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Abstract 

The paper presents a general procedure for the computerized design of gerotor lubricating pumps for internal com-
bustion engines. The approach is applied to gerotor gearings with circular arc profiles, nowadays the most used, but also 
to pumps featuring novel parabola arc profiles. Obtained results allow, on one hand, to guide the designer in selecting 
gerotor (circular arc) prototypes best suited for a given application and, on the other hand, to scrutinize novel profiles by 
the same generalized approach. 
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1 Introduction 

The continuous evolution of modern automotive 
engines sets stringent requirements on lubricating 
pumps in terms of specific displacement (referred to 
size), absorbed power and fluidborne noise. Over time, 
external and internal gear pumps have been replaced by 
more compact designs featuring Gerotor or Duocentric 
gearings, the latter warranting a 20% increase in dis-
placement at equal size and number of teeth. Neverthe-
less, several problems are still open. As an example, 
practically all pumps exhibit low volumetric efficien-
cies at high rotational speeds owing to incomplete 
chambers filling. Consequently excessive fluidborne 
noise, fatigue and possible breakdowns may follow. A 
need then exists from the early stages of design, to cope 
with requirements set forth by the given application. 
Through the process of profiles generation, in concert 
with a general approach as proposed by Litvin (1994), 
Litvin (1996), one has to ascertain design parameters to 
comply with criteria regarding: (a) displacement and 
size; (b) gearings contact stresses and sliding velocity; 
(c) variable volume chambers filling. A high specific 
displacement pump permits to satisfy oil flow rate 
demand at hot idling conditions of the engine, by far 
the most critical. The impact of design parameters on 
gears contact stresses have been studied by Colbourne 
(1976): a change in gears proportioning through an  
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increase of the minimum radius of curvature sensibly 
lowers contact stresses without putting a penalty on the 
yield in flow rate. However, since stresses also depend 
on the number of teeth, the generating circle radius and 
tolerances, the design phase must take these into ac-
count. The pump chambers filling process is basically 
influenced by volumes rate of change and it is then 
possible to screen specific profiles that, other condi-
tions being the same, lead to more favourable volume 
variation rates. This paper will detail a generalized 
procedure for the generation of gerotor pump profiles 
meeting all cited requirements. At first the methodolo-
gy will be applied to the well known circular pin gear 
profiles and, then, by way of example, to a new gear 
profiles family originated by parabolic pin. This, hope-
fully, will open the way to identify new prototypes of 
lubricating pumps worth of further investigations in-
volving simulation as well as experimental analyses. 

2 Circular Pin Gear Profile Generation 

Consider two gears rotating in the same direction 
about parallel axes O1 and O2 at a constant ratio of 
angular velocities ω(1)  and  ω(2). The gears differ by one 
in their number of teeth (gerotor) and their centrodes 
are circles, of radii r1 and r2, in internal tangency. 
Coordinate systems S1 (O1, x1, y1, z1 ),  S2 (O2, x2, y2, 
z2)  
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and (S f , Of,   xf , yf , zf) are rigidly connected to the 
external gear (body 1), the internal gear (body 2) and 
the pump casing, respectively (Fig. 1).  

2.1 Internal Gear Profile Σ 2 
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Fig. 1: Generation of trochoidal curves with circular arcs  

Let us consider a cycloidal profile (trochoid), gen-
erated in the coordinate system S2 by a pin circle Σ 1  
centered in C with radius ρ, rigidly connected to S1. 
Point I is the instantaneous center of rotation. The tro-
choid curve Σ 2 conjugated with the generating circle 
Σ 1 must be determined in the interval φ = 2π / N1, 
being N1 the number of generating pins and φ the rota-
tional angle of the gear with which pins are rigidly 
connected, i.e., φ = φ1. Using homogeneous coordinates 
the position vector of point M1 of the generating pin 
Σ 1 is (Fig. 1): 

 [ ]1 1 1( ) ( ) sin cos 0 1 Tr M O a′θ = − = ρ θ − ρ θ  (1) 

