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Abstract 

Much progress has been made in the area of computer-aided designer support, but little has been made in that of de-
sign automation. Where progress has been made, it has been largely in the analytical aspects of the task (for example, 
simulation and stress analysis) – tasks for which computers are more suited than humans. Less tractable is automation 
of the early, conceptual, phase of design, heavily reliant as it is on the expert knowledge of the design practitioner. Em-
ulating this computationally is the domain of Artificial Intelligence (AI) and requires a detailed understanding of the 
nature of the design process (Darlington et al, 1998). 

This paper discusses some of the issues raised during an investigation in to the automation of the configuration 
phase of fluid power system design, and identifies some of the hurdles to be cleared before automation, supported by 
AI, becomes a reality. Two models, developed by the authors, are chosen to illustrate the way in which very different 
approaches can be taken to automating the same task with an emphasis on the knowledge that is used by designers, 
which must be acquired and used in automation. 
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1 Introduction 

The design of fluid power systems is an intellectual-
ly challenging activity, one that has been described in a 
wide variety of texts and handbooks (e.g. Henke, 1983; 
Pinches and Ashby, 1989). There is also a considerable 
breadth of past and current research in this field (see for 
example, Burrows and Edge, various years). 

Although generalization is always dangerous, much 
of this work has been associated with the 'embodiment' 
phases of design (Pahl and Beitz, 1996), that is, where 
the circuit or system has already been proposed and the 
tasks consist of such things as selecting specific com-
ponents, sizing elements, ensuring quietness and effi-
ciency in the system, and ensuring that the dynamic 
responses will be satisfactory. 

The work that is dealt with in this paper is the stage 
prior to that described above, that is, the task of con-
ceptualizing or configuring the basic circuit and the 
associated automation of that task. 
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Attempts at automating this process in the fluid power 
domain have been made, most notably by Bur ton and 
Sargent (1989), Kota and Lee (1993) and Zone-Ching 
and Chi-Chih (1993). These take a knowledge-based 
systems (KBS) approach, using explicit heuristic rules 
to drive the configuration. In other domains the KBS 
approach has also been taken to configuration design, 
for example in the domains of microprocessor design 
(Bowen, 1985), lift design (Marcus et al, 1988) and 
computer hardware (McDermott, 1982). There are a 
number of problems associated with these approaches, 
relating particularly to the acquisition, classification 
and maintenance of the design knowledge. 

Alternative approaches to conceptual configuration, 
coming from other areas of Artificial Intelligence, have 
also been made in research over a number of years. 
Detailed consideration of issues relating specifically to 
the task of configuration design can be found in Mittal 
and Freyman (1989) and Wielinga and Shreiber (1997). 
A general overview of configuration research can be 
found in Franke (1998). Representative papers on some 
recent different approaches can be found in the same 
publication. 

The problem with the automation of configuration 
design (indeed with much of the design process) is that 
many of the functions that might be implicated in the 
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design process are internal and private to the designer.  
However, for the purposes of automation, some in-

sights are necessary into what these functions are and 
how they are effected. Whilst it is possible to provide 
an analysis of the externally manifested elements of the 
process, the important, generative elements of the de-
sign process are internal to the designer and thus less 
susceptible to scrutiny. Previous work has shown that 
analysis of the internal process is, at best, difficult, and 
according to some theorists may prove impossible 
(Dreyfus and Dreyfus, 1986). Nevertheless, to make 
progress this issue must be resolved. 

It is necessary to establish what knowledge might 
drive the design process and to decide how this 
knowledge might be represented and applied. 

This paper will, therefore, describe the issues asso-
ciated with design knowledge – namely its content, 
representation and acquisition – and show how this 
knowledge has been used in two, quite different, ap-
proaches to the automatic configuration of fluid power 
circuits, namely a novel Neural Network system and a 
Case-Informed Reasoning system. 

2 Knowledge Issues 

2.1 Content and Representation 

Knowledge content is constituted of facts (referred 
to as declarative knowledge), algorithms and proce-
dures (procedural knowledge). It is not sufficient for 
the knowledge content to be incorporated within an 
intelligent system – the knowledge must be represented 
appropriately, that is, in such a way as to allow its suc-
cessful retrieval, manipulation and application during 
the operation of the system. Consideration of 
knowledge representation issues include (Stillings et al, 
1987): 
• What is the knowledge involved in the performance 

of the task, its types, structure and organisation? 
• How is this knowledge to be represented in the sys-

tem? 
• Does the chosen representation reflect the natural 

structure of the task knowledge? Is it adequate for 
the task? How does it bias the knowledge content? 

