done, which has provide some valuable 
information for the system designer. 

2  Governing Equations 

The governing equations of the unsteady incom-
pressible flow inside a variable area pipe, i.e. the conti-
nuity and momentum equations, in the one-dimensional 
case are: 
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where U is a vector, which in comparison to gas dy-
namics equations is called the conservative variables 
vector, and F is also a vector, which is similarly called 
the flux vector. A is the cross sectional area, Q is the 
volumetric flow, g is the gravitational acceleration, h is 
the flow head, f is the friction factor, D is the diameter 
and aL is the sound speed in the liquid. In this approx-
imation (Streeter, 1988), incompressibility means that 
density is assumed constant, while we allow to the 
sound speed in the fluid to be finite. 

3 Central Difference Finite Volume For-
mulation 

During the last two decades, Euler and Navier-
Stokes equations have been the most popular equations 
for aerodynamic and gas dynamic analysis. Although 
the Euler equations use the inviscid flow assumption, 
still one may capture numerically the shock waves and 
respectively, most other flow properties correctly. 
Therefore, many different methods have been suggest-
ed for solution of these equations. The original finite 
difference methods suggested for solution of these 
equations were either inaccurate or suffered from lots 
of computations. 

In 1980's two new families of finite volume meth-
ods were developed, both of which are still in common 
use. The first family, which is already applied to the 
hydraulics equations, are the upwind schemes. The sec-
ond one is the central differencing scheme, and in this 
paper it is applied to the hydraulic equations. General-
ly, in finite volume formulation, one integrates the gov-
erning equations on each individual cell of the flow 
field. Based on our governing equation, our cells are 
cylindrical, with only one independent space variable, 
x. Using the Gauss theorem, the volume integral of the 
flux term is changed to a surface integral: 
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where Ω is the control volume with boundary surface 
∂Ω, dΩ is the control volume differential element, with 
differential surface ds. Application of this equation to 
each cell (semi-discretization) produces an ordinary 
differential equation, which could be written in this 
form: 



A Finite Volume Central Differencing Scheme for Simulation of the Shut Down Procedure of a Hydraulic System 

International Journal of Fluid Power 3 (2002) No.2 pp. 17-27 19 

 i i i
faces

of cell

( ) ( ) 0
i

d VU Fs S
dt

+ + =∑  (4) 

where V i is the volume of the ith cell, which is not a 
function of time.
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control volume, and in our one dimensional approxima-
tion is equal to  
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Value of F at i+1/2 is the average of values of F in 
cells i and i+1. This will assure second order of accura-
cy, of course if the grid shape is smooth enough. It is 
well known that this central differencing scheme is 
unstable, and that because of this second order of accu-
racy, the solution is not smooth enough close to the 
flow discontinuities. Many tools are developed to re-
move these deficiencies. One of them is using second 
and fourth order derivatives of flow variables as dissi-
pative terms, which are added as (d i+1/2 - d i-1/2) to the 
left hand side of Eq. 4, where: 
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The second order dissipative terms added to the 
governing equations in the neighborhood of flow dis-
continuities will remove all oscillations and under and 
overshoots. These terms have coefficients proportional 
to some flow gradient, which are of second order of 
magnitude in smooth flow regions and are of first order 
of magnitude in the non-smooth regions. One may de-
fine these coefficients using second order difference 
formula for the conservative variable U, or some other 
relevant parameter like pressure: 
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where typical values for k(2) and k(4)are respectively 1/4 
and 1/256. The fourth order dissipative terms should be 
turned off close to the discontinuities, which is 
achieved by the above definitions. In the smooth re-
gions the accuracy of solution is second order, and the 
dissipative terms are of higher order, but close to the 
discontinuities one will lose high order of accuracy to 
gain monotonicity of the solution. 