The superscript T means that [r1(θ)]T is a transpose 
matrix with respect to r1( θ). By coordinate transfor-
mation from S1 to S2 we have:  
 2 1 2 21 1( , ) ( ) ( ) ( )r M O M rθ φ = − = φ θ  (2) 

where matrix M21 performs a co-ordinate transfor-
mation from S1 to S2 and e = r1 – r2 is the eccentricity, 
i.e. the distance separating centers O1 and O2 .:  

 
1 2 1 2 2

1 2 1 2 2
21

cos( ) sin( ) 0 sin
sin( ) cos( ) 0 cos

( )
0 0 1 0
0 0 0 1

e
e

M

φ − φ − φ − φ − φ 
 φ − φ φ − φ − φ θ =
 
 
  

  (3) 

To determine the internal gear profile an additional 
equation is needed to relate angle θ, describing the 
generating circle, and angle  the generalized parameter 
of motion, i.e., the equation of meshing. There are three 
alternative approaches for the derivation of the equa-
tion of meshing, Litvin (1996):  
• (applied in differential geometry) The rank of the 

Jacobian matrix formed with the first derivatives 
of r2 (θ, φ) with respect to θ and φ is one.  

• (in theory of gearing) The normal component val-

ue of the sliding velocity vector in relative motion 
is zero, i.e. the sliding velocity is tangent to the in-
ternal gear profile Σ2 

• (based on Lewis' theorem) The normal to pin cir-
cle Σ1 at the point of tangency of Σ1 and Σ2 passes 
through the instantaneous centre of rotation I. Re-
gardless of the choice one arrives at the following 
equation of meshing: 

 1( , ) sin( ) sin 0f r aθ φ = θ + φ − θ =  (4) 

From Eq. (4) angle θ can be expressed as a function 
of the generalized parameter of motion φ: 

 sintan
cos

φ
θ =

λ − φ
 with 

1

a
r

λ =   (5) 

and by insertion in r1 allows the determination of r2. 
Worth of note is the fact that Eq. (5) provides two solu-
tions for values of θ differing by 180°. This conforms 
to points M1 and M2 of Fig. 1. What matters here is the 
interior point (M1), whereby the working portion of the 
generating pin is a circular arc swept back and forth by 
the contact point M1.  
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Fig. 2: Inflection and stationary points of curvature radius 

for the internal gear profile generated with pin  
circles a = 34.75 mm, ρ = 7.5 mm, e = 2.2 mm = 
N1 = 11 

Curvature of Σ2. The curvature κ2 of curve Σ2 can 
be represented, Litvin (1996), with the sign convention 
that curvature radius is negative, if curve κ 2 is convex 
and positive if concave, by the equation  

 
2 3 / 2

1 21

2 21 21 21
2

( 1)( 2 cos 1)1

( 1) (2 1) cos

r τ − λ − λ φ +
= − − ρ

κ − τ − λ − τ + τ − λ φ
  

where 

  
(2)
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21 (1)

2 1 2 11
N N r
N N r

φω
τ = = = = =

− φω
 and 

1

a
r

λ =  (6) 

Figure 2 shows the curvature radius of the inner ro-
tor of a commercially available lubricating pump. 

Inflection Points: IP. Points of the trochoidal curve 

Σ2 where 
2

1
→ ∞

κ
 qualify as inflection points (see 

points IP in Fig. 2). Traversing inflection points a sign 
change is observed in the curvature radius. By enforc-
ing the existence of inflection points, so that a regular 
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sequence of concave-convex branches in the gear pro-
file is obtained, values of λ must be constrained as 
follows: 

 21
1

21

1
1

Nτ
≤ λ ≤ =

τ −
 (7) 

Stationary points: SP. These are identified on the in-
ternal gear profile Σ2 under the circumstance of maxi-
ma or minima values of the curvature radius, that is, 
when: 

( ) ( ) ( )2
21 21 21

2

d 1 sin 2 2 1 cos 1 0
d

 
 = φ − τ λ + τ − λ φ − τ + =   φ κ 

 

  (8) 

From Eq. (8) stationary points on Σ2 (points SP in 
Fig. 2) are identified at locations determined through 
the following relations: 

 sin 0φ =   and  
( )

