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Abstract: 

Leakages and valve faults are among the most common faults in hydraulic systems. This paper studies the real-time 

detection and isolation of certain leakage and valve faults based on the results obtained in part one. In the first part, the 

mathematical model of a hydraulic test bed was analysed with Global Sensitivity Analysis to facilitate a systematic and 

verified approach to model-based condition monitoring. In this paper, an Unscented Kalman Filter-based Fault Detec-

tion and Isolation scheme for leakage and valve faults of a generic servo valve-controlled hydraulic cylinder is devised. 

Compared to existing literature, the leakage and valve faults are decoupled from cylinder static and dynamic loading 

which makes the results generic and applicable to any servo valve-controlled hydraulic cylinder. Moreover, a more 

comprehensive set of fault patterns for the detection and isolation of leakages and valve faults with experimental and 

simulation results are presented. We show that detecting an external leakage of as small as 0.17 l/min is possible in 

some cases, but the accuracy of the method varies considerably. We also report why the isolation of valve faults from 

leakages is very difficult. 
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1 Introduction 

The idea of model-based condition monitoring is to 

create a model output ŷ(k), which is subtracted from 

actual measurement y(k) to create a residual r(k) reveal-

ing the health of the system (Isermann, 2006). If the 

model is ideal, the residual remains at zero when the 

system is operating correctly. But when a fault is intro-

duced, the residual deviates from zero, which is noticed 

by the fault detection process. Then the fault isolation 

process takes over and localizes the cause of the fault. 

The scheme as a whole is called Fault Detection and 

Isolation (FDI), see Fig. 1. 

In practice, measurements are noisy and perfect 

plant models are not possible. Therefore discrepancy 

between measured and modelled outputs is to be ex-

pected. For this reason state estimators (or Kalman 

Filters) which can consider modelling errors, measure-

ment noise, and utilize measurements to correct model 

predictions are common in condition monitoring (An et 

al., 2008; Sepasi et al., 2010). 
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Fig. 1:  The model-based FDI scheme 

Previously, An and Sepehri (2008) proposed a 

method using a fault-free Extended Kalman Filter 

(EKF) to detect leakages with actuators under unknown 

external loading. Using the EKF to estimate the exter-

nal force, they showed that external leakages out of the 

system and internal leakages across cylinder chambers 

as small as 0.25 l/min could be detected and isolated. 

Their approach was proven to work well with sinusoi-

dal and fairly well with pseudorandom inputs. 
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More recently, Sepasi and Sassani (2010) applied 

the Unscented Kalman Filter (UKF) to detect leakages 

and load changes from a hydraulic system with a con-

stant, known external force. They could detect and 

isolate leakage faults and load changes. However, re-

sults were provided using only sinusoidal inputs. 

Chen (2010) devised a scheme to detect and isolate 

internal leakage and sensor offsets. The possibility of 

decoupling external force from state equations by con-

sidering velocity as an input was also proved. 

Tan and Sepehri (2002) used the parameters of a 

nonlinear Volterra model to detect and isolate internal 

leakage, external leakage, incorrect supply pressure, 

and contamination in the fluid. Experimental results on 

the detection of incorrect supply pressure were shown, 

but the method was offline, which hampers its use for 

early fault detection. A similar issue affects the fault 

detection system by Le et al. (1998) where a neural 

network approach was shown to be sensitive to rela-

tively high leakages of over 1 l/min. 

As opposed to model-based approaches, the use of 

the wavelet transform by Goharrizi et al. (2010a, 

2010b) has produced good results by allowing the de-

tection of an internal leakage of 0.124 l/min. But when 

external leakages were considered in Goharrizi et al. 

(2011), it was reported that external leakages of 

0.30 l/min could be isolated from an internal leakage of 

0.48 l/min, and furthermore external leakages cannot be 

localized to either side of the actuator, which has been 

proven to be possible with model-based approaches 

(An et al., 2008). 