• How is the knowledge to be acquired and/or re-
vised? 
The next consideration is that of representation 

schemes. Each has its own strengths and weaknesses 
and is better suited to some types of task than others. In 
general a representation technique will consist of a set 
of formal methods (which may be viewed as the syntax 
of the technique) for embodying the knowledge, plus 
some control system that comprehends the conventions, 
accessing and interpreting the knowledge, so as to pro-
vide the semantics of the system (Potter, 2000). 

2.2 Knowledge Acquisition 

When attempting to model intelligence using com-
puters, the acquisition of knowledge has traditionally 
involved using one of a number of types of formally 
structured interviews between “knowledge engineers” 

and human experts. Originating in psychological re-
search these include Protocol Analysis (Ericsson and 
Simon, 1984), repertory grids (Kelley, 1955) and tran-
scription methodologies. This process is laborious and 
time-consuming – it has been termed the “knowledge 
bottleneck” (Lenat, 1983) in the process of system de-
velopment – and the quality of ‘knowledge’ produced 
through such methods is questionable. 

These problems have lead to a second approach: 
that of the application of machine learning algorithms. 
These algorithms have been developed in the course of 
parallel AI research into models of human learning 
(well described by Carbonell, Michalski and Mitchell 
(1983)). Most operate in an inductive manner – given a 
body of examples that can be considered to implicitly 
express some concept, the algorithm attempts to extract 
a description of this concept from the examples and 
represent it is some useful form (usually as rules, a se-
mantic hierarchy or a trained sub-symbolic network). 

3 A Model of Knowledge in a Design Sys-
tem 

This section summarizes a knowledge classification 
scheme proposed in Schreiber et al (1994) and 
Wielinga and Schreiber (1997) for describing the 
knowledge contained within a design system. 

Design is an example of the kind of complex and 
ill-defined task which requires intelligence to perform 
successfully. It involves the translation of some abstract 
statement of need into the description of a concrete 
artefact or plan that meets that need. The key to per-
forming the design task successfully is the proper ap-
plication of correct knowledge. Execution of a particu-
lar design task requires the organisation of and access 
to particular knowledge as dictated by that task. The 
categories described below encompass this knowledge, 
and their relationships with one another form a hypoth-
esis as to how these may be distributed in a configura-
tion design system. 

3.1 Domain Knowledge  

This category contains knowledge of the entities 
which constitute the domain. For configuration design, 
this group includes knowledge of: 
• The physical elements (and their functions) which 

may constitute a solution. For example, that pumps, 
valves and hoses are used in a fluid power system, 
and an understanding of their separate and related 
functions. 

• How these elements can be combined. For example, 
the fact that components are connected by hoses, 
pipes or signal lines, and the rules that allow legiti-
mate connection. 

• How groups of related elements (up to and includ-
ing the system level) behave, component parame-
ters, and so on. 

• A description of the design requirements that the 
system understands. This category would seem to 
consist primarily of declarative knowledge – these 
elements correspond in some way to the external 
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evidence of the design task. 

3.2 Inference Knowledge 

This knowledge is 'reasoning' knowledge that al-
lows an abstract element of a design may be made 
‘more concrete’ according to the requirements speci-
fied, the intermediate abstractions already formed, de-
sign choices made elsewhere, etc. This knowledge is 
essentially private to the designer, it is what underpins 
the designer's expertise. It is the sort of knowledge that 
is applied when a designer picks one or a particular 
combination of components over another selection to 
satisfy a particular aspect of the overall requirement. 

3.3 Strategic Knowledge 

This is knowledge of how elements of inference 
knowledge can be arranged and controlled so as to pro-
vide a complete strategy for producing a design. This 
amounts to a set of high level methodologies for con-
trolling the search for mappings from requirements to 
solutions. This is an example of procedural knowledge 
in the design process.  

3.4 Working Knowledge 

This is unique for each design episode and contains 
the specific requirements, design choices made, know-
ledge of the reasons for the changes to a design, feed-
back from the customer about the application of the 
designed system, etc. This category represents a ‘pool’ 
of knowledge about the current design activity, from 
which elements may be retrieved when they are neces-
sary for invoking or applying elements from the other 
categories of knowledge.  