( )

2
21 21

21

2 1
cos

2 1
τ − λ + τ +

φ =
τ − λ

 (9) 

Singularities of Σ2. The normal to the generated 
curve Σ2 at a singular point is undefined and at that 
point Σ2 may exhibit two branches. Singular points are 
therefore not admissible and should be avoided by 
proper selection of design parameters. A singular point 
on Σ2 occurs if the relative velocity vr

( 2)  of the contact 
point becomes zero. Since vr

( 2) is the vector sum of the 
contact point velocity relative to Σ 1 and the profiles 
sliding velocity, the above condition may be written as: 

 (2) (1) (12) 0r rν = ν + ν =  (10) 

that leads to: 

 ( ) ( )1 21
dθcos cos 1 cos 0
dφ

a r− ρ θ − φ τ − + ρ θ =  (11) 

This, together with (4), the equation of meshing, al-
lows determination of boundaries for ρ to avoid singu-
larities on Σ2 . These are so expressed: 

( )( )
( ) ( )

( ) ( )
( )

223
21 11 21

3 / 22
21 21 21 21

1 271 1
1 2 1 2 1

a rr τ − −τ − λ −
− ≤ ρ ≤

λ − τ − τ + τ − λ τ −
 

  (12) 

When ρ equals either limits the radius of curvature 
1/κ2 becomes zero in coincidence with stationary 
points. Outside this range and within the portion delim-
ited by the two inflection points IP1and IP2, a sign 
change is observed in 1/κ2 and the profile is no more 
regular.  

2.2 External Gear Profile  Σ1
´ 

The external gear profile  Σ1
´ is the envelope of  Σ2 

swept in S1 

 ( ) ( ) ( )1 12 2, , ,r M rθ φ ψ = ψ θ φ  (13a) 

together with  
 ( ) ( )1, sin sin 0f r aθ φ = θ + φ − θ =  (13b) 

Angles ψ1 = ψ and ψ2 = τ21ψ1 represent rotation an-

gles of Σ2 and  Σ1 about their respective centres O2 and 
O1 . 
The co-ordinate transformation matrix M12(ψ) is simi-
lar to M12(φ) = M21

-1(φ) where φ = ψ.  
Based on the equation of meshing between Σ2 and Σ1 
derived using one of the three alternative approaches 
mentioned previously: 

( ) ( ) ( )1 2 2 1, , sin sin 0F θ φ ψ = θ + φ − φ + ψ − θ + φ =  (14) 

two solutions can be obtained for ψ2 corresponding 
to the two branches of the envelope Σ1´ : 
 2 2 2 mψ = φ + π⋅  
 ( ) ( )2 2 12 1 2m′ψ = φ + + π − θ + φ  (15) 

where m = 0, 1, 2, ..., N1-1 

2.3 Line of Contact 

At every instant, the mating gear profiles are in con-
tact along a path called the contact line. This path may 
be thought of as the trace of contact points of the exter-
nal gear as seen by an observer fixed to co-ordinate 
system S f  (see Fig. 1):  
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Fig. 3: Profiles and geometric parameters of gearings 

 ( ) ( ) ( )f f1 1,r M rθ φ = φ θ  (16) 

where Mf 1 is the transformation matrix: 

 ( )

( ) ( )
( ) ( )

f1

cos sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

M

φ − φ 
 φ φ φ =
 
 
  

 (17) 

Complying with conditions (7) and (12) it is feasible to 
generate gerotor gearings of any size that show a cor-
rect meshing (Fig. 3). 