In this paper, we extend the methods of Sepasi and 

Sassani (2010) and An and Sepehri (2008) by treating a 

more extensive set of faults than those papers and 

adopting a similar method as Chen (2010) to obtain 

independence from varying load. The latter is possible 

as we have a sufficient quality position measurement 

from which we differentiate velocity, which eliminates 

the need to estimate them. Thus, we do not need to 

know the external force nor the load mass, as the in-

formation of the mechanism is included in the position 

and velocity measurement. Therefore, this scheme is 

more viable in generic hydraulic systems where the 

load can vary during operation. This paper utilizes the 

model and Global Sensitivity Analysis (GSA) that was 

presented for our test bed in (Nurmi and Mattila, 2011). 

This combines into a systematic approach to model-

based condition monitoring compared to the ad hoc 

approaches currently present. An adaptive threshold is 

also proposed and experimental results are given with 

random control signals that are more plausible than 

sinusoidal inputs. The paper focuses on common leak-

age and valve faults (Watton, 2007). 

This paper is organized as follows. In Section 2, the 

applicability of the method and the test bed are briefly 

discussed. In Section 3, the UKF algorithm is intro-

duced and the reduced-order UKF is applied to the test 

bed. In Section 4, the capability of the UKF and the 

adaptive threshold scheme are experimentally tested in 

detecting and isolating leakages and with simulations in 

detecting and isolating valve faults. 

2 Applicability of the Scheme and Test 

Bed 

As shown in Fig. 2, the FDI scheme used in this pa-

per is applicable to a generic valve-controlled hydraulic 

cylinder that drives any of the n-DOF manipulator 

joints affected by any external force and inertia load. 

The scheme is considered to be suitable especially for 

detecting and isolating external and internal leakages. 

 

Fig. 2: A manipulator joint driven by a hydraulic cylinder 

2.1 Test Bed 

As a case study to experimentally validate the 

scheme, the test bed, in Fig. 3 and Fig. 4, is used in leak-

age fault study. It has a 4/3-directional valve that con-

trols the joint cylinder, and three restrictor valves 

which emulate external leakages between the cylinder 

and the directional valve (‘External leakage A’ and 

‘External leakage B’) and internal leakage across cyl-

inder chambers (‘Internal leakage’), for a list of system 

components see (Nurmi and Mattila 2011). 

 

Fig. 3: Illustration of the test bed 

In (Nurmi and Mattila, 2011), the model and GSA 

of the test bed were presented. In this paper, we use 

that model to simulate valve faults and utilize the GSA 

results in the verification of the UKF process model 

and in the development of the fault detection scheme. 
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Fig. 4:  The hydraulic diagram of the test bed 

3 Unscented Kalman Filter 

In this section, an UKF scheme is devised to facili-

tate model-based FDI. The basis for the scheme origi-

nates from Sepasi and Sassani (2010) and An and Se-

pehri (2008). However, neither scheme is directly ap-

plicable to a generic hydraulic system where the load 

force and mass are not constant or known. Therefore, a 

modified version is used with decoupling of external 

force and load mass similar to (Chen, 2010). 

This section is organized as follows. In Section 3.1, 

a generic discrete nonlinear system and its state estima-

tion are introduced. Then in Section 3.2, the UKF algo-

rithm is presented and implemented for the test bed in 

Section 3.3. Fault detection and isolation principles are 

discussed in Sections 3.4 to 3.5. 

3.1 Discrete Nonlinear System with Noise and State 

Estimation 

The system is discrete with a nonlinear process f 

and measurement model h with noise vectors w and v: 

 
( )

( )

k+1 k k k k

k+1 k+1 k k+1
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,

f t

h t

= +

= +

x x u w
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 (1) 

where x is a N × 1 state vector in which N is the number 

of states, u is a U × 1 control vector in which U is the 

number of controls, t is the time, w is a 1N ×  process 

noise vector, y is a M × 1 measurement vector in which 

M is the number of measurements, v is a M × 1 meas-

urement noise vector and k is a previous time instant. 

