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Abstract 

A fault classification approach is presented which considers the advantages of Time Encoded Signal Processing 
(TESP) of dynamic signals combined with the ability of Artificial Neural Networks (ANNs) to classify changes in TESP 
codes. This is demonstrated using a new TESP code approach applied to a pressure control system exhibiting both leak-
age at the actuator and a servovalve fault. It was found that the use of both pressure transducer voltage and servovalve 
drive voltage, when entered into the ANN in a parallel data structure manner, resulted in an excellent fault classification 
capability. In addition the inherent classification approach gave very good leakage discrimination for arbitrarily-set, and 
low, levels of 0, 2, 4, 6 l/min. A range of 16 different ANNs were investigated and the classification results indicate a 
preferred topology for this application. 
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Introduction 

ANNs are now well established in many disciplines 
including engineering topics such as control, modelling, 
and fault classification. They are now merely software 
tools that require no more description than 
CAD/hydraulic simulation packages. In this fluid power 
context, there has been some initiatives related to con-
dition monitoring and fault diagnosis. The process is 
conceptually simple in the sense that the ANN outputs 
represent the fault states, as close as possible, and the 
ANN inputs are representative condition signals from 
the hydraulic control system. There are some specific 
practical desires such as the use of a minimum number 
of sensors, the use of non-specialist sensors, low sensor 
cost, the ability to fault diagnose while the hydraulic 
system is in operation, and the ability to determine the 
level of the fault. These issues are being addressed and 
with an emphasis on the use of dynamic signals. This 
leads to a decision whether to use time domain signals 
or frequency domain signals, the latter perhaps more 
suited to fault-type classification, particularly on pumps 
and motors, rather than fault-level classification. 
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Early work on hydraulic systems monitoring natu-

rally considered techniques such as Fault Tree analysis, 
Failure Modes and Effects Analysis (FMEA), Expert 
Systems shells, with an initial emphasis on steady state 
behaviour combined with frequency domain analysis, 
Atkinson et al (1992). Work in the last decade of the 
20th Century then moved on to the application of 
ANNs using dynamic signals. For example, work re-
ported by Darling and Tilley (1993) considered 3 pres-
sures and 1 displacement set of transient signals from a 
valve actuator sequential circuit. A single hidden layer 
ANN with 60 neurons and 10 output neurons was 
shown to indicate the existence of different fault types, 
with a suggestion of long training times. The additional 
complication of multiple faults, and the desire to predict 
the fault level, has been considered by Stewart and 
Watton (1994, 1996). They adopted an Expert System 
Shell using a novel approach to leakage detection com-
bined with an ANN to give added confidence, particu-
larly for the multiple fault condition. Edge et al (1995) 
considered qualitative data based on steady state infor-
mation obtained from an FMEA approach, and by de-
fining discrete levels of operation such as High, Nor-
mal, Low or Zero. They then used a single-layer ANN 
with 4 input neurons, 12 neurons in the hidden layer, 
and 13 output neurons, and good results were demon-
strated even in the presence of data uncertainty. Further 
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work by Crowther et al (1998) used a single layer ANN 
having 3 input neurons, 10 hidden layer neurons, and 3 
output neurons to classify faults in a cylinder control 
system. Ramden, Weddfelt, and Palmberg (1993, 1995) 
naturally considered a frequency domain approach for 
fault diagnosis of a pump and showed a preference for 
frequency backstrum, rather than spectrum or cepstrum, 
to train an ANN to classify the new condition and 4 
fault conditions. Again the ANN had 1 hidden layer 
containing 10 neurons. Work by Le, Watton and Pham 
(1997) considered the transient signals from a cylinder 
position control system to identify three leakage faults 
together with the fault levels. They used a 6-50-21 
ANN topology to investigate four additional multiple 
fault conditions although the approach does require the 
use of fast-acting flow meters. Further work by the 
same research group (1998), and using the same posi-
tion control system, then used a Linear Predicting Cod-
ing (LPC) method to determine both the coefficients 
and the LPC cepstra for the transient signals. The mul-
tiple fault conditions were again investigated, an addi-
tional feature being the use of just the two pressure sig-
nals to detect flow leakage type and level. The number 
of input neurons depends upon the number of LPC co-
efficients used, but in all cases a single hidden layer 
 

contained 50 neurons was used. Both approaches gave 
excellent results, the LPC cepstra method giving slight-
ly better predictions using 10 LPC coefficients for each 
pressure.  