3.5 Common-Sense Knowledge 

In addition to the above, there is that, which, for 
want of a better term, could be called ‘common-sense’ 
knowledge. This category includes knowledge which is 
not specific to the domain of the task in hand, but 
which, nevertheless, is brought to bear on the current 
process. For example, it contains the basic deductive, 
inductive and abductive reasoning ‘rules’, experiential 
knowledge of the world (e.g., gravitational effects) and 
so on. The structure and content of this type of know- 
ledge are continuing research issues. 

3.6 Knowledge Relationships 

Figure 1 shows a proposal for the static relationship 
of the first four classes of knowledge and Fig. 2 shows 
the relationships between the categories that exist in a 
design system. These categories are still quite loosely 
defined, and the content will vary from domain to do-
main, and may even vary within a domain when, say, 
different design strategies are applied, so this descrip-
tion cannot be considered as a generative definition for 
a design system. However, all these categories must be 
embodied and recognizable in some form within such a 
system, and as such, they offer some measure of the 
completeness of any proposed system. 

3.7 Knowledge Representations within the Design 
System Model 

The model of knowledge shown in Fig. 2 has been 
developed by the authors to describe the overall process 
and then to construct a number of computer implemen-
tations of configuration design systems. Table 1 pre-
sents a summary of the representations chosen for each 
knowledge category in two very different approaches to 
implementing an automated fluid power configuration 
design tool.  

The approaches are: 
• A neural-network approach, using sub-symbolic 

representations of design knowledge to infer the so-
lution. 

• A case-based reasoning approach. This retrieves 
elements of a number of previous good designs and 
combines them as the basis for the solution to the 
current problem and, as an illustration of the way 
that that knowledge of the types identified above 
can be embodied in a computational system, the 
CBR-derived system (referred to here as Case In-
formed Reasoning) and one of a number of neural 
network-based systems are described below. These 
and other approaches and their implementations are 
described further in Potter (2000).  

4 A Neural Network-based Automatic 
Configuration Design System  

In response to the problems referred to in the intro-
duction, the authors initially adopted a machine learn-
ing approach to acquiring and expressing design 
knowledge. The hypothesis thus presented is that de-
sign knowledge can be inductively learned from exam-
ple design cases. If the knowledge for performing the 
fluid power systems design task can be considered as a 
set of generalised associations between requirements 
and the domain components, then the machine learning 
task is one of extracting these associations from a set of 
example data. The data for this task would take the 
form of a number of ‘good’ existing design cases in this 
domain, each consisting of a set of requirements and 
the 'satisfying' circuit design. 

4.1 Preparatory Tasks 

Essential to any such machine learning of design 
knowledge, then, is a collection of examples design 
process. To this end, it was necessary to assemble such 
examples into a design archive (Darlington and Potter, 
1998). Following an analysis of the domain and design 
task it was clear machine learning would have to pro-
ceed through the following steps: 
• Expression of requirements: The definition of a 

consistent and computationally tractable method of 
expressing the set of requirements.  

• Expression of solutions: the identification and de-
scription in a computationally tractable manner of 
the solution elements 

• Archive processing: The processing of the archive 
examples so that each is described in terms of the 
devised requirements and solution ‘languages’. 
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Fig. 1: The hierarchical relationships of design knowledge (Wielinga and Schreiber, 1997) 

 

 
Fig. 2: The relationship between the knowledge categories during the design process 

Table 1: A summary of knowledge representations chosen to embody the design model in neural-network-based and a 
CRB-based systems 

  Strategic Knowledge Inference Knowledge Domain Knowledge Working Knowledge 
Neural 
network-
based sys-
tem 

top-level design 
methodology, repre-
sented by sequence and 
control of inference 
knowledge in impera-
tive program code 

trained artificial 
neural networks 

inputs and outputs 
of neural networks 
(designating require-
ments and compo-
nents) 

initial requirements, 
intermediate network 
outputs 

CBR-
derived 
system 

design by retrieval 
of elements of a num-
ber of previous good 
designs and combining 
them into a single solu-
tion – represented by 
imperative program 
code, and meta-rules 
and inference engine 

retrieval mecha-
nism (solution ele-
ments of previous de-
signs indexed on the 
requirements that they 
satisfy). 