2.4 Gears Design Criteria 

However, the search for gearings design parameters 
appropriate to a specific applications remains too ex-
tensive. Fixing the number of teeth of the external gear 
N1, three quantities need still be defined to arrive at a 
complete characterization of the gearing and precisely 
α, ρ and e. An additional condition must be stated to 
complement inequalities (7) and (12). Since in gerotor 
lubricating pumps the outside diameter of the external 
gear is often constrained, the missing condition can be 
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so written (Fig. 3):    
 2er a e= − ρ + ⋅  (18) 

Things so standing, the problem can be phrased as 
follows: given N1 and re, find α, ρ and e on grounds of 
conditions (7), (12) and (18). As an example, consider 
the case of a pump with N1 = 11 and re= 32 mm. Fig. 4 
shows compatible intervals of the three parameters as 
functions of λ = a/r1. Black dots indicate values select-
ed for the lubricating pump of the Fire 1200 engine, 
Fabiani (1998). Considering that the problem has dif-
ferent and feasible solutions, further constraints must 
be exercised to arrive at an optimal design of the gear-
ings. 

1 2 3
0

30

60

a

λ

e

3

1.5

0

ρ

e
[m

m
]

a,
ρ

[m
m

]

 
Fig. 4: Admissible ranges of design parameters for a gear-

ing with N1 = 11 and re = 32 mm 

Criteria reflex-ive of specific practical requirements are 
based on: 
• displacement -> flow rate;  
• sliding velocity -> wear of materials;  
• kinematic flow ripple -> fluidborne noise;  
• variable volume chambers filling -> air release 

and cavitation -> airborne noise;  
• contact stresses -> wear of materials.  

Profiles sliding velocity can be evaluated as fol-
lows, Litvin (1994), Litvin (1996): 

 ( )
1

(12) (1)
1 1 21 1

cos cos
1 sin sin

0

a r
r

− ρ θ − φ 
 ν = ω τ − −ρ θ + φ 
  

  (19) 

 (12)
1sν = ν  (20) 

The maximum admissible value of sliding velocity 
can be procured from manufacturing data of commer-
cial pumps.  

Kinematic flow ripple can be determined from the 
ideal flow rate of the pump consequent to chambers 
volumes rate of change:  

 (2)
1

1

d
d

n VQ = −ω
φ∑   (21) 

where n is the number of chambers simultaneously 
connected to delivery (ideal port timing being as-
sumed). As a measure of flow fluctuations a flow ripple 
index is introduced, defined in the usual way:  

 max min

av

Q Q
Q
−

ε =  (22) 

Volume variations can be expediently evaluated via 
the vector rays method, Fabiani (1998). Vector rays 
connect gears centres with profiles contact points: the 
net volume variation of each chamber, given by the 
area change multiplied by gears thickness H, comes 
from the summation of individual contributions of the 
two rotors. With reference to volumes Vi and Ve in Fig. 
5 we have: 

 d dd
d d d

e iV VV
= +

φ φ φ
 

 ( ) ( ) ( ) ( ){ }2 2 2 2(1) (1) (2) (2)
A B B A 21

d 1
d 2
V H    = ρ − ρ + ρ − ρ τ      φ

 (23) 

Knowing the derivative (23), integration yields 
chamber volume and thus displacement. The accuracy 
of the method is high and it is addressed elsewhere, 
Fabiani (1998). As to chambers filling, writing the 
momentum equation in the axial direction of the cham-
ber, it is possible to evaluate the pressure drop required 
to achieve its complete filling, Singh (1991), Mancò 
(1999).  

 
2

(2) 2
max 1

d / d( )
( )

Vp H
V

 φ
∆ = ρ ω ⋅ ⋅ φ 

  (24) 

with ρ = oil density 
Equation (24) highlights the fact that when V( φ), or 

more precisely, the flow area, is small, pressure drop 
∆p max climbs to very high values, this occurring at the 
beginning as well as at the end of the suction phase. 
One simplifying hypothesis that has been made lies in 
assuming the minimum chamber volume as being a 
constant fraction (2.5%) of displacement.  
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Fig. 5: Vector rays for the evaluation of volume variations 

Contact stresses have been studied, among others, 
by Colbourne (1976). Most influential parameters were 
shown to be the operating pressure, the number of teeth 
and the minimum radius of curvature of the internal 
gear. Owing to the fact that for lubricating pumps oil 
pressure is relatively low, contact stresses should not be 
of concern. For this reason only the minimum radius of 
curvature ρmin (that should preferably be high) has been 
accounted as a decision variable in gearings design. 
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2.5 Calculated Results  