The data input approach under discussion here takes 
a new form in relation to previous ANN practice re-
garding fault diagnosis of hydraulic systems. It is based 
upon the TESP approach to characterise transient data 
utilising inherent shape parameters that embrace a 
combination of dynamic properties as described by 
Holbeche, Hughes, and King (1986) and also by Rod-
well and King (1996). An independent commercial 
package, TESPAR developed by Domain Dynamics 
Ltd UK, utilises similar fundamental principles but pro-
duces a special numerical alphabet code for classifica-
tion purposes. The alternative approach being used 
here, CARCODE, requires a number of processing 
steps as follows : 
• The transient signal of consistent length must be ze-

ro-based, and the zero crossings are classified into 
epochs of appropriate sampling intervals. Each 
epoch duration is given the descriptor (D).  

• Within each zero crossing epoch, the peak value, 
(A), the number of turning points, (T), and the ab 
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Fig. 1: The electrohydraulic pressure control system 
solute area, (I), are also recorded resulting in a dis-
tribution of each parameter. 

• Each distribution is considered to be normal and 
experience has shown that using data within ± 1 
standard deviation from the mean is sufficient for 
fault classification. Hence the modified data are 
then divided into 10 equally spaced classes, and this 
is known as the DATI string 

• This DATI string of 40 numbers, and representing 
the fault identifier from just one transducer, then 
forms one input block, with 40 associated neurons, 
to the ANN. 
This application considers a rigidly-restrained cyl-

inder pressure control system exhibiting both cylinder 
leakage and a servovalve fault. The fault diagnosis ap-
proach uses just the two possible transient signals, 
namely pressure and servovalve drive voltage, which 
are fed in parallel to the ANN following the TESP pro-
cessing procedure. The pressure signal is first differen-
tiated to produce the zero-based data and the servo-
valve signal is used directly but with the removal of any 
steady state bias term. This self-selects an ANN with 80 
input neurons, and a suitably selected internal topology 
is established as discussed later. More details of the 
CARCODE approach, including examples without the 
use of ANNs, may be found in Freebody and Watton 
(1999). 

2 The Hydraulic Circuit and Data Acqui-
sition Approach 

The pressure control system is the same as de-
scribed by Freebody and Watton (1999) and consists of 
a servovalve connected to a cylinder via a 17.3 m long  

transmission line in the laboratory set-up. This forms 
part of a more comprehensive fault diagnostic R&D 
programme using on-line data from 28 similar controls 
systems on the Hot Steel Strip Rolling Mill at Corus plc 
(formerly British Steel) Port Talbot, UK. Long trans-
mission lines are common in such applications. The ini-
tial work has concentrated on the Work Roll Bending 
pressure control circuits, and during the rolling process 
under extremely large restraining forces within the Au-
tomatic Gap Control circuit. Hence the parallel labora-
tory work used a rigidly-restrained cylinder, with a neg-
ligible back pressure, to allow a concentrated effort on 
the technique in the absence of load dynamics. Fig. 1 
shows the system schematic illustrating a comprehen-
sive computer control and computer data acquisition 
system. It should be noted that although transient flow 
rate was measured, using sensors having a frequency 
response of typically 350 Hz, the results of much work 
showed the data to be of limited use for fault diagnostic 
purposes. All signals were sampled at a frequency of 2 
kHz. Individual pressure, flow, and temperature meas-
urements were taken using manifold blocks at points 1, 
2, 3, 4 as shown in Fig. 1.  

