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Abstract 

In this paper the stability of pressure relief valves and pressure reducers is analysed. MacCloy and Merritt have pre-
viously proven that the stability analysis of these two components can be viewed with the same calculation. The purpose 
of this paper is to extend their results to other pressure control components and to add some other views of stability 
analysis using a simplification of the dynamics linked to the generally small volume of the counter reaction chamber. 
This simplification leads to a third order transfer function, which is easier to analyse. The static behaviour of both the 
pressure relief valve and the pressure-reducing valve is explained using this transfer function. A proof is given that the 
eigenvalues are heavily coupled using the roots calculation of a third order polynomial function. The analysis shows that 
the inner mechanical control loop of these two components can be viewed as a PD force controller. Root loci are used to 
understand the stability influences of certain design parameters. Other basic rules are also established. 

Keywords: pressure relief valve, pressure reducing valve, stability problems, force control, pressure components 
 

1 Introduction 

Pressure control components such as relief and re-
ducing valves play an essential role in many hydraulic 
circuits. In spite of their simple structure, such compo-
nents are rather unstable and often excite vibrations that 
will be the cause of noise, disturbance of the normal 
operation and damage. Even today the development and 
optimisation of pressure components is a complex 
problem that requires a relatively large amount of ex-
perimental testing. Some of the reasons for this are the 
various flow conditions that the variable and fixed 
orifices experience, the wide range of applications 
regarding the controlled volumes and pressure levels, 
the design that results sometimes in small moving spool 
with classically low damping effect, the non-linearities 
of the system and more. Analytical analysis when it is 
possible to carry out, is important since it can help 
understand the influence of certain parameters directly 
on the dynamic behaviour and therefore reduce the 
development risks by a direct sizing validated using 
non-linear simulations. Even if linear models are based 
on sometimes crude assumptions, they are relevant in 
most applications of a first level of the dynamic behav-
iour. In this paper such an analysis is carried out and 
has shown promising results. Another interesting result 
is that either the pressure control component is a 
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pressure reducing valve, a pressure relief valve, a check 
valve or a pressure servovalve, the stability analysis can 
be done in the same way using a third order transfer 
function. 

Pressure reducers and pressure limiters are all pres-
sure components. Generally speaking, they control with 
the help of spool equilibrium, the outlet pressure versus 
a pilot part which can be actuated mechanically (a 
spring preload), electrically (a direct action) or pilot 
operated from a smaller hydraulic valve. Merritt (1967) 
has presented the technologies of pressure components 
schematically by two sketches containing the same 
internal parts as presented in figures 1 and 2. 

 
Fig. 1: Pressure relief valve 
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There exist fundamental differences between pres-
sure limiters and pressure reducers. The pressure limiter 
is a component in parallel with the main circuit and it is 
normally closed. Conversely, the pressure reducer is in 
series with the main circuit and is normally open. A 
flow rate always exists in these components.  

 
Fig. 2: Pressure reducing valve 

 
Fig. 3: Pressure relief valve and reducing valve in 

AMESim 

As can be seen on Fig. 1 and 2, the systems are 
mainly the same. Only the controlled pressure changes. 
Pressure control valves employ feedback and may be 
properly regarded as a servo control loop: the con-

trolled pressure is sensed on the spool valve and com-
pared to a spring preload (in Fig. 1 and 2). 

 
A non-linear model was developed first to compare 

the dynamics of these two systems. The models within 
AMESim are shown Fig. 3. 

The two systems: the pressure relief valve and the 
reducing valve have the same parameters values. The 
regulation has been defined to be equal for the pressure 
equilibrium point to:  

 cmd
util

2 2S

80 N 10.18 bar
π1 cm
4

FP
A

= = =  (1) 

The controlled pressure Pu for the pressure limiter 
is shown Fig. 4 and the controlled pressure in the re-
ducing valve is shown Fig. 5. 

 
Fig. 4: Relief valve controlled volume pressure 

For the relief valve, the input is a sudden closure of 
the main circuit restriction at time 0.05 s leading to a 
crossing flow rate of 1 l/min and a piloted force input 
of 10 N at time 0.125 s. 
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Fig. 5: Reducing valve controlled volume pressure 

Table 1: Eigenvalues for both pressure components 
Real part Imaginary 

part 
Damping 
ratio 

Frequency 

-133.09608 
-11.09608 
-117.05583 
-117.05583 
-12329.30425 
-12368.82825 
-420957.98590 
-429491.85850 

-4804.71347 
4804.71347 
4833.16874 
-4833.16874 

0.02769 
0.02769 
0.02421 
0.02421 
1.00000 
1.00000 
1.00000 
1.00000 

764.98724 
764.98724 
769.44827 
769.44827 
1962.26972 
1968.56016 
66997.54429 
68355.75230 

 
For the pressure reducer, the input is a sudden flow 

rate consumption of 1 l/min in the downstream circuit 
at time 0.05 s and a piloted force input of 10 N at time 
0.125 s. 