parameters desig-
nating design re-
quirements, complete 
solution designs, and 
'explanation rules' 
that locate solution 
elements within an 
existing solution 
case. 

initial requirements, 
retrieved design ele-
ments, working facts in 
inference engine during 
modification phase 
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• Configuration design methodology: The derivation of 
some design methodology for fluid power systems. 
Within this, the design knowledge required to apply 
the methodology can be recognised. Identifying the 
required knowledge is tantamount to identifying the 
learning tasks that must be accomplished. (The 
methodology is itself design knowledge, although 
postulated rather than machine-learned.) 

• Machine learning: The choice and application of a 
machine learning algorithm to the identified learning 
tasks. 

4.2 Expression of Requirements 

Design requirements in this domain can be extremely 
complex. However, by focusing on capturing the system 
functionality at the point of actuation, and ignoring most 
non-functional design influences, it was possible to pos-
tulate a constrained computationally tractable method of 
expressing requirements. Representation is limited here 
to steady-state requirements. Responding to the difficul-
ties of design requirement capture and representation, 
and extending the expressiveness to capture more dy-
namic elements, is the subject of continuing research. 
The requirements for a linear drive are specified in terms 
of one of a limited set of possible values for each of 14 
descriptive elements, as follows: 
• maximum magnitude of load [low (≤ 1⋅103 kg) 

/medium (1⋅104 kg - 1⋅105 kg) /high (≥ 1⋅106 kg)] 
• maximum magnitude of speed [low (≤ 0.01 m/s) 

/medium (0.01 m/s - 1.0 m/s) /high (≥ 1.0 m/s)] 
• plane of motion [horizontal/non-horizontal] 
• speed range to be continuously variable [no/yes] 
• accuracy of control [low/high] 
• load to be held stationary at any position during op-

eration [no/yes] 
• smooth accelerations required [no/yes] 
• load to be held stationary in the event of system 

failure [no/yes] 
• speed to be independent of the magnitude of the 

load [no/yes] 
• speed of actuator extension to be controlled [no/yes] 

• speed of actuator retraction to be controlled [no/yes] 
• the solution requires a rotary motor [no/yes] 
• inertial effects to be controlled [no/yes] 
• energy efficiency to be of paramount importance 

[no/yes] 

4.3 Expression of Solutions 

Design archive analysis suggested that each solu-
tion circuit is based upon one of a number of common 
skeletal frameworks, or templates. Each template pro-
vides the basic functionality essential to any valid solu-
tion. A typical template might contain hydraulic pump, 
actuator, and pipe-work and a control valve. The pre-
cise functionality is provided by the insertion of partic-
ular components, or the replacement of a template 
component, in one of a set of predefined positions, or 
slots, in the template (see Fig. 3). 

4.4 Archive Processing 

Given an agreed method for expressing design re-
quirements and circuit solutions, each of the archive ex-
amples can be described in a consistent, formal manner, 
conditions necessary for successful machine learning.  

4.5 Configuration Design Methodology 

To perform this design task, some methodology 
must be followed which will translate the set of re-
quirements into the circuit solution. Based on evidence 
from practising engineers and an analysis of the archive 
material, such amethodology has been devised (Dar-
lington, 1998) which decomposes the task into several 
distinct, sequential stages of reasoning. This decompo-
sition is intended to reflect how a human designer 
might approach the design task, indicating the areas 
that can be dealt with separately, and the order in which 
they should be addressed. In addition to providing a 
context for performing the design task, this methodo-
logy also provides a context for machine learning about 
performing the task – the design system must know 
how to perform each stage. 

Components and Slot Positions
pressure relief valve 1 (template slot A)
pressure relief valve 1 (A and B)
pilot-operated check valve (A)
counter-balance valve 1 (A)
counter-balance valve 1 (A and B)
counter-balance valve 2 (A)
pressure compensator (C) and proportional valve (DCV)
deceleration valve (A and B)
meter-out valve (A)
meter-out valve (B)
check valve combination (AB)
variable pressure-compensated restrictor valve (D)
pressure relief valve 2 (AB)
variable displacement pump (PUMP)
motor (ACT)
proportional valve (DCV
closed-centre spool (DCV)

 
Fig. 3: An appropriate template and 17 elements and template slots are used to describe the archive solutions 
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Figure 4 summarises this ‘stage model’ of the fluid 
power systems design process, indicating how the tasks 
are broken down and ordered. These are self explanato-
ry except in the final stage, which is that of selecting 
‘contextual’ components, those that are suggested by 
the decisions that have been made in earlier stages. 