The test data were obtained by applying step inputs 
to the system and the corresponding transient servo-
valve voltage and pressure signals were then pre-
processed as described earlier before being used for 
ANN training, validation, and testing. The servovalve 
voltage signals will also probably contain a bias voltage 
in the presence of leakage and/or other faults, hence the 
need for zero-biasing in practice. Leakage levels were 
set at 0, 2, 4, 6 l/min and a new servovalve was used 
followed by the same servovalve but with two further 
levels of flapper/nozzle erosion typical of the condition 
occurring at the Steel Mill. Only the first, and low level 
of damage, was used for this study. 
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Fig. 2: Pre-processed pressure signals for different leakage conditions and with an undamaged servovalve 
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 b) Servovalve voltage 

Fig. 3: Typical CARCODE histograms of DATI data for pressure and servovalve drive voltage 

Tests were carried out with individual faults and all 
combination of faults and some typical pre-processed 
signals are shown in Fig. 2, the pressure being meas-
ured at sample point 3 in Fig. 1. 

The developed software program automatically gen-
erates the DATI histograms by considering the statisti-
cal distribution of each parameter derived from the en-
semble of pressure recordings of equal time length. 
Some typical processed data are shown in Fig. 3 for 
both the pressure transducer and servovalve signals, for 
the ideal condition and for the condition with a leakage 
flow of 2 l/min. The particular results shown in Fig. 3 
illustrates that in practice not all components of the 
DATI string necessarily produce obvious fault diagnos-
tic information, and it is therefore more fruitful to work 
with the most significant components. It has been found 
that further processing by biasing dominant elements of 
the DATI string does help the fault diagnostic process 
although this is not rigorously essential. In the data 
shown, the D and T parameters would be reduced in 
favour of the A and I parameters via a software routine 
within CARCODE. 

3 ANN Selection and Training 

The selection of an appropriate ANN topology still 

remains somewhat of a matter of experience, although 
previous work discussed earlier does seem to converge 
to a topology having a single hidden layer. However 
using the CARCODE method requires the input parallel 
data to be entered in blocks of 40 numbers per trans-
ducer signal used. The present application only utilises 
two signals but clearly the input neuron count can be-
come large in other multi-sensor applications. Since 
earlier work at Cardiff showed good success at fault 
classification using the multilayer perceptron network, 
the same training technique was used, although there 
are other networks that may well be equally efficient. 
The networks were trained using standard error back 
propagation with conjugate gradient and batch update 
algorithms. The cross-validation method was used to 
terminate the learning process to limit the possibility of 
overtraining. Note, however, little success was achieved 
using a single hidden layer and was attributed to the 
large number of input neurons required. 

For this study a range of 16 topologies were select-
ed and tested from a large number of trials, and are 
shown in Table 1, and for each of the three fault condi-
tions as follows : 
• leakage faults (LK) only and having levels of 0, 2, 4, 

6 l/min. 
Hence the ANN will have 80 inputs and 4 outputs. 
• servovalve faults (SV) only and having levels of new 
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and “as found” low level flapper/nozzle erosion 
Hence the ANN will have 80 inputs and 2 outputs. 
• combined leakage and servovalve faults (LS) com-

posed of all elements from (LK) and (SV). 
Hence the ANN will have 80 inputs and 8 outputs. Out-
put neurons 1-4 represent no servovalve fault for the 
four leakages, and neuron outputs 5-8 represent a ser-
vovalve fault for the four leakages. 

The fault conditions are indicated in the output neu-
rons in the usual way, that is, the appropriate fault is 
indicated as an ideal “1” with all other neuron outputs 
indicated as an ideal “0”. To avoid over-training, un-
seen data was introduced after every 20 iterations to  
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Fig. 4: ANN outputs for the testing data condition--no servovalve fault and  
four leakage conditions of 0, 2, 4, 6 l/min 
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Fig. 5: ANN outputs for the testing data condition--with a servovalve fault  
and four leakage conditions of 0, 2, 4, 6 l/min 

validate the training performance, and a maximum 
number of 500 iterations were found to be adequate in 
practice. Typical testing results for the multiple-fault 
condition (LS) are shown in Fig. 4, for the good servo-
valve condition, and in Fig. 5 for the faulty servovalve 
condition. It may be seen that the classification perfor-
mance is excellent for the best topology selected as 
shown in Fig. 4 and 5. It will be seen later that not all 
the topologies selected perform equally well.  