From the dynamics point of view, the responses for 
perturbations look the same as expected from Merritt 
(1967) and MacCloy (1980) results. The dynamics for 
both the systems are the same around the same operat-
ing points, here at time 0.1 sec corresponding to a 
crossing flow rate of 1 l/min for both components. The 
eigenvalues of both systems are very similar (see Ta-
ble 1). 

This linear analysis was done numerically, now 
starting from the non-linear model, the equations of the 
linear models of both the pressure components will be 
obtained and their block diagrams deduced. A simplifi-
cation is carried out to obtain a third order characteris-
tic equation of the states able to be analysed in “simple” 
ways. Some standard linear analyses are carried out on 
the simple linear model to have a look on the stability 
of these pressure control components. However the 
stability is not the only objective. It will be proven that 
the simplified linear model can also be applied to check 
valves and pressure servo valves. 

2 Equations of Motion and Linearisation 

To understand the dynamic behaviour and the sta-
bility of a pressure limiter or a pressure reducer, a line-
ar analysis of these two components should be done. To 
do so the equations of motion for first the pressure 
limiter will be established starting from the bond graph 
of the pressure limiter shown in Fig. 1. 
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Fig. 6: Pressure relief valve bond graph 

This technique is now well introduced and has been 
used by Lebrun (1987), Margolis (1997), Matsubara 
(2001) and Suzuki (1999) to represent standard hydrau-
lic components. This technique is very useful when a 
component uses different Physics domains like electri-
cal, magnetic, hydraulic and mechanical domain such as 
piloted pressure control components. Starting from this 
bond graph, the non-linear motion equations are ob-
tained. 
 s cmd spring s jet spool back( )M x F K x F A P= − + − +  (2a) 

 s q s util
2( )Q C A x P
ρ

=  (2b) 

 )PP(ACQ backutilorifqorif
2

−=
ρ

 (2c) 

 ∫ −= dt)xAQ(KP sspoolorifhbackback   (2d) 

 ∫ +−−= dt)QQQ(KP loadsorifhutilutil  (2e) 

The Bernoulli non-linear equation of the flow rate 
crossing the component when it is opened should be 
linearised using independent variables. Generally 
speaking these independent variables are the state vari-
ables. Considering xs and ∆P as the only two independ-
ent variables, the previous equation of Qs can be rewrit-
ten as: 

 *** P
P

xDCxPDCQ ∆
∆

+∆=
0

0
ssqs

0
sqs

2

1π2π
ρρ

 (3) 

with the assumption that the flow is only turbulent and 
thus the discharge coefficient Cq is constant. xs

0 and 
∆P0 are the equilibrium points for the linearisation. In 
order to simplify the presentation, the pressure relief 
valve is considered to be built with an annular cross 
section. For simplicity the previous linearised equation 
can be expressed more straightforward as: 

 *** PGxGQ ∆+= ΔPsxs  (4) 

Gx and G∆P are respectively called the flow gain 
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and the flow-pressure gain. In this case, ∆P only equals 
to the utilisation pressure Pu. 

When the valve is opened a certain amount of flow 
crosses the valve. This flow rate generates a force 
called jet or flow force which tends to always close the 
spool valve. The non-linear equation giving the flow 
force is: 

 
)x(AC

QF
sq

2
s

jet
cosαρ

=  (5) 

with cosα the cosine of the jet angle coming from 
the angle of the flow direction axis and the spool axis. 
Note that in this equation only the quasi-static flow 
force is kept. MacCloy (1980) used the transient flow 
forces in his spool equilibrium. From MacCloy (1980) 
and Baudry (2000), the contribution of the transient 
flow forces can have adverse contribution depending if 
the jet enters or exits from the valve. However, from 
Mare (1993), its contribution is generally negligible. 
Using the Bernoulli's non-linear equation of the flow 
rate, the linearised expression of the quasi-static flow 
force can be given by: 

 *** PxDCxPDCF ∆+∆= 0
ssqs

0
sqjet cosπ2cosπ2 αα  (6) 

which can be rewritten more straightforward in: 

 *** PAxKF ∆+= jetsjetjet  (7) 

The term function of xs* corresponds to a relation 
between a force and a displacement. This term can be 
considered as stiffness and thus plays the same role as 
the spring. The term function of ∆P* corresponds to a 
relation between a force and a pressure. Thus this term 
can be considered as an equivalent area. 