The process noise wk and measurement noise wk+1 

are assumed to be Gaussian, (N)
 
white (uncorrelated) 

and additive with zero mean and covariances Qk and 

Rk+1 with distributions: 
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Hydraulic measurements can be noisy, pressures 

especially. Considering the noise in the state estimator 

ensures that residuals are closer to zero in the fault-free 

situation, hence improving fault detection. 

A Kalman-type state estimator for the nonlinear 

system in Eq. 1 is (Welch and Bishop, 2001): 
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where x̂  is the state estimate vector of size (N - A) × 1 

with the positive integer A denoting order-reduction. 

The innovation gain Kk+1 is chosen to minimize the 

mean squared error
 

2

k+1 k+1
( )ˆE ⎡ ⎤−⎣ ⎦x x . The optimal 

gain is derived in Simon (2006, pp. 318 - 320). 

Nonlinear state estimation has no optimal solution 

since the innovation gain is dependent on covariance 

which are hard to accurately recover after the states are 

transformed through nonlinear functions. The non-

optimal EKF circumvents the problem of nonlinearity 

by linearizing nonlinear functions around the previous 

states so that linear estimation techniques from the 

Kalman Filter (KF) can be applied. However, in the 

process it introduces approximation errors depending 

on the severity of the nonlinearity in functions f and h. 

An approach for tackling the problems of the EKF 

is the UKF, published by Julier et al. (1995). In (Julier 

and Uhlmann, 1997; Wan and van der Merwe, 2000) it 

is shown that the UKF approximates the true mean and 

covariance of the states more accurately than the EKF 

with Unscented Transformation (UT). The UT ap-

proximates the state distribution with deterministically 

chosen sigma points assuming that state variables are 

normally distributed. 

Besides the accuracy advantage of UKF over EKF, 

UKF is also derivative-free, which is useful since cal-

culating and writing long derivatives is error-prone. 

The given advantages motivate the choice of UKF. 

3.2 Unscented Kalman Filter Algorithm 

The recursive UKF algorithm can be described in a 

step by step manner as follows (Wan & van der Merwe 

2000): 

1. Initialize the filter, Eq. 4 

2. Estimate the a priori state vector 
k+1
ˆ

−

x  (prediction) 

a) Generate sigma points around the previous es-

timate, Eq. 5 

b) Propagate the sigma points through the nonlin-

ear functions, Eq. 6 

c) Calculate the state mean, Eq. 7 

3. Calculate the a priori error covariance
k+1

−

P , Eq. 8 

4. Estimate the a posteriori state vector 
k+1
ˆ

−

x  

a) Unscented transformation for measurements 

(mean and covariance), Eq. 9 

b) Calculate the cross-covariance between pre-

dicted states and measurements, Eq.10 

c) Calculate the Kalman gain, Eq. 11 

d) Update state estimate, Eq. 12 

5. Calculate the a posteriori error covariance Pk+1, 

Eq. 13 

6. Return to step 2 

Step 1 is executed once and steps 2 to 6 are re-

peated. Steps 2 and 3 constitute the first UT, and step 
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4a the second. The steps correspond to the following 

equations: 
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where E is the expectation operator, w is a weighting 

coefficient, L is the dimension of the state vector and λ 
is a scaling parameter, satisfying λ = α2 (L + κ) - L. 

The parameter α is a tuning factor which determines 

the spread of the sigma points. A typical value is 10-3. 

The constant κ is a secondary tuning parameter. Usu-

ally it is chosen as zero. The constant β affects the 

weight of the first error covariance term. An optimal 

value is β = 2 for normally distributed states. The ma-

trix square root in Eq. 5 should be calculated with Cho-

lesky decomposition for computational efficiency. 

If the measurement equations in function h are lin-

ear, steps 4a and 4b can be simplified. The equations in 

step 4a reduce to (Welch and Bishop, 2001): 

 
k+1 k+1

T
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H
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Then step 4b reduces to: 

 T

xy k+1

−

=P P H  (15) 

where H is a measurement matrix of sizeM N× .  