Table 1: The ANN topologies tested for each of three 
fault conditions 

Network  
number Fault LK Fault SV Fault LS 

1 80-20-2-4 80-20-1-2 80-20-4-8 

2 80-20-4-4 80-20-2-2 80-20-8-8 

3 80-20-8-4 80-20-4-2 80-20-16-8 

4 80-20-16-4 80-20-8-2 80-20-32-8 

5 80-40-2-4 80-40-1-2 80-40-4-8 

6 80-40-4-4 80-40-2-2 80-40-8-8 

7 80-40-8-4 80-40-4-2 80-40-16-8 

8 80-40-16-4 80-40-8-2 80-40-32-8 

9 80-60-2-4 80-60-1-2 80-60-4-8 

10 80-60-4-4 80-60-2-2 80-60-8-8 

11 80-60-8-4 80-60-4-2 80-60-16-8 

12 80-60-16-4 80-60-8-2 80-60-32-8 

13 80-80-2-4 80-80-1-2 80-80-4-8 

14 80-80-4-4 80-80-2-2 80-80-8-8 

15 80-80-8-4 80-80-4-2 80-80-16-8 

16 80-80-16-4 80-80-8-2 80-80-32-8 

4 Fault Classification Performance 

In excess of 1000 data signals were available follow-
ing an extensive experimental programme. Classification 
results were obtained for the 48 ANNs used, and by ap-
plying 30 example signals not contained in the population 
of archetype data used for training and testing. Important 
aspects of the study are shown in Table 2. 

It may be deduced from Table 2 that the classifica-
tion performance is excellent provided the most appro-
priate network is selected. All the networks indicated as 
“Best” required training times of 12-13 minutes, those 
indicated as “Worst” required training times of 25-38 
minutes simply because of the increased number of 
nodes. Classifying the servovalve fault presented no 
problems for all the networks used, apart from the vari-
ation in training times. It is also evident that there is a 
clear indication of the preferred topology for all cases 
considered, this being 20 neurons in the first layer and 

the number of neurons in the second layer being more-
or-less equal to the number of output neurons.  

Table 2: ANN classification performance summary 

Fault Network  
Topology 

% identified 

Leakage 
 LK 

Best 80-20-4-4 
Worst 80-80-2-4 

98 
70 

Average for 
all tests 90 

Servovalve
 SV 

Best 80-20-1-2 
Worst 80-80-8-2 

100 
100 

Average for 
all tests 100 

Combined 
 LS 

Best 80-20-8-8 
Worst 80-80-4-8 

100 
63 

Average for 
all tests 90 

5 Conclusions 

• The TESP method has proved useful in adding yet 
another tool for condition monitoring and fault di-
agnosis of hydraulic control systems. In this sense, it 
can add a further measure of confidence when used 
in conjunction with other techniques. 

• The technique requires sufficient dynamic infor-
mation in the transient response to give fault dis-
crimination information. In this sense, the presence 
of transmission line dynamics can be a useful fea-
ture. 

• The ANN approach complements earlier work by 
the authors using the same data but analysed using 
statistical methods, and the results are almost identi-
cal. This gives further confidence in the ANN clas-
sification technique. 

• The TESP approach requires careful consideration 
of the signal processing used, but results have 
shown excellent fault classification even with sparse 
elements of the DATI data string. 

• A clear topology emerged from this study, and rea-
sonably consistent for all fault conditions. For two 
transient signals, the first hidden layer should con-
tain 20 neurons and the second hidden layer should 
contain typically as many as the output layer. 
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