The remaining problem is to know the flow charac-
teristic in the fixed orifice (the counter reaction re-
striction). The flow characteristic is mainly laminar due 
to the very low-pressure drop, and consequently the 
small velocity in the restriction. The discharge coeffi-
cient Cq is a function of the flow number λ as given by 
MacCloy (1980). This curve is coded in AMESim with: 

 







=

crit
qmaxq

2tanh
λ
λCC  (8) 

The laminar part corresponds to a linear function 
between the discharge coefficient Cq and the flow 
number λ: 

 
0crit

qmax
*
q λ

λ2 tanh
=









∂
∂

=
λ

λ
CC  (9a) 

 ** C
λ

λ
λ

crit

qmax2
=  (9b) 

With the flow number definition, the Bernoulli 
equation in the fixed restriction becomes: 

 ( )
orif

bu
bur

h

crit

qmax
orif

22
R

PPPPAdC
Q −

=−=
ρνλ

 (10) 

Combining all equations and expressing them in a 

block diagram lead to Fig. 7. 
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Fig. 7: Pressure relief valve block diagram 

This block diagram represents almost the same 
block diagram obtained by Merritt (1967), MacCloy 
(1980) and Manring (1997) except that it is not as com-
pact. In order to compare the dynamics of a pressure 
relief valve and the ones of a pressure-reducing valve, 
the motion equation of the pressure-reducing valve 
should be calculated. Once again a bond graph is used 
(Fig. 8). 
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Fig. 8: Bond graph of the pressure reducing valve 

From this bond graph, the non-linear dynamic equa-
tions of the pressure reducer are obtained as: 
 backspooljetsspringcmds PAFxKFxM −−−=  (11a) 

 servo q s supply util
2( ) ( )Q C A x P P
ρ

= −  (11b) 

 orif q orif util back
2 ( )Q C A P P
ρ

= −  (11c) 

 back hback orif spool s( )P K Q A x dt= +∫   (11d) 

 util hutil orif servo load( )P K Q Q Q dt= − + −∫  (11e) 

Using the same techniques as before the governing 
linear equations are combined into the block diagram 
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Fig. 9. 
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Fig. 9: Pressure reducer block diagram 

The differences between the two components are 
coming from the flow rate crossing the variable re-
striction and the pressure counter reaction. This is also 
shown on the two bond graphs Fig. 6 and 8. They are 
exactly the same except for the power directions of 
some bonds: the pressure counter reaction and the flow 
rate in the valve. From a bond graph point of view, this 
means that the dynamics of the linear model obtained 
from these two bond graphs are the same. From a trans-
fer function point of view, this means that the denomi-
nators are the same but the numerators can be different. 

3 Simplification 

The analysis of the eigenvalues in Table 1 shows a 
high dynamic. This high dynamic is linked to the vol-
ume of the counter reaction chamber. MacCloy (1980) 
and Merritt (1967) have kept this high dynamic for 
their analysis. However and as mentioned by Merritt 
(1967), the hydraulic stiffness of the counter reaction 
chamber is generally very high regarding the hydraulic 
stiffness of the controlled volume and the equivalent 
hydraulic stiffness of the spring. Thus it is possible to 
simplify this dynamic. This has been done by Alirand 
(2001) using a bond graph technique and also Handroos 
(1990) and Maiti (1999). For simplicity, this comes 
from the fact that, below a limit frequency, the counter 
reaction pressure does not vary except when Pu varies 
and the flow rate crossing the fixed restriction is exactly 
the flow rate induced by the spool motion. That is to 
say:  
 ssorif xAQ =  (12) 

Now using the equation of the relief valve and mod-
ifying the causality of the flow rate equation (Eq. 10) in 
the counter reaction restriction into 
 b u o o u o s sP P R Q P R A x= − = −   (13) 

and replacing the counter reaction pressure Pb into the 
spool equilibrium equation leads to: 
 s cmd s s j s u s o s( ) ( )M x F K x F A P A R x= − + − + −   (14) 

This modification in the state equations eliminates 
the pressure Pb. The pressure senses on the spool end 
area is now the controlled pressure Pu. Thus the pres-
sure Pu counter reacts on the spool via the spool area 
but also counter reacts by the equivalent area of the jet 
force effect. These two contributions are in the opposite 
direction for the two pressure valves. It should be noted 
here that the contribution of the equivalent jet force 
section could be neglected versus the spool section. The 
comparison has to be done between π·Ds

2/4 and 
2·Cq·π·Ds·cosα·xs. This equivalent section can be 
removed from the two previous block diagrams. The 
term Rport corresponding to a viscous friction has been 
also removed because it is very small regarding the 
orifice damping effect (usually). 

The explanations given here come from a more gen-
eral bond graph automatic simplification technique 
based on stored and dissipated energy in elements in-
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troduced by Rosenberg (1988) and Louca (1997). The 
simplified bond graph of the pressure relief valve is 
shown in Fig. 10 since it will be used later on for the 
check valve.  
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Fig. 10: Pressure relief valve simplified bond graph 

Adding the two spring effects and reorganizing the 
pressure relief valve block diagram leads to Fig. 11. 
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Fig. 11: Pressure relief valve simplified block diagram 

This block diagram can be reorganized once more 
in a simpler way to build transfer functions and has a 
look on the control loop. The final block diagram is the 
one shown in Fig. 12. 
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Fig. 12: Pressure relief valve simplified block diagram 

Using the same technique for the pressure reducer 
leads to the block diagram Fig. 13. 