4321Solution CCCCT =

Design Requirement

54321tsRequiremen RRRRR =

R1

Stage 1

Template Selection
T

R2

Stage 2

Motor Selection
C1

R3

Stage 3

Speed Control C2

R4

Stage 4

Inertia Control C3

R1

Stage 1

Template Selection
T

R2

Stage 2

Motor Selection
C1

R3

Stage 3

Speed Control C2

R4

Stage 4

Inertia Control C3

R5

Stage 5

Contextual Components C4

Solution

R1

Stage 1

Template Selection
T

R2

Stage 2

Motor Selection
C1

R3

Stage 3

Speed Control
C2

R4

Stage 4

Inertia Control C3

 
Fig. 4: Design methodology 

4.6 Machine Learning 

For this system, artificial neural networks (ANNs) 
(Lippman, 1987) have been chosen as the machine 
learning technique to be used for acquiring the design 
knowledge. A network may be ‘trained’ to respond to 
certain input patterns by producing some associated 
output pattern. This is achieved by repeatedly present-
ing examples of the correct combinations of inputs and 
outputs to the network, and gradually altering the con-
nection weightings so that, in the case of every exam-
ple, the input produces the desired network output.  

In the devised configuration design methodology, 
the template selection stage would be performed by a 
trained ANN. For each template, there would be trained 
networks for making the speed and inertia control se-
lections, and the contextual components selection. Only 
relevant sub-sets of the entire set of requirements form 
the inputs to each network, with the appropriate com-
ponent/slot combinations forming the output (see Fig. 
5). The outputs from each stage are collated to give the 
solution. 

4.7 Design System Implementation 

To investigate the appropriateness of this approach 
to automating the system, a prototype system has been 
constructed by the authors. The decision was made to 
limit this system to reasoning about solutions based 
upon a single template, so that the system could be rap-
idly developed and appraised. Hence, no initial tem-
plate selection stage is required. 

Twenty-five archive cases were used to form the 
training data for the remaining networks. Separate data 
sets, containing the relevant translated requirements (as 
input patterns) and components (as output patterns), are 
constructed to train the network associated with each 
stage, using the backpropagation training algorithm 
(Rumelhart, Hinton and Williams, 1986) to learn the 
relationships between the requirements and the compo-
nents. The artificial networks were implemented using 
the neural net simulation tool SNNS (Zell, 1996). The 
input (requirement) and output (solution) for an exam-
ple design case, together with a solution configuration 
is given below in Fig. 6. 

Analysis of the performance (see Section 7) – in the 
light of practical considerations of acquiring sufficient 
data for training, and the acknowledged immaturity of 
current machine learning techniques – suggested that 
alternative approaches might be usefully adopted for 
acquiring and using the necessary design knowledge. 
One such, quite different approach is detailed below for 
comparison. 

4.8 Design System Implementation 

To investigate the appropriateness of this approach 
to automating the system, a prototype system has been 
constructed by the authors. The decision was made to 
limit this system to reasoning about solutions based 
upon a single template, so that the system could be rap-
idly developed and appraised. Hence, no initial tem-
plate selection stage is required. 

Twenty-five archive cases were used to form the 
training data for the remaining networks. Separate data 
sets, containing the relevant translated requirements (as 
input patterns) and components (as output patterns), are 
constructed to train the network associated with each 
stage, using the backpropagation training algorithm 
(Rumelhart, Hinton and Williams, 1986) to learn the 
relationships between the requirements and the compo-
nents. The artificial networks were implemented using 
the neural net simulation tool SNNS (Zell, 1996). The 
input (requirement) and output (solution) for an exam-
ple design case, together with a solution configuration 
is given below in Fig. 6. 

