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Abstract 

For convenience in investigating the dynamic responses of a liquid-filled tapered line with a viscoelastic pipe wall, a 
transfer matrix equation, relating pressure to volumetric flow, is derived. In this derivation, it was assumed that the rate 
of divergence (or convergence) of the line is comparatively small. The fluid line model employed in the analysis is one 
of an unsteady viscous flow; that is, the frequency-dependent effect of viscosity is taken into consideration. The visco-
elastic pipe wall model is a modified version of the Voigt mechanical model, and it is distributed along the pipeline. 
The frequency response curves are calculated from the matrix, and the accuracy of the curves is evaluated by comparing 
them with the response curves obtained without assuming the small taper angle. The results verify that the transfer ma-
trix is accurate enough for practical applications. 
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1 Introduction 

This study deals with the dynamic characteristics of 
a liquid-filled tapered pipeline with a viscoelastic pipe 
wall. Such characteristics are important in investigating 
not only hydraulic control systems (Nakano, 1970; 
Muto, 1981; Oldenburger, 1964; Goodson, 1972; Rou-
leau, 1965), but also blood flow in arteries (Belardinelli, 
1992; Womersley, 1957; McDonald, 1960; Pontrelli, 
2000; Misra, 1987; Ursino, 1992). In the field of arteri-
al hemodynamics, a keen topic in recent years (Belard-
inelli, 1992; Pontrelli, 2000) has been the development 
of a mathematical model of arterial flow through com-
plex geometries (tapering, bifurcations, curvature) that 
account for the effect of a viscoelastic pipe wall. 

Nakano (Nakano, 1970) derived an accurate transfer 
matrix equation of a straight fluid line with a viscoelas-
tic pipe wall. In that analysis, he proposed a novel 
method whose equations account for the effect of 
slightly compressible fluid, though assuming incom-
pressible flow. Muto (Muto, 1981) derived a transfer 
matrix of a tapered fluid line with a rigid pipe wall. In 
that analysis, it was assumed that the rate of divergence 
(or convergence) of the pipeline - that is, the non- 
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dimensional taper angle ε - is comparatively small, and 
it was confirmed that the transfer matrix was sufficient-
ly accurate under the condition of |ε| < 0.1. 

The purpose of this study is to derive the transfer 
matrix equation of a tapered fluid line with a viscoelas-
tic pipe wall so that the dynamic responses of such 
lines can be conveniently obtained. In the derivation, it 
was assumed that the non-dimensional taper angle ε  is 
comparatively small. In this study, we also assume that 
the axial motion of the pipe wall has no effect on the 
pressure and flow fluctuations in the fluid. 

The fluid line model employed in the analysis is 
one of an unsteady viscous flow, that is, the frequency-
dependent effect of viscosity is taken into consideration. 
The viscoelastic pipe wall is modelled in the same way 
as proposed by Nakano (Nakano, 1970). This model 
corresponds to a slightly modified version of the Voigt 
mechanical model, and it is distributed along the pipe-
line. 

The frequency response curves are calculated from 
the matrix, and then the accuracy of the curves is eval-
uated by comparing them with the response curves ob-
tained without assuming that the taper angle is small. 
As a result, it is verified that the transfer matrix is accu-
rate enough for practical applications. 

2 Derivation of Transfer Matrix 
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2.1 Basic Equations 

In dealing with the dynamic characteristics of fluid 
in a flexible tube such as a rubber hose or blood vessel, 
the effect of the viscoelastic wall can be more dominant 
than that of fluid compressibility, as pointed out by 
Nakano (Nakano, 1970). Accordingly, the present 
analysis first assumes that the fluid is incompressible, 
allowing us to derive the basic equations; thereafter we 
take the effect of fluid compressibility into account by 
incorporating it into the model of the viscoelastic wall. 