Fig. 6 shows a collection of admissible ranges for 
design decision variables of a gerotor pump 
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Fig. 6: Influence of design parameters of a pin circle 

gerotor gearing with N1 = 11 and re = 32 mm on 
displacement V, flow ripple index ε, profiles sliding 
velocity vs, minimum radius of curvature of the in-
ternal gear profile ρ min, and vane filling capacity 
∆pmax (right axis) versus circular pin radius at con-
stant λ 

featuring N1 = 11, and re = 32 mm gears thickness H = 
10 mm. For the calculation of ∆pmax and vs a maximum 
internal gear angular speed of ω2 = 200π rad/s has been 
considered, i.e., the same of the engine if the pump is 
crankshaft mounted. Data are plotted as functions of 
ρ and  λ = a/r1. 
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Fig. 7: Displacement, ρmin, sliding velocity vs (left axis) 

and ε, ∆pmax (right axis) versus number of teeth in 
external gear with λ=1.5, ρ / r1 = 0.3, re 32 mm = 

Of relevance is the fact that, at constant λ, displace-
ment increases almost linearly with ρ but, at constant  ρ, 
decreases as λ is increased. These outcomes are only in 
partial agreement with those published by Beard (1985), 
Beard (1989). In fact, varying the radius of the generat-
ing circle at a given λ, 1.2 ≤ λ ≤ 6, Beard (1989) found 
that the influence on flow and displacement is minimal 
(less than 1%). Conversely in Beard (1985) a confirma-
tion is given of a decrease in displacement when λ is 
increased. Sliding velocity and flow ripple behave as 

displacement: both increase with ρ but lessen with  λ. An 
opposite behaviour is found for the minimum radius of 
curvature of the internal gear ρmin and the pressure drop 
needed to assure complete filling of chambers. In fact, 
both decrease as ρ is increased, yet, at constant ρ, both 
increase with  λ. The influence of another design param-
eter, i. e., the number of pumping elements N1 is brought 
to evidence in Fig. 7, where, for given size re, λ  and the 
ratio ρ/r1, N1 has been varied from 3 to 15. Although 
Fig. 7 is bound to explicit numerical values for the three 
parameters, trends being shown partake of generality.  
• Displacement V. The falling off of pump displace-

ment as the number of variable volume chambers is 
increased is clearly evident. 

• Minimum radius of curvature ρmin. Even sharper is 
the drop in the minimum radius of curvature of the 
internal gear profile with N1, this being somewhat 
alleviated by the fact that a higher number of teeth 
(reasonably one half) are in mesh and share the to-
tal load. 

• Profiles sliding velocity vs. This becomes higher 
the lower is the number of teeth and reaches severe 
values at the low end of the range (rotational speed 
of 6000 rpm and crankshaft mounted internal gear). 

• Flow ripple index ε. As mentioned earlier in the 
paper an ideal timing has been considered in the 
appraisal of instantaneous flow contributions to de-
livery. One then typically observes lower irregulari-
ties in connection with an odd number of chambers 
and at the same time a clear cut tendency towards a 
progressive reduction in flow ripple index as the 
number of chambers is increased (in the limit ε → 0 
as N1  → ∞). However, simulation analyses, Rundo 
(1996-1998), Mancò (1999), have shown that, due 
to account being taken of real timing and porting, 
oil compressibility and leakages, the advantage of 
odd vs even chambers in providing lower irregulari-
ties is not so apparent. 

• Chamber filling potential ∆pmax. In this respect, a 
meaningful parameter is the maximum pressure 
drop required to provide adequate filling at the 
highest pump speed. As the number of chambers is 
increased, filling becomes progressively more prob-
lematic, this being endorsed by specific in depth in-
vestigations, Mancò (1999). 