Fcmd
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xs Fach

+
-

+js
2
s

2

1
KKsRAsM o +++

Qload

-

huΔP

hus

KGs
KA

+

 
Fig. 13: Pressure reducing valve simplified block diagram 

In order to validate the simplification, a linear mod-
el has been built within AMESim (Fig. 14) and com-
pared to the simulation results of the previous non-
linear model of the pressure relief valve. 
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Fig. 14: Relief valve – non-linear and linear model 

 
 
The eigenvalues for both the models are given in 

Table 2. 
As expected, they are almost the same and the high 

frequency mode has been removed from the linear 
model. The time response of the linear model and the 
non-linear model are thus expected to be the same (see 
Fig. 15). The input is a pure step of force of 10 N and 
not a filtered step input in order to show some oscilla-
tions. 

Table 2: Eigenvalues - non linear and linear model 
Real part Imaginary 

part 
Damping 
ratio 

Frequency 

-116.26043 
-116.26043 
-140.91091 
-140.91091 
-12056.87028 
-12364.85228 
-421136.16820 

-4834.56778 
4834.56778 
-4887.54039 
4887.54039 

0.02404 
0.02404 
0.02882 
0.02882 
1.00000 
1.00000 
1.00000 

769.66781 
769.66781 
778.19943 
778.19943 
1918.91050 
1967.92736 
67025.90288 

 
These results validate the simplification: the elimi-

nation of the high frequency mode does not affect the 
low modes and the time response. The differences be-
tween the oscillations (Fig. 15) are due to the fact that 
since the controlled pressure increases, the spool is  
 

 
less opened. The equilibrium point is modified and thus 
the modes. This validation has been carried out on the 
relief valve but can be done on the pressure reducer. 

 
Fig. 15: Comparison linear and non-linear model 
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4 Analysis 

From the block diagrams Fig. 12 and 13, the same 
transfer function of the controlled pressure is obtained: 

( ) ( )
( ) ( )xshusjso

2
s

2
huΔP

loadjso
2
s

2
hucmdxshu

u )( GsAKAKKsRAsMKGs
QKKsRAsMKFGsAK

P
++++++

+++±+
= (15) 

From this transfer function it is clear now that both 
systems are identical from the dynamics point of view. 
Only the numerators are different and this, depending 
on the system: a pressure relief valve (+Q load) or a pres-
surereducing valve (-Q load). 

It is also clear from Fig. 12 and 13 that these two 
systems contain a mechanical inner loop (i.e. a feed-
back) and thus should be regarded as mentioned by 
Merritt (1967) as servo control systems. 

An interesting aspect of a control loop is its static 
error. For both components, the previous transfer func-
tion gives: 

 

x

jsΔP
s

0cmd

u

)(
1

G
KKG

AF
P

s
+

+
=

=

 (16) 

This clearly shows a static error due to the “ficti-
tious” leakage G∆P, the spring stiffness and the flow 
forces effect. This static error can also be viewed from 
the valve flow rate input or output depending on the 
type of valve. It corresponds to the standard character-
istic curves normally given by any valve manufacturers. 

From a control point of view, the load flow rate is a 
perturbation. The system should at least be independent 
in steady state regarding this perturbation. However a 
classical characteristic of a pressure limiter is the one 
shown Fig. 16. 

 
Fig. 16: Relief valve characteristic curve (from SUN) 

This characteristic should be as flat as possible. 
When the system opens and whatever the flow rate 
through it is, the controlled pressure should be the same 
and be given by the pilot. Such a resulting curve can be 
explained by the spring and flow force effects. The 
characteristic Fig. 16 can be viewed as the transfer 
function between the input flow rate Q load and the con-
trolled pressure Pu. The previous transfer function 
leads to 

 
ΔP

js

xs0load

util 1

G
KK

GAQ
P

s +
+

=
=

 (17) 

Without spring and flow forces, the static value of 
the previous transfer function will be zero. The more 
the flow rate crosses the valve, the more the controlled 
pressure is. When the input flow rate increases, this 
flow rate should be eliminated via an increase of the 
valve opening. It compresses the spring and thus leads 
to an increase of the pilot force. This explains the 
spring effect. For the flow force effect, since the flow 
rate increases the flow forces also increase. Conse-
quently the spool tends to close and the equivalent pilot 
force viewed from the spool also increases. This ex-
plained firstly the characteristic curve of a pressure 
relief valve and secondly the linear static error. One 
should note that the section A jet has been removed from 
the equations. Its contribution reduces the force due to 
the counter reaction. The pressure counter reaction 
needs to be higher to equilibrate the valve spool and 
thus this linear phenomenon also leads to a static error. 

For a pressure reducer, standard characteristic 
curves have been shown in Fig. 17. 