For a laminar, incompressible and newtonian flow 
through a tapered fluid line with a viscoelastic pipe 
wall, as is shown in Fig. 1, the basic equations for small 
amplitude disturbances are derived as follows, under 
the assumptions that the rate of divergence (or conver-
gence) of the line is comparatively small. 
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Fig. 1:  Tapered fluid line 

Considering the cylindrical coordinates of the line, 
as shown in Fig. 2, the momentum equations in the 
axial and circumferential directions are written, respec-
tively, as follows under the assumption that the nonlin-
ear convective acceleration terms may be neglected: 
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Taking rotation of Eq. 2 yields:  
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Fig. 2: Cylindrical coordinate of fluid line 

The equation of continuity is: 

 0
v uv
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For a slightly tapered line, a pipe radius rx at axial 
distance x relates to r0 as follows: 
 x 0 0tanr r x r x= + ≅ +θ θ  (5) 

In non-dimensional form, Eq. 1, 3, 4 and 5 are re-
written as follows, respectively: 
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Here, u0 is the representative velocity (an average 
velocity across the pipe cross-section at x = 0). 

The solution to Eq. 7 is (Nakano, 1970): 
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The determination of coefficients an, bn and Ωn 
(here, Ωn is propagation constant of order n) is dis-
cussed later. 

In the following analysis, Ω1, that is Ωn for n=1, is 
used instead of Ωn as the first approximation as treated 
by Nakano (Nakano, 1970). Similarly, a1 and b1 are 
used instead of an and bn, respectively. The expression 
for P can thus be obtained by using Eq. 6, 8 and 11, as 
follows: (Appendix A) 
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The solution to Eq. 6 for velocity U and then for Q 
is as follows (Muto, 1981): 
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In the derivation of Eq. 13 and 14, the Bessel func-
tion Jn(χ) are expanded in Taylor series about the point 
χ0 and all terms higher than 2nd power are rejected. 

Equations 12 and 14 are the fundamental equations 
for deriving the transfer matrix of the fluid line. 

2.2 Model of Viscoelastic Pipe Wall 

The viscoelastic pipe wall in a fluid transmission 
line is basically a version of the Voigt mechanical 
model, and it is distributed along the pipeline. Taking a 
slight compressibility of fluid into account, a modified 
version of the Voigt model can be schematically ex-
pressed as shown in Fig. 3 (Nakano, 1970). 
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Fig. 3: Modified model of viscoelastic pipe wall taking 

slightly compressible fluid into account 

In the figure, yw: displacement of the pipe wall in 
radial direction and yh: virtual displacement of the pipe 
wall. In this modified model, the effect of a slight com-
pressibility of fluid is treated in such a manner that the 
compressibility affects the expansion of the pipe wall. 
This effect is included in the Voigt model by an equiva-
lent spring modulus kwh. According to this model, the 
relation between the pressure pw and the virtual dis-
placement yh is expressed in Laplace domain as follows 
(Nakano, 1970): 
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where, 
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2.3 Transfer Matrix 

The transfer matrix equation of a tapered line con-
sisting of a viscoelastic pipe wall is derived under the 
assumption that the non-dimensional taper angle ε in 
Eq. 10 is of the first order of smallness, and then quan-
tities smaller than the first order are neglected. 

To derive the transfer matrix, the characteristic 
equation of the fluid line has to be obtained by consid-
ering the same approximation as mentioned in section 
2.1, and then has to be solved for variable Ω1. Here, the 
characteristic equation is derived by using Eq. 8, Eq. 11 
and 15 as follows: (Appendix B) 
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By calculating the eigenvalue from Eq. 17, the vari-
able Ω1 is obtained as, 
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Equation 18 can be changed into the next form, 
from an expression with Bessel functions such as 
J0(χ0) into ones with J0(χ0):  
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With respect to the fundamental equations of Eq. 12 
and 14, the unknown function f(X) in Eq. 14 can be 
determined as follows, by applying to Eq. 13 the 
boundary condition that U  = 0 at R α= : 
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Substituting Eq. 22 into Eq. 14 yields: 
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Differentiating Eq. 12 with respect to X, we get: 
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where a1 and b1 are arbitrary constants. 
By using Eq. 24 into Eq. 23, we have: 
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Equations 12 and 25 can be rewritten as follows: 
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The arbitrary constants a1, b1 in Eq. 26 and 27 are 
determined by using the boundary conditions that PX = 
P1 and QX = Q1 at X = 0. 

Finally, by substituting the thus-obtained arbitrary 
constants into Eq. 26 and 27, and then doing some rear-
ranging, the transfer matrix is derived as follows: 
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where Γx is the propagation operator at arbitrary pipe 
position X, and is expressed as follows: 
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The transfer matrix Eq. 29 is represented as a rela-
tion between the upstream end and the section of dis-
tance X of the tapered line in non-dimensional form. 