4 The Multi-Stage Time-Stepping And 
Numerical Stability 

Since the procedure used here is explicit, the 
Courant number υ= aLΔt/Δx is controlled to assure the 
stability. Here aL is the sound speed, Δx is the length of 
each cell (Δx=L/(aLN)), where L is the length of the 
flow field and N is the number of cells. The central 
differencing scheme is unstable for all values of υ. One 
may show that using a special time integration proce-
dure could stabilize this scheme (Jameson, 1981). This 
procedure is called multi-staging. To see this, one may 
look at a model partial differential equation like: 
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defined on a uniform grid with spacing Δx . If x∂ and 

xx∂  are discretized, one finds: 
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Using Fourier transform, one finds a simple ODE: 
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where λ is a complex number (Jameson, 1981). Maxi-
mum allowable value of the imaginary part of λΔt de-
termines the stability margin. The time integration pro-
cedure also affects the Fourier footprints, and the sta-
bility margin. One form of this procedure is the four-
stage Runge-Kutta integration procedure: 
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Here, (res) is the residual of computation, which is 
equal to tU ∂∂ / . Different values of α i will provide 
different properties for convergence. The standard 
Runge-Kutta has the following coefficients: 
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The Courant number corresponding to these coeffi-
cients is 22 . Addition of dissipative terms will not 
deteriorate this stability margin. 

Initial and Boundary Conditions 

Initial and boundary conditions are very dependent 
on the system components. For a simple pipe, the ener-
gy equation is used to find the initial pressure and flow. 
The initial flow Q0, and the pressure loss R, is uniform 
through the pipe: 
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where h res is the upstream reservoir head, CV is the 
discharge coefficient, f is the pipe friction factor, L is 
the pipe length and D is the pipe diameter (Streeter, 
1981). 

For boundary conditions, we use standard character-
istics method, which results in the following relations 
(Streeter, 1981): 
 PP BQCh −=  (18) 
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5 Results 

To verify accuracy of the procedure introduced for 
solution of hydraulic problems, i.e. simulation of pres-
sure waves in system of pipes, we analyze a simple 
pipe using this procedure and compare our results with 
results of the classical method of characteristics 
(MOC). Also we will add a valve to the downstream 
end of this system and will study effects of closing and 
opening the valve on the flow field. At the end, we will 
apply our scheme to a real engineering problem, and 
will accomplish a parameter study, which is very useful 
in the design procedure. 

5.1 Rapid shut down procedure in a simple pipe 

Consider a simple pipe placed between a reservoir 
and an on-off valve, which is initially closed, and is 
opened at time t = 0. The length to diameter ratio is 10. 
Of course the one-dimensional approximation is more 
accurate as the ratio of length to diameter increases. A 
ratio of 10 is really very small, but still it is acceptable 
(One of the advantages of FVM is that you could easily 
generalize it to two or three-dimensional approxima-
tion, then there will be no lower limit for this ratio. 
Here it does not worth to do it.). We have used 80 simi-
lar cylindrical cells to solve this problem. The sound 
speed is 1200 m/s. One uses the maximum stable 
Courant number for this calculation, which corresponds 
to time step equal to 0.01 sec. Friction factor is as-
sumed to be 0.022. Figure 1 shows results for pressure 
variations at the downstream end of the pipe. The cen-
tral differencing and characteristic methods solutions 
are compared. Figure 2 compares the same methods for 
the velocity variations. Note that the characteristic 

method produces almost the exact solution. Results 
agree very well, which shows the consistency and sta-
bility of the FVM scheme. 