An advantage of gerotor lubricating pumps, as oppo-
site to external gear units, lies in the possibility of their 
direct mounting on the IC engine shaft. However, this 
entails an additional constraint in gearing design. In fact, 
beside the external space limit typified by re, an internal 
one expressed by ri (see Fig. 3) must also be accounted 
as determined by the IC engine shaft dia-meter as well as 
by dimensions associated with the inner rotor alignment 
and sealing of pressurized chambers. The external radius 
of the external gear re and the internal radius of the in-
ternal gear r i are correlated as follows (Fig. 3) 
 i e 3r r e= − ⋅  (25) 

This, inserted in (18), leads to a diverse and possi-
bly more restrictive upper boundary, than that ex-
pressed in (12), for the ratio: 
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Fig. 8: re=32 mm, r i=22.5 mm, and maximum displace-

ment 

Reasoning as in preceding examples, the case is 
now considered of a pump unit that must comply with 
the following, more restrictive, specifications: re=32 
mm and r i=22.5 mm. Aiming at maximizing displace-
ment, Fig. 8 shows attainable results based on the num-
ber of chambers in the gearing. Since gears possessing 
less than 8 chambers do not fulfill the space require-
ment these have not been reported. When the number 
of chambers exceeds 9 the constraint due to the internal 
diameter is not influential. 

3 Parabola Arc Gear Profiles Generation 

This analysis is grounded on Fig. 9, similar to Fig. 1, 
with the exception of the pin circle being replaced by a 
parabolic pin. In polar co-ordinates the equation of the 
parabola with parameter and focus F ≡ (0, a) is (see 
enlarged detail at left in Fig. 9): 

 2
1 cos

pFP r
θ

= =
+

 (27) 

3.1 Internal Gear Profile Σ2 

In co-ordinate system S1 the parametric equation of 
the parabola pin is: 

 ( )1 2 tan tan 0 1
2 2

T

r p a p pθ θθ  = − +  
 (28) 

The angle that the unit normal n1
( 1)  forms with po-

lar axis is θ/2, anticlockwise rotation is assumed posi-
tive. Point P, point N [with co-ordinates 0, y + 2 p): 
intersection of the normal to the parabola at point P 
with polar axis] and the centre of curvature C are all 
aligned and belong to the normal at point P. The fourth 
point in line: I ≡ (r1 sin φ, r1 cos φ) is the instantaneous 
centre of rotation. 
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Fig. 9: Generation of trochoid curves with parabola arcs (at left an enlarged view of the parabolic pin) 
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It is possible to obtain the equation of meshing con-
sidering that the projection of sliding velocity on the 
normal must be zero, i.e.: 

 (1) (12)
1 1 0n ν⋅ =  (29) 

The equation of the unit normal to the parabola at 
point P is: 

 (1)
1 1 1sin cos

2 2
Nn i j
N

θ θ
= = −  (30) 

since the normal to the parabolic pin is: 

 
3 2

sin
2

cos cos
2 2

p pN T k i j

θ

= × = ⋅ − ⋅
θ θ

  

where 

 
3 2

sin
2

cos cos
2 2

p pN T k i j

θ

= × = ⋅ − ⋅
θ θ

  (31) 

The sliding velocity of the mating surfaces  Σ1 and 
 Σ2 in the contact point can be calculated in the co-
ordinate system S1 as follows : 

 
( )

(12) (1) (2) (2)
1 1 1 1 1 2 1

2
1

(1)
1 21 1

tan cos
2

1 2 tan sin
2
0

r O O

a p p r

p r

 ν = ω − ω × − × ω 
θ − + − φ 

 
θ = ω τ − − + φ 

 
 
  

 (32) 

Applying Eq. (29) it is possible to obtain the equa-
tion of meshing: 

 
Fig. 10: Line of contact and profile of the internal gear 

generated with parabolic arcs. N1=11, a=31.71 
mm, p=4 mm, re=32 mm (at left an enlarged view 
of profile singularity) 

 ( )3
1 1tan cos tan sin 0

2 2
p a r p rθ θ

+ − φ + − φ =   (33) 

that leads to express θ as a function of φ: 

 
33

33

222 tan
3 22

a
p

 β + γδ θ = − − 
β + γ  

  (34) 

where 

      1 cos ;a p rδ = + − φ  
 2

127 sinp rβ = φ   

and  

 3 3 4 2 2
1108 729 sinp p rγ = δ + φ  

This, coupled to an equation similar to Eq. (2), 
permits to determine the internal gear profile (Fig. 10). 