Putting X = 1  in Eq. 29 yields the relation between 
the upstream end and the downstream end, as follows: 
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where Γ is the propagation operator for a pipeline of 
length l, and is expressed as follows: 
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In dimensional form, Eq. 31 is expressed as: 
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where  
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Putting θ = 0, or τ1 = τ2 = 0, in the matrix Eq. 33 
leads to the equation for a straight pipeline with a vis-
coelastic pipe wall, or one for a tapered line with a rigid 
pipe wall, respectively. From this fact, it is confirmed 
that the former or the latter of the resultant matrix equa-
tions coincides with one obtained by Nakano (Nakano, 
1970) or by Muto (Muto, 1981), respectively. 

The fluid line model employed in the present analy-
sis is one of an unsteady viscous flow that is, the fre-
quency-dependent effect of viscosity is taken into ac-
count. As a consequence of this adaptation, the propa-
gation operator Γ and the characteristic impedance Zc 
are, as seen in Eq. 32 and 34, respectively, represented 
as functions of Bessel and hyperbolic functions. Since 
such properties of Γ and Zc are the essential criteria for 
an “exact” model of a fluid transmission line (Goodson, 
1972), Eq. 31 may be called the exact transfer matrix of 
a tapered line with a viscoelastic pipe wall, as far as the 
assumption of smallness of the tapered line parameter 
ε  is permitted. 
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3 Frequency Responses 

In this chapter, the characteristics of frequency re-
sponse are investigated in terms of the transfer matrix 
of Eq. 31 under some representative pipeline conditions. 
Whole the parameters used for calculating the frequen-
cy responses are listed in Table 1. 

For the first line condition, the pressure at the up-
stream end P1 is selected as the input signal of the line 
system, and the pressure at the downstream end P2 is 
selected as the output signal. As for the pipe-end condi-
tion, first, the downstream end is considered to be 
closed-end, that is, Q2 = 0. Hereafter, such a line sys-
tem, containing both a P1-input and a closed end, is 
called a P1-closed system for brevity’s sake. 

An example of frequency response curves for a P1-
closed system is shown in Fig. 4, taking the rate of di-
vergence ε as a parameter. These curves are calculated 
under the condition that the input and output pressures 
P1 and P2 are given as P1 = P10 sinω t, and P2 = P20 

sin(ω t −φ), respectively. 

Table 1: Parameters of the pipeline 

Pipeline

Other  
Parameters

l = 9.5 m ,     r0 = 5.0x10-3 m

ν = 0.82x10-4 m2/s ,   ρ = 856 kg/m3

c = 805 m/s ,   τ1 = 1.25x10-3 s
τ2 = 0.95x10-3 s, D = 0.01

Pipeline

Parameters

l = 9.5 m ,     r0 = 5.0x10-3 m

ν = 0.82x10-4 m2/s ,   ρ = 856 kg/m3

c = 805 m/s ,   τ1 = 1.25x10-3 s
τ2 = 0.95x10-3 s, D = 0.01

Pipeline

Other  
Parameters

l = 9.5 m ,     r0 = 5.0x10-3 m

ν = 0.82x10-4 m2/s ,   ρ = 856 kg/m3

c = 805 m/s ,   τ1 = 1.25x10-3 s
τ2 = 0.95x10-3 s, D = 0.01

Pipeline

Parameters

l = 9.5 m ,     r0 = 5.0x10-3 m

ν = 0.82x10-4 m2/s ,   ρ = 856 kg/m3

c = 805 m/s ,   τ1 = 1.25x10-3 s
τ2 = 0.95x10-3 s, D = 0.01
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Fig. 4: Frequency response curves for tapered line with a 

viscoelastic pipe wall 

The figure is represented with the gain of pressure 
amplitude P20/P10 and the phase shift φ in the ordinate 
against the non-dimensional frequency of the fluid line 
lω/c. Furthermore, in a similar manner to that in Fig. 4, 
Fig. 5 represents the frequency response curves calcu-
lated for a tapered line with a rigid pipe wall (that is, τ1 
= τ2 = 0) under the same pipe-end condition as treated 
in Fig. 4. By observing these two figures, it is recog-
nized that both response curves are similar to each oth-
er in their tendency for a positive (or a negative) value 
of the parameter ε to bring about a lower (or a higher) 
resonance frequency than that in ε = 0.  It is also recog-
nized that the pressure amplitude ratios of flexible ta-