Analysis of the performance (see Section 7) – in the 
light of practical considerations of acquiring sufficient 
data for training, and the acknowledged immaturity of 
current machine learning techniques – suggested that 
alternative approaches might be usefully adopted for 
acquiring and using the necessary design knowledge. 
One such, quite different approach is detailed below for 
comparison. 
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Stage 3
Speed Control

Component Selection

Stage 4a
Inertia Control

Component Selection

R9

R1
R2
R4
R6
R7
R8
R11

R2
R3
R4
R5
R9
R10
R12
R13
R14

Stage 1
Template Selection

Stage 2
Motor Selection

R9

START

C3?
C5?
C8?
C17?

C15?

C7?
C9?
C10?
C14?
C16?

C1 Pressure relief valve  (slot A)
C2 Pressure relief valve (A&B)
C3 Pilot-operated check valve (A)
C4 Counter-balance valve (A)
C5 Counter-balance valve (A&B)
C6 Counter-balance valve type 2 (A)
C7 Pressure compensator (C) & proportional valve (T-DCV)
C8 Deceleration valve (A&B)
C9 Meter-out valve (A)
C10 Meter-out valve (B)
C11 Check-valve combination (A-B)
C12 Variable pressure-compensated restrictor valve (D)
C13 Pressure relief valve type 2 (A-B)
C14 Variable displacement pump (T-PUMP)
C15 Motor (T-ACT)
C16 Proportional valve (T-DCV)
C17 Closed-centre spool (T-DCV)

Is R10 demanded
and C3 or C17

selected?

Stage 4b
Component Selection

to Eliminate
Inertia Control
Side-effects

R2
R9
R12
R13
R14
C3
C17

C1?
C2?
C11?
C13?

Y

N

Stage 5
Context Component

Selection

R1
to

R14

SOLUTION

C4?
C5?
C6?
C11?
C13?

R1 Continuously variable speed?  R8 Control retract speed?
R2 Control accuracy?                    R9 Motor required?
R3 Hold load stationary?               R10 Control inertia?
R4 Smooth accelerations?            R11 Efficiency paramount?
R5 Hold load on failure?                R12 Max mass
R6 Load-independent speed?       R13 Max speed
R7 Control extend speed?             R14 Plane of motion

 
Fig. 5: Detailed design methodology 

 

 
Fig. 6: An example design case. showing the requirement set, the solution set and the configuration design 
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Table 2: The parameters for describing the design requirements, the values that each can assume and the 
type of each (f = functional parameter, c = characteristic parameter) 

Parameter name 
(explanation) 

Possible 
values Type 

Continuously variable speed  
(Is the speed range to be continuously variable?) yes, no f 

Hold load stationary  
(Must there be the facility to hold the load stationary at any position?) yes, no f 

Smooth accelerations  
(Should the accelerations / decelerations of the system be jolt-free?) yes, no f 

Hold load on failure 
(Should the load be held stationary in the event of system failure?) yes, no f 

Load-independent speed 
(Should the speed be independent of magnitude of the load?) yes, no f 

Control extend speed 
(Should the speed of actuator extension be controlled?) yes, no f 

Control retract speed 
(Should the speed of actuator retraction is be controlled?) yes, no f 

Solution requires motor 
(Does the solution implement rotary motion?) yes, no f 

Inertial control 
(Should inertial effects to be controlled?) yes, no f 

Energy efficiency paramount 
(Is energy efficiency of paramount importance?) yes, no c 

Control accuracy 
(What level of control accuracy is required?) high, low c 

Maximum load 
(What is the maximum operational force/load?) high, low c 

Maximum speed 
(What is the maximum operational speed?) high, low c 

Plane of motion 
(In which plane is the motion/force to be applied?) 

horizontal, 
off-horizontal c 

 

 
5 A Case-informed Reasoning Automatic 

Configuration Design System 

The Case-Based Reasoning paradigm in AI is anal-
ogous to the use of previous design experiences to 
solve new design problems. Maher and Garza (1997) 
provide an overview of the considerable body of CBR 
research. 

Many approaches conform to a strict two-stage 
model of CBR: a design case is retrieved from the 
memory of cases, and then evaluated and adapted to the 
needs of the current problem. The current paper pre-
sents an alternative approach; rather than being used to 
adapt solutions (which requires complex, low-level 
domain knowledge), relatively simple generalised 
knowledge is used in the case-retrieval mechanism to 
attempt to identify useful elements of a number of cas-
es, combinable in constructing the new solution. Thus, 
the term case-informed reasoning has been adopted to 
punctuate the distinction between this and more con-
ventional case-based approaches. 