3.2 Curvature of Σ2 

The curvature of the generated profile can be ex-
pressed as in Litvin (1994): 

 (2) (2)
2 r rnκ ν = −    (35) 

being, respectively, vr
( 2)  and (2)

rn the relative veloci-
ties on  Σ2  of the contact point and of the tip of the unit 
normal. 

The relative velocity of the contact point on  Σ1 in 
the co-ordinate system S1 is: 

 ( )
1

(1)
1

3

cos2 1 d2
2 dcos sin2 2

r
pr

t

θ 
  θ

ν = θ = ⋅ θ θ 
  

   (36) 

while the velocity of the same contact point on Σ2 is 
equal to the sum of relative velocity on Σ1 and sliding 
velocity: 

 ( ) ( )(2) 1 12
r rν = ν + ν   (37) 

In effect, to the end that contact continuity be pre-
served between gears, the absolute velocity of the point 
of contact must be the same for both gears: 

 ( ) ( )(1) (1) (2) 2abs
r tr r trν = ν + ν = ν + ν   (38) 

and hence 

 ( ) ( ) ( ) ( ) ( ) ( )2 1 1 2 1 12
r r tr tr rν = ν + ν − ν = ν + ν   (39) 

By insertion of Eq. (36) and (32) into Eq. (37) we 
obtain: 

 

( ) ( ) ( )

( ) ( )

1

2 1 2
1 1

3

2
1

1
1 21

3
1

cos2 1 d 2
2 dcos sin2 2

cos 3 tan
21

sin 2 tan
2

r
p

t

a r p p

r p

θ 
 θ ν = + ω − ω   θ θ   
  

φ − φ + + 
+ω τ −  

θ φ +  

  (40) 

By analogous reasoning, the velocity of the unit 
normal to the contact point in the co-ordinate system 
relative to the internal gear can be evaluated in S1: 
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( ) ( ) ( ) ( ) ( ) cos12 1 21 d 22 1
2 d sin

2

n n nr r t

θ 
  θ

= + ω × = + ω − ω    θ  
  

  (41) 

where the time derivative of θ stems from differentia-
tion of the equation of meshing (33). 
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Fig. 11: Inflection and stationary points on the curvature of 

the internal gear generated through parabola arcs: 
a=31.35 mm, p=3.75 mm, e=2.2 mm, N1=11  

Applying Rodrigues formula (35) we obtain the ra-
dius of curvature of the internal gear: 

( )

( )

2
1

21
3 22

1

21
2

1

3 tan cos1 2 21
cos cos sin tan cos2 2 2 1 cos

23 tan cos
2

a p p rp

r

a p p r

θ
+ + − φ

= − − τ − ⋅
θκ  θ θ  φ − φ   θ  + − τ

θ + + − φ  

  

  (42) 

The plot of the radius of curvature 1 ⁄ κ 2 (Fig. 11) 
appears similar to that shown earlier in this paper (Fig. 
2). However, in this instance the circumstance is high 

lighted where, purposely, a negative stationary point 
SP3 occurs consequent to specific proportioning. A 
singularity is therefore present along the profile (see 
Fig. 10). 

3.3 Calculated Results 

By the same line of reasoning as applied for circular arc 
profiles and following identical proportioning (as stated 
in Fig. 6) and evaluation criteria, results shown in Fig. 
12 have been obtained. These are only marginally sur-
prising. In fact, Colbourne (1976) has analysed circular, 
elliptic and sinusoidal generating curves deciding that 
the teeth shape has only a minor influence on the flow 
rate of ensuing pumps. Conversely, Fig. 12 brings to 
evidence displacement values sensibly smaller than 
those shown in Fig. 6. This leads to the conclusion that 
precise constraints do exist for the generating curve 
with respect to the attainable displacement. 

However, if one proceeds from the specification of 
a definite target displacement, the evaluation of the 
remainder of decision variables (e.g. the flow ripple 
index, the chambers filling potential) could lead to-
wards unconventional solutions. 