pered lines are smaller than those of rigid tapered lines 
in the corresponding frequency range. 
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Fig. 5: Frequency response curves for tapered line with a 

rigid pipe wall 
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Fig. 6: Frequency response curves for a Q1-open system 

considering ε  as a parameter 

For the second line condition, by changing the pipe-
end condition from the closed end to the open end, that 
is, P2 = 0, a Q1-open system is treated by taking the 
pressure P1 as the output signal. The response curves 
for the system are shown in Fig. 6 in a manner similar 
to that in Fig. 4. From this figure it is seen that the res-
onance frequency of the system decreases with an in-
crease in the parameter ε. Such a tendency of resonance 
frequency is also seen in Fig. 4 for the P1-closed sys-
tem. 

4 Accuracy of Transfer Matrix 

In order to investigate the accuracy of the transfer 
matrix Eq. 31, in this chapter the errors induced in fre-
quency response curves are examined for the P1-closed 
system treated in Fig. 4. Here, the transfer function of 
the system is defined as M 2 1( )F S P P=

 
, since the pres-

sure P2 is considered as the output signal.  The function 
FM(S) is derived analytically from Eq. 31 as follows: 
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 ( ) 0 0
M 2

0

( )1 sinh
cosh coshcosh

G S
F S

S
Γ

= + −
Γ ΓΓ

ε λ ε λ
γ

 (35) 

The function FM(S) is an approximate one since it 
includes errors smaller than the first order smallness of 
ε. Corresponding to this function, the strict function, 
defined as FR(S), is derived analytically without assum-
ing the smallness of the rate of divergence ε . The 
function FR(S) is obtained as follows from Eq. 12 and 
25,  by applying two boundary conditions, namely,  that 
PX = P1 at X = 0 and that PX = P2 and QX = Q2 at X = 
1: 

 ( ) ( ) ( ) ( ){ }R 0 0 0 0 02F S S J G S J= ⋅γ χ χ   

( )
( )

( )
( )

1 1 1 1

0 1 0 1

J J
e e

J J
ε χ ε χ

χ χ
′ ′−Ω Ω       ′ ′+ Ω − − Ω    
        

 (36) 

where 

 
( )
( )

( )

1 2
1 1

1 0 1

1

2
1 ,

( )

1

JS
JG S

j S D

χ
χ χ

χ ε

−    ′Ω = −  
  


= + 

 (37) 

Based on the thus-obtained strict function FR(S), 
the estimated errors of the approximate function FM(S) 
are shown in Fig. 7. The thick and thin lines in the fig-
ure represent the errors estimated for positive and nega-
tive value of ε, respectively. In the figure, the relative 
errors of amplitude ratio, as well as the phase shift er-
rors, are shown against the nondimensional frequency. 
The figure shows that the relative error concerning the 
amplitude is 10% at most when the rate |ε| is smaller 
than 0.05. By a similar error estimation for other pipe-
line systems, such as a Q1-open system, a similar result 
was obtained. From these facts, it can be concluded that 
the matrix Eq. 31 is one with considerable accuracy.  
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Fig. 7: Accuracy of the transfer matrix 

On the other hand, the application of the matrix to 
those cases in which the rate ε  is not so small, may 
necessarily be accompanied by a large degree of error. 
As a way to improve the accuracy in such cases, Muto 
(1981) proposed to divide a line with length l into many 

small segments of the number N (here, the length of 
each segment ∆l is equal to l/N). In this method, the 
rate of divergence ∆ε i corresponding to the segment is 
expressed by 

 i
0i

l
r
∆

∆ =
θε     (i = 1, 2, …, N) (37) 

where r0i is the pipe radius at the upstream end of the i-
th segment. The value ∆ε i in Eq. 37 can be decreased 
by increasing the number N. Thus the matrix relation 
for the total line system, in such a case, is expressed in 
the form of a cascade connection for each matrix i= 1 
to i= N, by applying Eq. 31. 

5 Conclusions 

The objective of this paper is to derive a transfer 
matrix equation of a tapered fluid line with a viscoelas-
tic pipe wall. In the derivation, a modified version of 
the Voigt mechanical model was used to accommodate 
the viscoelastic behavior in the pipe wall. As for the 
fluid line model, on the other hand, the unsteady vis-
cous flow model was adopted, thus the frequency-
dependent effects of viscosity were considered in the 
model. 