5.1 Requirements and Solution Representation 

The representation of the requirements for this ap-
proach is essentially the same as for the neural network 
implementation. It was recognised, here, however, that 
certain of the parameters seemed to be describing some 

aspect of the performance or characteristic of the sys-
tem to be designed as a whole (these are termed char-
acteristic parameters). In contrast to these, the remain-
ing parameters refer more directly to the functions that 
the system must fulfil (functional parameters). This 
distinction is exploited later on in the model of the de-
sign process, and illustrates how additional knowledge 
might be used in a problem-solving task. Table 2 shows 
these parameters, the values that each can take, and 
their classifications. The values of parameters are used 
to index the cases during the reasoning phase. 

The representation of the solutions is essentially 
that utilized in the ANN stage-model implementation, 
that is to say, a template which can be populated by 
components or component groups place in appropriate 
slots. 

6 A CIR Model of the Configuration De-
sign Process 

The model of the design process adopted here is 
based upon the recall and integration of elements of pre-
vious design solutions from memory, rather than the 
recall of a complete solution. Each of these elements 
appears to have solved some aspect of the design prob-
lem that is also a feature of the current problem, and, 
moreover, has done so in an (apparently) similar context. 
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6.1 Explanation Rules 

Analytical knowledge of the domain is required in 
order to decompose the case solutions into useful ele-
ments. This knowledge is in the form of explanation 
rules. Each of these rules has the form: 

 { }→∈⋅ Sxx  f (1) 

where S is the set of solution elements, and f is one of 
the functional requirements. The rule may be read as, 
‘this set of solution elements can be used to provide 
functional requirement f’. There may be a number of 
different rules for each functional requirement, reflecting 
the different ways in which these requirements can be 
achieved. In addition, individual solution elements may 
be related to more than one functional requirement. 

These rules allow the construction of hypothetical 
explanations of the manner in which a particular design 
solution achieves its functionality. In the archive of 
design examples, each design solution is paired with 
the corresponding requirements from which it was ge-
nerated. The rules explain the presence of each element 
in the solution by virtue of its satisfying (or contrib-
uting to the satisfaction of) one or more of the func-
tional requirements. 

A set of about 30 of these explanation rules was de-
veloped by analysing explicit, factual, knowledge of 
the type to be found in textbooks and handbooks. There 
are about 30 such rules, and each functional require-
ment is referred to by at least one rule. By way of an 
example, the rules for the pilot-operated check valve in 
template slot A, here abbreviated to POCV_A, are as 
follows: 
• POCV_A → hold load stationary. 
• POCV_A → hold load on failure. 

Under certain conditions, this element stops the 
flow in the system. The rules describe how this beha-
viour can be used (on its own) to satisfy one or both of 
two particular functional attributes. 

In addition, there are also rules that state: 
• CBV1_AandB → hold load stationary. 
• DECV_A&B → hold load stationary. 
• CC_DCV → hold load stationary. 

These, however, are not design rules (unlike those 
in, for example, an expert system) since, given a partic-
ular functional requirement to satisfy, they do not pro-
vide sufficient information to allow the choice to be 
made between the sets of solution elements that can be 
used to achieve that function. What is lacking is some 
indication of the context in which a certain set of ele-
ments will achieve the function: these are analytical 
rather than synthetic rules. 

One basis for making this choice lies in the archive 
of example design cases, in which the use of solution 
elements in context can be seen. 

6.2 The CIR Algorithm 

This set of explanation rules and the case-base of 
designs are used to solve new configuration design 
problems in the following manner. A new set of design 
requirements is presented to the system. Initially, the 
new design solution consists of the template alone. For 

each functional requirement that is demanded (i.e., has 
the value yes), a search is made of the case memory to 
identify those cases in which this requirement is asked 
for. If the attribute is satisfied in more than one case, 
then the best case is that which has a set of require-
ments that is the most similar in its entirety to that of 
the new problem. 

Once this best case is found, its design solution is 
examined, and, using the explanation rules, the set of 
solution elements in the circuit that provides the func-
tional requirement under consideration is identified. If 
it does not already exist in the current solution, each of 
the elements in this set is then added to the solution. 

If, however, no example of the satisfaction of a par-
ticular functional requirement exists in the case-base, 
then an explanation rule associated with the require-
ment is selected by default to suggest the solution ele-
ment(s) to use. 