 
Fig. 1a: Pressure versus time at the end of the pipe, central 

differencing method 

 
Fig. 1b: Pressure versus time at the end of the pipe, charac-

teristic method 

We may use our simulation for a parameter study to 
see the effect of each parameter on performance of the 
pipe system. Figure 3 shows effect of five-times in-
crease of the pipe length, every other thing is kept con-
stant. Again pressure variations for both methods of 
FVM (central differencing) and characteristics method 
are compared and agree with each other very well. As 
expected, the most noticeable change is decrease of the 
frequency of variations by a factor of five, other pa-
rameters are not changed significantly. Similarly, Fig. 4 
shows the same effects for diameter increase. As we 
expect, the diameter effect on the performance and the 
wave pattern is very small, for obvious reasons. 
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Fig. 2a: Velocity versus time at the end of the pipe, central 

differencing method 

 
Fig. 2b: Velocity versus time at the end of the pipe, charac-

teristic method 

 
Fig. 3a: Pipe length increase effect, FVM 

 
Fig. 3b: Pipe length increase effect, characteristic method 

 
Fig. 4a: Pipe diameter increase effect, FVM 

 
Fig. 4b: Pipe diameter increase effect, characteristic meth-

od 
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Fig. 5a: Valve closing procedure for T=0.005 s, FVM 

 
Fig. 5b: Valve closing procedure for T=0.005 s, character-

istic method 

 
Fig.6a: Valve closing procedure for T=0.003 s, FVM 

 
Fig.6b: Valve closing procedure for T=0.003 s, character-

istic method 

Now we simulate closing of a valve at the end of a 
pipe. We assume the valve closing procedure has a 
linear form, i.e. CV = (1−t/T)A, where T is the total time 
of closing the valve. The valve is completely open at t 
= 0. Again pressure variations at the downstream end 
of the pipe are computed by both FVM and characteris-
tic methods. Figures 5 and 6 show these results for re-
spectively T = 0.005 and 0.003 seconds. As one may 
observe, the amplitude and frequency is simulated very 
well. We have done a grid size study, which shows if 
we increase the number of cells, we could get even 
better agreement between them. 

5.2 A Hydraulic System 

The hydraulic system studied here is shown sche-
matically in Fig. 7a. This system includes four main 
components: a pipe, a damping sphere, a connection 
pipe and a closing valve. The system is used as part of 
another fairly complex hydraulic system, and should 
terminate the liquid flow in a fraction of time. Connec-
tion of the sphere and the connection pipe is realized 
via a diaphragm, which separates fluid and air, and the 
sphere is initially filled by air. At the start, the valve is 
open and flow goes through the pipe to the exit point. 
At time t = 0 the valve is closed pyrotechnically by 
receiving an electrical signal and the diaphragm is bro-
ken, which allows liquid to enter to the sphere, and 
absorb part of the pressure pulse. The total closing time 
T is 0.003 seconds. We would like to investigate the 
effect of different parameters on the performance of the 
system, especially on the pressure history, since pres-
sure overshoots may severely damage the flow line. 
The closing valve is an on-off type, and we assume the 
valve closing procedure has a linear form. To derive the 
damping sphere dynamic equation, one may start with 
the continuity equation, with the perfect gas assump-
tion: 
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where M is mass of the gas in the sphere. For an isen-
tropic process, since we have p/pγ=const. or 
ρ=ρ0(p/p0)1/γ, therefore: 
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At the same time, since the liquid mass in the 
sphere is ML = ρLVL, we have  
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Since variations of liquid volume are negligible, the 
second term in this equation is ignored. Using the defi-
nition of the bulk modulus of compressibility, the dif-
ferentiation of liquid density is replaced by the pressure 
variations:  
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where aL is the speed of sound wave in the liquid. 
Combination of Eq. 22 with 24 results in: 
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Note that the right hand side is the mass flow into 
the sphere, so finally we will have: 
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where p is the pressure inside the sphere, V0 is the 
sphere volume, V is volume of the gas contained in the 
sphere, with density ρg, specific heat ratio γ. The fluid 
mass flow into the sphere is: 

 )()(2 pp ppSignppgAm D −−= µ  (27) 

where pp is the upstream pressure of the inlet dia-
phragm of the sphere, μ is the mass flow coefficient 
(around 0.6), and AD is the inlet area. The boundary 
condition upstream of the main pipeline is assumed to 
be a constant pressure (head) reservoir, similar to the 
previous examples. 