Under the assumption that the non-dimensional ta-
per angle ε is of the first order of smallness, and ne-
glecting quantities smaller than the first order, the 
transfer matrix was derived. Frequency response curves 
were calculated by using the derived matrix in order to 
see the effects of tapered lines on the system dynamics 
under some representative line conditions. The accura-
cy of the transfer matrix was investigated by a method 
of error estimation, and it then confirmed that the ma-
trix is of considerably high accuracy, at least in the 
region |ε| < 0.05. 

For a future application of the transfer matrix de-
rived in this study, the authors intend to develop a sim-
ulation program for calculating transient responses 
(Tahmeen, 2001) of a tapered fluid line with a viscoe-
lastic pipe wall. Such a program may greatly contribute 
not only to the field of hydraulic control systems, but 
also to the study of blood flow in arteries. 

Nomenclature 

a0  Cross-sectional area of line at x = 0 [m2] 
c  Velocity of pressure wave [m/s] 
D  Dimensionless dissipation number [-] 
dw  Viscosity of the dashpot  [Pa s/m] 
J0, J1  Bessel function of first kind of or-

der 0 and 1 
[-] 

J2, J3  Bessel function of first kind of or-
der 2 and 3 

[-] 

j  1j = −   

kw1,kw2 Moduli of spring [Pa/m] 
kwh Spring modulus  [Pa/m] 
l  Length of tapered line  [m] 
L  Length in non-dimensional form  [-] 
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p  Pressure of fluid  [Pa] 
pw  Pressure in pipe  [Pa] 
ps Supply pressure [Pa] 
p0 Average pressure at x = 0 [Pa] 
P Pressure in non-dimensional form  [-] 
qs Supply flow rate  [m3/s] 
Q Flow rate in non-dimensional form [-] 
r0  Inner pipe radius at x = 0  [m] 
rx Pipe radius at axial distance x [m] 
r Pipe radius  [m] 
R Radius in non-dimensional form [-] 
s  Laplace operator [1/s] 
S  Normalized Laplace operator [-] 
t  Time [s] 
t0  Nominal value of time [s] 
T Time in non-dimensional form [-] 
u  Velocity in axial-direction [m/s] 
u0  Average velocity at x = 0 [m/s] 
U Non-dimensional velocity of  u [-] 
v  Velocity in radial-direction [m/s] 
V Non-dimensional velocity of v  [-] 
w  Velocity in circumferential-

direction  
[m/s] 

W Non-dimensional velocity of w [-] 
x Coordinate in axial-direction  
X Non-dimensional form of x [-] 
Zc Characteristic impedance of line  [Pa s/m3] 
θ   Taper angle  [rad] 
ε   Divergence or convergence param-

eter of line 
 [-] 

ϕ  Coordinate in circumferential-
direction 

 

Ωn Propagation constant of order n [-] 
Ω1  Propagation constant of order 1 [-] 
Ωn′  Propagation constant defined in Eq. 

37  
[-] 

Γ   Propagation operator of fluid line [-] 
ν  Kinematic viscosity  [m2/s] 
σ  Density of fluid  [kg/m3] 

The variables marked with ˆ are those in the La-
place domain. 
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Appendix A: Derivation of Eq. 12 

The following relations (in non-dimensional form) 
are obtained by using Eq. 8 and 11 (Nakano, 1970), 

 
2 2

2 2 2 2
1 1VV V V
R RR R L X

∂∂ ∂
+ − + =

∂∂ ∂
  

 ( )n n 2
n n n 1 n

n

X X Sa e b e J R
D

Ω −Ω  
Ω − Ω −  

 
∑  (A1) 

 
2 2

2
n2 2 2

n

1 1U U U S
R R DR L X

∂ ∂ ∂ + + = − Ω −
∂∂ ∂ 

∑   

 ( )n n 2
n n 0 n

X X Sa e b e J R
D

Ω −Ω   × + Ω −      
 (A2) 

The above expressions are obtained by considering 
the following relations, 
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 U W
R R

∂ ∂
=

∂ ∂
 (A3) 