4 Conclusions 

The paper addressed the generation of gerotor gear-
ings profiles for automotive engines lubrication pumps, 
even if, inter alia, the presented methodology applies, 
as well, to all gerotor and, with minor modification, 
orbit units. 

Beside profiles generated by circular pins, the case 
of parabolic pins has also been considered. Results 
have proved that parameters selected for pump evalua-
tion, and primarily displacement, are sensitive to the 
kind of generating pin. In more detail a factual su- 
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Fig. 12: Influence of design parameters of a parabolic arc gerotor gearing with N1=11 and re=32 [ mm]  on 

displacement V, flow ripple index ε, profiles sliding velocity  vs, minimum radius of curvature of the 
internal gear profile ρ min, and vane filling capacity ∆p max, as function of p, focus to vertex distance 
in the pin. 
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periority emerged for currently adopted profiles, i.e. 
circular generating pin. 

The procedure is straightforward and applicable to 
other and novel profiles permitting to progress with 
inquiries aimed at the achievement of possibly better 
performance. Moreover, remaining at the current sce-
nario of circular arc pumps, it also qualifies as a suita-
ble guide for sorting out proper parameters for new 
prototypes deserving specific and more in depth re-
searches granted from simulation and testing. 

Nomenclature 

a distance of pin circle Σ 1 center (Fig. 1) or 
of pin parabola fo (12)

iω cus (Fig. 9) from 
O 1 

maxp∆  maximum pressure drop required to 
achieve complete chamber filling 

e eccentricity, the shortest center distance 
between body 1 and body 2 

H gears thickness 
M ij (φ)   coordinate transformation matrix from S j 

to S i 
N Normal vector to Σ 1 in S 1 

( )j
rn  relative velocity of unit normal to profile 

Σ j 
N i number of teeth of the external ( i=1 ) or 

internal ( i=2 ) gear 
(1)
in  unit normal to Σ 1 in coordinate system S 

i 
O i origin of coordinate system S i 
p parameter in parabolic pin definition: 

focal distance from vertex (Fig. 9) 
Q ideal volumetric flow rate 
Qmax maximum value of instantaneous flow 

rate 
Qmin minimum value of instantaneous flow rate 
Qav mean value of instantaneous flow rate 
r i radius of centrode of external gear ( i=1) 

and internal gear ( i=2 ) 
r i position vector of profile Σ i in S i 
re outer radius of the external gear (Fig. 3) 
r i inner radius of the internal gear (Fig. 3) 
S i coordinate system fixed to the external ( i 

= 1 ) or internal ( i = 2 ) gear or pump 
case ( i = f ) . 

T tangent vector to Σ 1 
V pump displacement 

(12)v  profiles sliding velocity 
( )absv  point of contact absolute velocity 

V(φ) variable chamber volume 

1

(1)
rv  velocity of contact point in its relative 

motion over the external gear profile in 
S1 

(1)
rv  velocity of contact point in its relative 

motion over the external gear profile 
1

(2)
rv  velocity of contact point in its relative 

motion over the internal gear profile in S1 
(2)
rv  velocity of contact point in its relative 

motion over the internal gear profile 

vs sliding velocity modulus 
(1)
trv  contact point velocity in its transfer mo-

tion with the external gear profile 
(2)
trv  contact point velocity in its transfer mo-

tion with the internal gear profile 
ε flow ripple index 
φ generalized parameter of motion 
φ i angular position of external( i=1) or inter-

nal ( i=2 ) gear 
κ2 curvature of the internal gear profile 
θ angle between unit vector j 1 and unit 

normal 
( )i
Kρ  vector ray connecting rotor (i=1,2 ) center 

to two consecutive contact points 
ρ  radius of generating pin circle 

i∑  pin circle ( i=1) or pin parabola ( i=2) 
internal gear teeth profile 

1∑´  envelope to the family curves Σ 2 
( )k
iω  angular velocity of external ( k=1 ) or 

internal gear ( k=2 ) in S i 
(12)
iω  angular velocity in relative motion of 

body 1 with respect to body 2 in S i 
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