 
Fig. 17: Pressure reducer characteristic curve (from VICK-

ERS) 

For the pressure reducer the same technique is used 
and thus the static value of the transfer function be-
tween the controlled pressure and the load flow rate 
Q load is given by: 

 

Ps G
KK

GAQ
P

∆= +
+

−
=

js

xs0load

util 1  (18) 

The negative sign explains the fact that increasing 
the crossing flow rate decreases the controlled pressure. 
The same explanations are given: increasing the load 
flow rate increases the flow forces but these forces 
make the equivalent pilot force decreasing (opposite 
effects for the relief valve). Conversely, increasing the 
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load flow rate opens the cross section and thus the 
spring force decreases. The controlled pressure de-
creases in both conditions since the equivalent pilot 
force decreases. This explains the characteristic of a 
pressure reducer. 

The most important aspect of a control loop is its 
stability and consequently the calculation of the eigen-
values. One should note that since the denominator of 
the transfer function is a third order, it should be possi-
ble to express analytically its solutions and thus know 
the exact values of the RC mode and the oscillating 
mode. Unfortunately this is only theoretical. Firstly, it 
is difficult from the previous equation to calculate by 
hand the zeros of the transfer function denominator. 
Secondly, when this is done, the terms are generally too 
coupled together which makes it difficult to conclude 
on the action of a particular term on the frequencies and 
damping involved. 

In order to have an idea of this complexity, the de-
nominator is modified into a normalized form to be 
easily solved: 

( )( )
M

GAKKGK
s

M
KGRAKAKK

s
M

RAKGM
ssD

xsjsΔPhuhuΔPo
2
shu

2
sjs

2o
2
shuΔP3)(

++
+

+++

+
+

+=
(19) 

This should be compared to the equation: 

 01
2

2
3)( asasassD +++=  (20) 

Using the classical technique to factorise a third order 
equation: 
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by substitution leads to  
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(24) 

These two values are difficult to simplified: there is 
no simple equation manipulations to eliminate terms 
and generally no approximation can be done, as the 
contributions of each elements are very similar. How-
ever note that some exceptions exist for particular cas-
es. Using the discriminant defined as: 
 23Δ RQ +=  (25) 

it is difficult to obtain a clear idea of the eigenvalues 
and what are the main parameters that participate in 
each eigenvalues. 

It is also possible to use the fact that the solutions 
are a real part and two complex conjugated parts. If 

s1=-z’ω is the real part and s2 and s3 defined by: 

 ωω 2
32 1 zjzs,s −±−=  (26) 

are the two complex parts, a new system of equations is 
obtained 
 2321 )2( azzsss −=+′−=++ ω  (27a) 

 1
2

32321 )12()( azzsssss =+′=++ ω  (27b) 

 0
3

321 azsss −=′−= ω  (27c) 

If the first equation is used to expressed the sum of 
the complex poles and replaces it in the second equa-
tion this leads to: 

 1
2

211 )( aass =++− ω  (28) 

and using the third equation to express s1 function of ω 
yield: 

 1
2

22
0

2
0 aaaa

=+





 +− ω

ωω
 (29) 

which can be re-expressed as 

 02
0
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1

6 =−+− aaaa ωωω  (30) 

From this equation the natural frequency of the os-
cillating parts can be calculated but once more the cal-
culation is very complex and cannot allow one to fully 
understand the influence of each parameters. 

From these calculations the only clear thing is that 
the parameters are all coupled in all the eigenvalues. In 
order to analyse the stability of the two pressure com-
ponents only classical means can be used. 

One of the possibilities is to use the open loop gain 
and the parameters involved in. The gain of the inner 
loop of the previous block diagrams is given by 

 
js

huxs

KK
KGAGain

+
=  (31) 

This gain, in a certain sense, looks like the open 
loop gain. In any applications the two valves should 
work well and be stable independently of the controlled 
volume (i.e. the system upstream or downstream). This 
leads to possible stability problems if this gain is too 
high. Consequently reducing the flow gain Gx and 
increasing the flow forces and the spring stiffness con-
tribute to stabilize the circuit. The spring stiffness and 
the flow forces have adverse effects because they im-
prove the stability but they increase the static error. 
Also note that when these types of component have a 
flow force compensation, they start to be more difficult 
to design due to the stabilizing effect of the flow forces. 

MacCloy (1980) and Margolis (1997) have ana-
lysed the stability problems using the Routh-Hurwitz 
criterion. This criterion gives a limit value that leads to 
stable system but oscillating. Manring (1997) has pro-
posed to fix a desired time response. This time response 
allows specifying a lower limit value for the flow gain. 
However this technique does not guaranty a non-
oscillating valve. Optimum values of such systems can 
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be achieved using a pole placement technique as de-
scribed by Favennec (2001, 2002). 

Another possibility to analyse the stability of a con-
trol loop is the roots location for parameter variations. 
Unfortunately a parameter variation on the non-linear 
model could not maintain the same operating point for 
all the variations due to non-linearities (Gx and G∆P are 
function of the operating point). Since the operating 
point has a great influence on the eigenvalues, it is 
impossible to use the non-linear model to make any 
analysis on the eigenvalues. Linear models are thus 
used even if they are not propagating solutions. They 
are able to give some aspects of the system stability 
around an operating point. 