The process then continues with the next functional 
requirement asked for, and so on, until all have been 
satisfied, at which point, a complete design solution is 
considered to have been constructed. 

In this system the requirements are described in 
terms of binary-valued parameters, and a simple Ham-
ming distance-type measure is applied to determine the 
‘distance’ of the set of requirements of a case from the 
new set of requirements. The number of values of cor-
responding requirement parameters that differ between 
the two sets is the distance between them. That case 
having the fewest differences from the new set is con-
sidered to be the best matching case.  

7 System Performance 

This paper has presented two different approaches 
to automating the configuration design process with the 
emphasis on illustrating the requirements and use of 
knowledge in this type of problem solving. According-
ly, and for reasons of brevity, only the key points of the 
system performance are summarised below. Exhaustive 
discussion of these and a number of other similar ap-
proaches can be found in Potter (2000). 

7.1 Stage-Model System Performance 

The performance of the system when presented with 
test cases suggests that some of the underlying associa-
tions relating elements of the requirement to the com-
ponents have been successfully learned – that is, infer-
ential domain knowledge has been acquired. However, 
in response to some of the test cases, poor design deci-
sions are made. There are a number of possible reasons 
why this is so: 

The amount of data is less than would generally be 
considered acceptable for training ANNs (and since 
few circuit designs, complete with their corresponding 
requirements, seem to be available, this may be a fea-
ture of the domain). In addition, ANNs may not be the 
most suitable form of representing the design 
knowledge, or else, valuable information may have 
been lost when making the translation of the archive 
data into numeric form required by the networks. 
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The methods of expressing both the requirements 
and the solutions may contain inappropriate elements 
(or elements described inappropriately), or, conversely 
(and especially so in the case of the requirements), may 
be missing certain elements which are vital to the com-
plete expression of this design problem.  

The stage model of the design process may be an 
inaccurate reflection of the actual process, causing poor 
decisions to be made. 

7.2 CIR System Performance 

As would be expected, given the use of the explana-
tion rules in the algorithm, this system provides solutions 
in which all the desired functionality is embodied in 
some identifiable form. To this extent, the solutions that 
are generated appear to be plausible. Nevertheless, there 
are aspects of the implementation and performance that 
bear further scrutiny, the more important of which are 
listed here. 

This approach to design synthesis relies on a number 
of features of the fluid power design task that are not 
necessarily shared by all engineering design tasks. In 
particular, the design requirements can be stated in such 
a way that their expression of the desired functionality 
can be directly related to elements or sets of elements 
within designs. This may not be true of some other de-
sign tasks. 

The elements chosen to describe the design require-
ment are relatively few in number and the same for each 
case. This impoverished description is at odds with the 
sophistication of the task itself. 

The matching algorithm is unsophisticated. Obvious-
ly, there is much potential for improving upon the meth-
odology outlined in this paper. More thought might be 
given to the order in which the functional requirements 
are considered. The rules might be embellished with 
more contextual information and, in general, the repre-
sentations used might be made more realistic. Since they 
have been used in similar situations previously, it is as-
sumed that the retrieved solution elements will be com-
patible in every case — this is unlikely to be so. 

The CIR system's performance appears to be better 
than that of the ANN system, giving consistently plausi-
ble designs. The next task is to consider how good these 
design are – that is, to what extent do the solutions 
demonstrate the application of expertise. 

8 Conclusion 

If successful automation of complex human prob-
lem-solving exemplified by engineering design is to be 
achieved then a proper understanding of the knowledge 
that is used and its application is necessary. 

This paper has presented two quite different ap-
proaches to the automation of the circuit configuration 
phase of fluid power design. The design and implemen-
tation details of the system associated with each ap-
proach illustrate the types, content and representation 
of the knowledge that is typically used by designers, 
and therefore required to be embodied in computational 
systems if successful automation is to be achieved. 

The neural network implementation shows both 
how the usual human process of problem decomposi-
tion can be adopted to provide a methodology for pro-
posing the application of strategic knowledge, and how 
machine learning can be used for acquiring and apply-
ing inferential knowledge to the design task. 

The Case-Informed Reasoning implementation il-
lustrates how previous experience – in the form of ex-
isting designs – can be analysed to furnish component-
requirement relational rules and the context necessary 
for piecing together solutions to new problems. 
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