3.3 Unscented Kalman Filter Implementation for 

the Test Bed 

The online estimation of unknown load variables is 

possible (An et al., 2008), but not very feasible for FDI 

purposes because the UKF might compensate a fault by 

incorrectly estimating the load variables, hence making 

the fault undetectable. The problem is solved with the 

inclusion of position and velocity measurements to control 

vector u (Chen, 2010). The control vector then becomes: 

 [ ]c s 1 2 3 4
, , , [ , , , ]x x u p u u u u= =�u  (16) 

where x is the position, x�  is the velocity, uc is the valve 

control signal and ps is the supply pressure. The posi-

tion and velocity measurements could also be included 

to the state vector for filtering. 

In the test bed, boom angle was measured and con-

verted to piston position from which velocity was dif-

ferentiated. 

3.3.1 Process Model 

The task of the UKF is to estimate pressures pA and 

pB, spool position Xs and spool velocity 
s
x� . The re-

duced-order state vector is thus: 

 [ ]
T T

A B s s 1 2 3 4
, , , [ , , , ]p p x x x x x x= =�x  (17) 

Consequently, the discrete-time state space repre-

sentation from (Nurmi and Mattila, 2011), Eq. 22, 

reduces to: 
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In the GSA in (Nurmi and Mattila, 2011), the effec-

tive bulk moduli BeffA and BeffB were shown to be 

somewhat influential in transients, so effort was used to 

correctly identify them. They were found to be depend-

ent on piston position. In particular, BeffA was quite 

small when the piston was completely retracted but 

gradually grew as the piston extended. The following 

equations taking the flexible volume of the hoses into 

consideration gave a good approximation: 

 

( )( )
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o h A 1 0A

effA

A 1 0A h h o
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where Bo is the bulk modulus of oil, Bh is the bulk 

modulus of the hose and Vh is the volume of the hose. 

The flow coefficients, shown to be sensitive pa-

rameters and treated as constants in the GSA (Nurmi 

and Mattila, 2011), were not constants but nonlinear 

functions of spool position. To improve modelling 

accuracy each flow coefficient was fitted to a third-

order polynomial (Muenchhof and Beck, 2008): 

 ( ) 3 2

v 3 3 3 2 3 1 3 0
K x a x a x a x a= + + +  (20) 

Flow coefficient sample points were obtained off-

line by applying nonlinear parameter estimation tech-

niques to step responses of the valve. Fitting a third-

order polynomial to the sample points gave the best 

compromise between accuracy and complexity; see 

Root Mean Square Errors (RMSE) in Table 2. The 

fitted polynomials are shown in Fig. 5 with the poly-

nomial coefficients given in Table 10. 

In reality, the flow coefficients are also dependent 

on fluid temperature since the viscosity of the fluid 

changes with temperature. This modelling was omitted. 

 

Fig. 5:  Flow coefficients of the valve 

Table 1: Flow coefficient polynomials 

KvPA (-5.121×10-8 x3
3+ 1.556×10-7 x3

2 - 

1.377×10-7 x3 + 2.256×10-7)*m3/(s*Pa1/2) 

KvPB (9.003×10-8 x3
3 + 2.242×10-7 x3

2 + 

1.73×10-7 x3 + 2.291×10-7)*m3/(s*Pa1/2) 

KvAT (1.031×10-7 x3
3 + 2.118×10-7 x3

2 + 

1.423×10-7x3 + 1.986×10-7)*m3/(s*Pa1/2) 

KvBT (-2.371×10-8 x3
3 + 7.573×10-8 x3

2 - 

6.588×10-8 x3 + 1.91×10-7)*m3/(s*Pa1/2) 

Table 2: A comparison of the goodness-of-fits be-

tween 1st and 3rd order polynomials 

Flow  

coefficient 

Polynomial 

degree 

RMSE 

[m3/s Pa-1/2] 

KvPA 1 7.11× 10-9 

KvPA 3 3.94× 10
-9

 

KvBT 1 3.76× 10-9 

KvBT 3 1.49× 10
-9

 

KvPB 1 9.21× 10-9 

KvPB 3 4.96× 10
-9

 

KvAT 1 5.38× 10-9 

KvAT 3 1.64× 10
-9

 

 

3.3.2 Initialization 

The UKF is initialized as follows: 
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where x0 is the initial state, P0 is the state covariance 

matrix, R is the measurement noise matrix and Q is the 

process noise matrix. 