 

Main Pipe 

Pressure 
Sensor 

Damping 
Sphere 

Closing Valve 

 
Fig. 7a: Schematic of the hydraulic system 

 
Fig. 7b: Measured pressure variation in the damping sphere 

p [bar] 

time [ms] 
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To verify accuracy of the simulation of this system, 
experimental results showing pressure variations for 
typical shut down procedure is used. The experimental 
results are achieved in the test of another fairly com-
plex turbopump hydraulic system, which includes the 
system shown in Fig. 7a in its pumps downstream path. 
The whole system is not simulated here. The fluid in 
the line is nitric acid, with specific gravity equal to 
1.55, viscosity equal to 1.45 (centipoise), and tempera-
ture equal to 297 K. Length and diameter of the main 
pipe are respectively 362.5 and 48 mm, the connection 
pipe length and diameter are respectively 55 and 32 
mm, and the radius of the damping sphere is 65 mm. 
The pipe friction factor is assumed to be 0.022. The 
stagnation pressure of the pump is 90 bar, and the mass 
flow is 77 kg/s. In the shut down process, the turbine 
gas generator is instantly turned down, but the high 
speed and inertia of the turbopump, tends to keep the 
pressure rise very high. At the same time, the valves in 
the downstream path are closed, the high pressure gen-
erated in this way breaks the inlet diaphragm of the 
damping sphere (at about 150 bar), and the damping 
sphere and connection pipe act as a damper to absorb 
part of the water hammer effect on the pressure rise. 
Upstream of the pump, a constant pressure reservoir is 
used. Other details of system are believed to have neg-
ligible effects on the dynamic performance. The 
measurment was achieved by medium frequency pres-
sure sensors, the data acquisition system used standard 
high speed I/O cards with a minimum sampling rate of 
400 Hz for each channel. 

Pressure in the damping sphere (Fig. 7b) and many 
other locations were measured. These experimental 
results show an overshoot of about 200 bar, oscillating 
with a frequency of 20 Hz, and damping to 50 % of the 
initial amplitude in 0.3 seconds. Results are compared 
with this simulation of the system. To avoid effects of 
system components on our analysis, their effects were 
considered in the boundary conditions. The simulation 
was able to predict the overshoot pressure very well, 
but the damping coefficient was over predicted. This is 
mostly because we have not simulated precisely the 
upstream of this system, which results in unaccurate 
boundary conditions. Still it is acceptable as a compara-
tive tool to show effects of different parameters on the 
system performance. 

A set of parametric studies were performed to ob-
serve and measure effects of the different  parameters 
on the performance. Summary of these studies follows: 

(1) Radius of the damping sphere: For R = 0.068, 
0.088 and 0.1 m pressure variations are computed. 
These results are shown in Fig. 8. As one sees, about 
30 % increase in the diameter, which is equivalent to 
100 % increase of the volume of the damping sphere, 
may decrease the pressure peak by 20 bar. 

 
Fig. 8a: Pressure (P) versus time in damper for R=0.068 m 

 
Fig. 8b: Pressure (P) versus time in damper for R=0.088 m 

 
Fig. 8c: Pressure (p) versus time in damper for R=0.1 m 
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(2) Diameter of the connection pipe: For only 
20 % increase in the connection pipe diameter, varia-
tions in p are not sensible, but the effect on pp is con-
siderable and is shown in Fig. 9. This means that the 
connection pipe diameter only affects very weakly the 
discharge to the damping sphere, therefore, its diameter 
is mostly effective on the pressure history inside itself. 

 
Fig. 9: Pressure (p) versus time in damper for 20% in-

crease of damper diameter 

(3) Total closing time of the valve (T): For T = 
0.001, 0.003 and 0.006 s, history of p and pp are com-
puted and result are shown in Fig. 10a, b, c and 11a, b, 
c. As one expects, this parameter is the most effective 
one. An increase of 0.002 seconds has decreased the 
pressure peak from 200 bar to 175 bar, and next in-
crease by 0.003 seconds, again has decreased it to 145 
bar. This change also decreases the pressures variation 
amplitudes as well, which is generally desirable. 