 

 
Fig. 18: Root locus for a restriction diameter variation 

Merritt (1967) has shown that the counter reaction 
restriction has a stabilizing effect. However as shown 
by Alirand (2001), the restriction diameter has adverse 
contribution. When it is fully opened the system is not 
really stable and when it is closed there is no pressure 

control or the dynamics of the pressure control becomes 
very low. Figure 18 introduces the evolution of the 
roots for variation of the counter reaction restriction 
diameter from 0.1 mm to 1.5 mm (respectively begin-
ning of the arrow and end of the arrow in Fig. 18). Note 
that the variation uses the block diagram Fig. 7 and thus 
the complete linear model. 

The limits of these root loci are defined by two sep-
arate cases: 
• Ro  ∞ (very small orifice diameter) 

The denominator of the transfer function coming 
from the block diagram Fig. 7 is given by: 

( ) ( )2 2
s j s hb ΔP hu( )D s M s K K A K s G K= + + + +  (32) 

and a null pole. This situation corresponds to the 
beginning of the arrows in Fig. 18. The system has 
no more pressure control since the restriction dis-
connects the counter reaction from the load. In this 
case, the hydraulic stiffness of the counter reaction 
chamber acts as if it was connected to a fixed part. 
The system thus has a very high frequency oscillat-
ing part. 

• Ro  0 (fully opened orifice, i.e. big orifice di-
ameter) 
In this case the load chamber is directly connected 
to the counter reaction chamber and an equivalent 
stiffness is due to the two previous ones in series 
(still noted Khu). The denominator is now given by: 
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The ending arrows in Fig. 18 show the roots of this 
denominator. In this case, the system is composed 
of a low frequency time constant and a low fre-
quency oscillating part. 

From this, the restriction Ro has two opposite ef-
fects: if the restriction diameter is big, the counter reac-
tion pressure quickly acts and as a result the force con-
trol is efficient but the spool valve could be not well 
damped. If the restriction is closed, there is not suffi-
cient dynamics on the force control loop and unfortu-
nately the valve spool is also not well damped. As a 
conclusion, the counter reaction restriction diameter is 
the easier element that can be adapted to correctly de-
sign a pressure relief and/or reducing valve. There 
exists a compromise on this diameter to have a good 
dynamic for the pressure control and a stable response.  

 
Fig. 19: Check valve equivalent representation 

The structure of the denominator Eq. 33 exactly 
corresponds to the bond graph Fig. 10 with no dissipa-
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tive element due to the fixed restriction Ro. This bond 
graph is also exactly the one of a check valve. The Pu 
pressure directly acts on the spool (or for poppet type 
valve on the ball or the conical element). If the pressure 
relief valve sketch in Fig. 1 is adapted to be compared 
to the one of a check valve using an annular cross sec-
tion, such a modification can give the sketch shown in 
Fig. 19. 

In this figure, the opening section location has been 
changed from the pressure relief valve sketch Fig. 1 and 
since the controlled pressure at the centre of the valve 
has no effect on the spool equilibrium (like for the 
pressure relief valve), the connecting line is removed to 
have the same aspect as a poppet valve. Note that the 
valve Fig. 19 has an annular cross section, which is not 
really standard for poppet valves. 

Using this, the stability analysis of a check valve 
should be carried out using the transfer function de-
nominator Eq. 33. Since check valves are simple pres-
sure components very similar to pressure relief valves 
(except that they have no counter reaction restriction), 
they are particular cases of the more general transfer 
function of Eq. 15. As a consequence, the check valve 
using the same parameter values of the pressure relief 
valve Fig. 3 is normally unstable since it corresponds in 
Fig. 18 to some thing in the left half plane near the 
ending arrow (Ro equals 0, i.e., no fixed orifice or Dorif 
as bigger as possible). 

Due to the comparison between a check valve and a 
relief valve, the counter reaction restriction is not the 
only way to stabilize a pressure control component. 

 
Fig. 20: Root locus for a flow gain variation 

Manring (1997) has analysed the effect of the ge-
ometry of the opening section on the stability of a relief 
valve. He shows the great effect of the flow gain Gx. As 
presented before, the flow gain directly affect the inner 
loop gain and thus a low value of flow gain may stabi-
lize a pressure component. Figure 20 corresponds to a 
variation of the flow gain from 0.1 to 1.2 times the 
existing flow gain (respectively beginning of the arrow 

and end of the arrow in Fig. 20). This figure also shows 
a stability improvement. Decreasing the flow gain tends 
to stabilize the valve and as expected slows down the 
system dynamic response. 

In Fig. 20 the variation of the flow gain was done 
for the complete and simplified linear models. As can 
be seen, the roots of the fourth order denominator and 
the roots of the third order denominator agree. This also 
shows that when the assumptions for the simplification 
are valid, the two models (of fourth order and third 
order) produce the same root locus. 