The solutions of Eq. A1 and A2 are, 

 ( ) ( )n n n
n n 1 n

n n

X X DV c e d e J R
S

Ω −Ω Ω
= + Ω +∑ ∑   

 ( )n n 2
n n 1 n

X X Sa e b e J R
D

Ω −Ω  
× − Ω −  

 
 (A4) 

( ) ( )n n

2
n

n n 0 n
n n

X X S D
U c e d e J R

S D
Ω −Ω Ω −

= − + Ω −∑ ∑  

 ( ) ( )n n 2
n n 0 n

X Xa e b e J S D RΩ −Ω× + Ω −  (A5) 

The expression for P can be obtained by using Eq. 6, 
A4 and A5 (Nakano, 1970) as follows, 

 ( ) ( )n n
X n n 0 n

n

X XSP c e d e J RΩ −Ω= + Ω
Ω


 (A6) 

Considering the same approximation for Ωn as 
mentioned in section 2.1, the above equation becomes, 

 ( ) ( )1 1
X 1 1 0 1

1

X XSP c e d e J RΩ −Ω= + Ω
Ω


 (A7) 

and using the boundary condition that U ≈ 0 at R = α 
we have the following relation, 

 
( )
( )

01 1

1 1 0 0 1

Jc d
a b J

χ
χ α

= − =
Ω

 (A8) 

Using Eq. A6, finally the expression for P becomes 
as follows, 

 ( ) ( )
1 1 0

X 1 1
1 0

X X JSP a e b eΩ −Ω= −
Ω

 χ
χ

 (A9) 

Appendix B: Derivation of Characteristic 
Equation in Eq. 17 

Considering the same approximation for nΩ  as 
mentioned in section 2.1 and using the boundary condi-
tions (in non-dimensional form) that PX ≈ PW(S,X) and 
V ≈ S Yh at R = α, we have the following relation from 
Eq. A1, A3 and 15, 

 ( ) ( )1 1
1 1 0 1( )

X XS c e d e J
H S

αΩ −Ω+ Ω =   

 ( ) ( )1 1
1 1 1 1

X Xc e d e J αΩ −Ω+ Ω +   

 ( ) ( )1 1 21
1 1 1 1

X Xa e b e J S D
S D

αΩ −ΩΩ
− Ω −  (B1) 

Using the boundary condition that U ≈ 0  at R = α  
Eq. B1 becomes, 

 ( )21
1 1

1 J S D
Z S D

α
Ω

Ω − =   

 ( ) ( )
2

1 1 0 1
1 ( )
SJ J
H S

α αΩ − Ω
Ω

 (B2) 

where 

 
( )

( )

22 0 11

0 1

J S DS D
Z

S D J

α

α

Ω −Ω −
=

Ω
 (B3) 

Using the relation of Eq. B3 into Eq. B2, we finally 
get the characteristic equation as follows, 

 
( )

( ) ( )
2

1 1

2 2
1 0 1

2 J S D

S D J S D

α

α α

Ω −
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( )

( ) ( )
2

1 1
2

1 0 1

2 2
( )
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α
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Ω
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 (B4) 

 

 

 

 

 

 

 
 

 

Mazeda Tahmeen 
(Born October 09, 1968) received the Mas-
ter of Engineering degree from the Gifu 
University Japan, in 1999. She is currently 
a Doctoral course student in graduate 
school of engineering, Gifu University.  
 
 
 
 
 
 
 

 

Hironao Yamada 
(Born October 02, 1962) received the Doc-
tor of Engineering degree from the Nagoya 
University Japan, in 1991. From 1991 to 
1994, he worked in Nagoya University. 
From 1992 to 1993, he was a Visiting 
Research Fellow at the Aachen Institute of 
Technology, Germany. He is currently an 
Associate Professor in the department of 
mechanical and systems engineering, Gifu 
University.  
 
 



The Dynamic Characteristics of Tapered Fluid Lines with Viscoelastic Pipe Walls 

International Journal of Fluid Power 2 (2001) No. 3 pp. 33-40 41 

 

Takayoshi Muto 
(Born March 31, 1941) received the Doctor 
of Engineering degree from the Nagoya 
University, in 1972. From 1963 to 1972, he 
worked in the department of mechanical 
engineering, Nagoya University. From 
1981 to 1982, he was a Visiting Research 
Fellow at the Aachen Institute of Technolo-
gy, Germany. He is currently a Professor in 
the department of mechanical and systems 
engineering, Gifu University.  
 

 