 
Fig. 10a: Pressure (p) versus time in damper for total valve 

closing time of T = 0.001 s 

 
Fig. 10b: Pressure (p) versus time in damper for total valve 

closing time of T = 0.003 s 

 
Fig. 10c: Pressure (p) versus time in damper for total valve 

closing time of T = 0.006 s 

 
Fig. 11a: Pressure variations (pp) versus time at the end of 

the pipe for valve closing time of T = 0.001 s 
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Fig. 11b: Pressure variations (pp) versus time at the end of 

the pipe for valve closing time of T = 0.003 s 

 
Fig. 11c: Pressure variations (pp) versus time at the end of 

the pipe for valve closing time of T = 0.006 s 

 
Fig. 12: Pressure variations (pp) by increase sphere inlet 

area by 500% 

(4) Sphere inlet area: Its increase by 500% was 
studied and results are shown in Fig. 12. This figure 
shows that this variation makes the sphere less effective 

in absorbing the pressure pulse, and decreases its surg-
ing capacity. 

The following results were obtained: 
• Only partial increase in the volume of the damping 

sphere is effective in the system performance. 
• Diameter of the connection pipe is fairly ineffec-

tive on the performance. 
• Increase of T considerably decreases the overshoot 

pressure. 
• Increase of inlet area of the damping sphere, in-

creases the undesirable pressure peak. 

6 Summary and Conclusions 

A new central differencing finite volume formula-
tion for numerical solution of the hydraulic equations is 
presented. This scheme has been in use for solution of 
the Euler equations for many years. Advantages of this 
method to the other finite volume schemes are its speed 
and accuracy, especially in multi-dimensional prob-
lems. The scheme is formulated and is applied to solve 
a few simple problems to show its applicability. Results 
are also compared to known results to show its accura-
cy. The method is also used for analysis of a system of 
pipes and valves in a rather complex hydraulic system. 
A parametric study is done, which helps in optimiza-
tion of the system design. Extending this analysis 
method to compound pipeline systems, and to more 
complex hydraulic systems will be investigated in the 
next steps. 

Nomenclature 

A Cross-sectional area of the pipe [m2] 
aL Sound wave speed in the liquid [m/s] 
B Pipe constant aL/gA [s/m2] 
Cp C+ characteristic value [m] 
CV Discharge coefficient [m2] 
D Diameter [m] 
d i+1/2 Numerical derivative operator [-] 
f Darcy-Weisbach friction factor [-] 
g Acceleration due to gravity [m/s2] 
h Piezometric head [m] 
h0 Initial piezometric Head [m] 
h res Head of uniform flow [m] 
i Cell number [-] 
k(2) Constant parameter [-] 
k(4) Constant parameter [-] 
M Mass of the gas part in the sphere [kg] 
ML Mass of the liquid part [-] 
m  Mass flow [kg/s] 
N Number of nodes [-] 
p, pp Pressure, upstream of the damper [N/m2] 
Q Volumetric flow [m3/s] 
QP Volumetric flow at node p [m3/s] 
Q0 Initial volumetric flow [m3/s] 
R Pressure loss [N/m2] 
R Radius [m] 
S Cell face [m2] 
S i Source terms [-] 
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Sign Sign function [-] 
t, Δt Time, and time step [s] 
T Total time for closing the valve [s] 
U Conservative variable vector [-] 
U


 Fourier transform of U [-] 
V0, V The sphere volume, and the gas vol-

ume 
[m3] 

α Runge-Kutta integration coefficient [-] 
ε2, ε4 Coefficient of the dissipative terms [-] 
μ Mass flow coefficient [-] 
γ Specific heat ratio [-] 
ρL Density of the liquid part [kg/m3] 
ρg Density of the gas in the damper [kg/m3] 
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