The flow-pressure gain G∆P can be viewed from the 
block diagrams as a leakage and thus has the same 
effects. Since it corresponds to a damping effect, in-
creasing the leakage or the flow-pressure gain tends to 
stabilize the valve. From a stability analysis point of 
view, this term can be removed since if the system is 
stable without this term, the system should be more 
stable with it. 

As previously said the flow forces are normally seen 
as a damper effect. The variation of the stiffness due to 
the jet force (Fig. 21) also shows a stabilization of the 
system even if the flow forces are no longer a damper 
effect in linear. In Fig. 21 the jet stiffness varies from 
the normal one to ten times the normal one. 

 
Fig. 21: Root locus for flow force variation 

It should be noted that since the stiffness tends to 
stabilize the valve, increasing the spring stiffness has 
the same effect. However one should remember that 
increasing the flow forces and the spring stiffness in-
creases the static error. Note that, once again, the sim-
plified and the complete models are plotted on the same 
graph and give the same results. 

Figure 22 comes from Matsubara (2001). It shows 
the stability problem of a pressure valve expressed in a 
plane: pressure supply as x-axis and spool displacement 
as y-axis. 

The axis of this plane corresponds to the operating 
point (xs

0,∆P0) previously defined. These values affect 
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the flow gain, the flow-pressure gain and also the jet 
force terms. Increasing the supply pressure increases 
the value ∆P0 and consequently increases the flow gain 
and the jet stiffness K jet. In a same way increasing the 
spool displacement increases the flow-pressure gain. 
Note that this is only valid for an annular cross section 
and should be adapted for other geometry. However the 
tendencies shown in Fig. 22 can be explained by the 
previous stability analysis done on the root locus. A 
pressure component is generally unstable for high sup-
ply pressure (due to bigger flow gain) and small open-
ings (due to smaller flow-pressure gain). However, due 
to the non-linearities of the flow rate and the flow forc-
es, it is difficult to conclude for very small openings. 

 
Fig. 22: Stability region of a pressure valve (Matsubara, 

2001) 

The last parameter variation is done on the volume 
of the hydraulic load Vhutil. For the variation shown in 
Fig. 23, the volume varies from 50 cm3 to 500 cm3.  

As expected, if the controlled volume increases the 
frequency of the oscillating part decreases. Normally 
the oscillating part does not correspond to the hydro-
mechanical mode of the spool given by: 

 
M

KAKK hu
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++
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since the system includes a control loop. However this 
calculation can give, in some cases like the one here, a 
good approximation. For this application, Kr = 1000 
N/m, K j = 17950 N/m and As

2Khu = 209750 N/m with a 
controlled volume of 50 cm3, this gives a natural fre-
quency of 761 Hz which is close to the value obtained 
via the linear analysis. Note that the equivalent mechan-
ical stiffness of the controlled volume is far higher than 
the others and thus approximations can be done. 

Depending on the system to control, the valve can 
be slow or rapid and even may some times be unstable. 
A pressure component is consequently adapted to cer-
tain systems but cannot be applied to every hydraulic 
circuits. In this sense, even if pressure components are 
widely used in hydraulic circuits and are most of the 

time stable, depending on the downstream circuit, they 
can lead to chatter phenomena. 

 
Fig. 23: Root locus for controlled volume variations 

From another point of view, the previous block dia-
grams Fig. 12 and 13 can be rearranged once more into 
the one Fig. 24. 

Fcmd

Gx

xs
Fach

- + -

Qload

-
2nd order
 of valve

PD System to
control

controller

 
Fig. 24: Equivalent block diagram for pressure valves 

From this figure the pressure component is similar 
to a force controller with proportional and derivative 
gains: the second order of the valve corresponds to the 
dynamics of a flow-controlled valve, the term Gx corre-
sponds to the flow gain of a flow-controlled valve. 
Botelle (2000) has analysed such a control loop and a 
PI controller had been demonstrated to be better from 
the static error point of view. For a pressure control 
component, the “valve” dynamic comes from the spool 
and the counter reaction. Since this dynamic is far high-
er than the one of a flow-controlled valve can have, the 
delay due to the “valve” dynamic is less. Consequently 
and as shown by Alirand (2001), from a control point 
of view, it is better to use a pressure component to 
control a pressure or an effort than a flow controlled 
valve with an electronic control loop. One should note 
that the pressure “valve” dynamic is directly linked to 
the spool mass. Therefore and as mentioned by Green 
(1970) the spool mass should be as small as possible to 
increase the hydro-mechanical dynamic of the spool 
and thus have a very powerful counter reaction with no 
much delay. 

As mentioned above, a pressure component always 
includes an inner PD control loop. The derivative effect 
can be used to stabilize the system. The open loop 
transfer function of the achieved force versus the input 
force is given by: 
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If the zero of the numerator appears before the zero 
(the real part) of the denominator, the margin is more 
important and than the valve should be more stable. 
This is why generally speaking a spool with a bigger 
active section (the counter reaction section) leads to a 
system more stable if no change is done on the flow 
gain. 

The last comment deals with pressure servo valves.  
A three-ways pressure servo valve may have the sketch 
shown Fig. 25. 

Hydraulic
load

supply
xs

Ks

QloadPu

Qo

Ro

Pb

As

return

pilot
force

 
Fig. 25: Pressure servovalve 

From this, the calculation of the transfer function of 
the controlled pressure versus the inputs also leads to a 
transfer function similar to Eq. 15. The stability of such 
components can also be deduced from the previous 
calculation since a pressure servo valve can be viewed 
as a combination of a relief valve and a reducing valve.  

5 Conclusions 

Starting from non-linear models, simplified linear 
models of pressure reducing and pressure relief valves 
were given. Their transfer function denominators are 
the same and are of third order type. The analysis of the 
denominator of the transfer functions has shown that it 
is difficult to obtain a clear idea of the contribution of 
each design parameters on the stability. Each roots of 
the denominator contain a heavily coupling of all the 
design parameters. Even if the simplification to a third 
order denominator seems to be of no much interest 
here, it will prove its interest in a companion paper 
done by Favennec (2002). One of the goals of this pa-
per was to extend the conclusions of Merritt (1967) and 
MacCloy (1980) to other pressure control components. 

The linear analysis has clearly shown that the stabil-
ity of a pressure relief valve and a pressure-reducing 
valve are the same. It has also been shown that the 
stability of check valves and pressure servo valves can 
be done in the same way considering for the first one a 
value of Rorif equals to zero and for the other a coupling 
of both the reducing and relief valves. 

Since pressure control components are clearly 
closed loop systems, stability analysis and static error 
are of importance. The static error is deduced from the 

transfer function of both components. The influences of 
the spring stiffness and the flow forces are clearly 
shown using the standard pressure/flow rate characteris-
tic curves of pressure control components and the trans-
fer function Pu/Q load. 

Using parameter variations with the root locus 
method, it is possible to have the influences of some 
parameters on the stability of such components. The 
flow gain is of great importance on the stability as well 
as the spring stiffness and jet forces. Reducing the flow 
gain also reduces the flow forces and thus can have 
adverse effects but generally the flow gain reduction 
stabilizes the system. 

Since a pressure component has always an inner PD 
controller, the D effect can be well placed in order to 
stabilize the system. Generally a bigger spool is more 
stable since the D gain is the active spool section. 

The analysis done concerns the control of the pres-
sure in a volume directly connected to the pressure 
valve. This is not always the case and the controlled 
volume can be linked to the pressure valve via a hy-
draulic line. The effects of this line can be of great 
importance on the stability of the complete system as 
analysed by Favennec (2002). The analysis presented 
here has limitations since there is a great influence of 
the non-linearities. Moreover, the design of pressure 
valves includes some additional restrictions within the 
valve body that modify the stability of the system. Also 
for electrical piloted systems, the effects of the electri-
cal parts are important. However this analysis gives 
accurate stability tendencies. 

Nomenclature and values 

Ds Spool diameter 0.01 m 
Dorif Fixed orifice diameter 0.001 m 
Ks,Kspring Spring stiffness 1000 N/m 
Vhback Counter reaction volume 0.2 cm3 
Vhutil Controlled volume 50 cm3 
M Spool mass 0.01 kg 
Cqmax Fully turbulent discharge 

coefficient 
0.7 

λ Critical flow number  30 
α Jet angle 69° 
B Bulk modulus of the liquid 17000 bar 
ρ Fluid density 850 kg/m3 
ν Fluid viscosity 50 cSt 
   
A j,A jet Equivalent jet force area  [m²] 
As, Aspool Spool active area [m²] 
Ao, Aorif Fixed orifice cross section [m²] 
Cq Discharge coefficient - 
D(s) Transfer function denomina-

tor 
- 

F jet Jet forces [N] 
Fcmd Input force [N] 
Gx Flow gain [m3/s/m] 
GΔP Flow gain [m3/s/Pa] 
K j,K jet Equivalent jet force stiffness [N/m] 
Khb,Khback Hydraulic stiffness of the [Pa/m3] 
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counter reaction volume 
Khu,Khutil Hydraulic stiffness of the 

controlled volume 
[Pa/m3] 

Pb,Pback Counter reaction pressure [Pa] 
Ps Supply pressure  [Pa] 
Pu,Putil Controlled volume pressure [Pa] 
Qo,Qorif Counter reaction orifice flow 

rate  
[m3/s] 

Qs,Qservo Flow rate crossing the valve [m3/s] 
Q load Flow rate of load circuit [m3/s] 
Rport Viscous friction  [Pa/m3/s] 
Ro,Rorif Dissipation linked to the 

counter reaction restriction   
[Pa/m3/s] 

xs Spool displacement [m] 
s Laplace operator - 
λ Flow number  - 
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