The tuning parameters α, β
 
 and κ were chosen ac-

cording to existing literature (Wan and van der Merwe, 

2000). R was chosen to represent measurement noise. 

The standard deviations of the pressure sensor readings 

were roughly 0.1 MPa. 

The process noise covariance matrix Q represents 

modeling errors. It proved important to find a balance 

between process and measurement noise. The variances 

of process noise were chosen slightly smaller than the 

variances of measurement noise. 

The measurement equations were linear, so the al-

gorithm was reduced according to Eq. 14 and 15. The 

measurement matrix H was: 

 
1 0 0 0

0 1 0 0

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

H  (22) 

3.4 Fault Detection Principles 

Pressures A and B residuals were calculated for de-

tecting faults, which was justified on the basis of the 

GSA results provided in (Nurmi and Mattila, 2011). 

The residuals r(k) were calculated as follows: 

 ( ) ( ) ( )ˆr k p k p k= −  (23) 

where p(k) and ˆ ( )p k  are the measured and estimated 

pressures, respectively, and k denotes the current time 

instant. The residuals were averaged within a moving 

5-second window to remove the effect of brief estima-

tion errors. The residual average µr(k) was calculated 

recursively with (Muenchhof and Isermann, 2005): 
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r r

1
( ) ( 1)

[ ( ) ( )]
k k

N r k r k N
µ µ= − +

− −

 (24) 

where N, the sample size, was 5000. The recursive 

formula, although computationally efficient, requires 

that N samples are stored in memory. 

Because the process model cannot be tuned to perfec-

tion, a threshold is needed that ensures that the ratio 

between false alarms (false positives) and undetectable 

faults (false negatives) is as low as possible. To clarify, 

the threshold should be constructed in a way that that 

false alarms are minimized, but at the same time the 

threshold should as low as possible so that small faults 

can be detected. Of course to achieve this, the most im-

portant factor is the accuracy of the UKF process model. 

It is usually enough to use a positive, constant 

threshold. In this case, the constant positive threshold 

was not sufficient. A negative threshold was needed so 

that negative residuals could be used in fault isolation. 

Also a constant threshold did not work, since the re-

siduals in a faultless situation were larger in chamber A 

than in B. The reason for this was the load force caus-

ing a higher A than B pressure. Consequently, a pres-

sure-dependent threshold was created. A smooth 

threshold was obtained by averaging both pressures 

within a moving 5-second window. 

Through careful experiments, the following thresh-

old polynomial produced the best results in terms of 

few false alarms and satisfactory fault detection: 

 ( ) 4 2

pos p p( ) 0.012 4 10t kµ µ
−

= + ×  (25) 

The unit of the threshold was MPa. The magnitude 

of the first term was based on the accuracy of the 

model. The second term ensured that the threshold 

increased at a suitable rate. The negative threshold was 

simply 
neg p pos p
( ( )) ( ( ))t k t kµ µ= − . 

3.5 Fault Isolation Patterns 

Leakage and valve faults were studied Fig. 6. The 

leakage faults were divided into ‘External leakage in 

chamber A’, ‘External leakage in chamber B’, ‘Exter-

nal leakage in chambers A and B’ and ‘Internal leak-

age’. The valve faults were divided according to rela-

tive opening into ‘Stuck to closed position’, ‘Too small 

an opening’ and ‘Too large an opening’. 

 

Fig. 6: Fault tree (according to Isermann, 2006, p. 52) 

 

 

 

Once a fault was detected, the residuals and other 

variables were tested against fault patterns that were 

verified with experiments or simulations to isolate 

the fault: where ↑ denotes the crossing of the posi-

tive threshold, ↓ the crossing of the negative thresh-

old, rPA is the pressure A residual, rPB is the pressure 

B residual and uc is the valve control signal. 

For example, an external leakage A causes the 

pressure A residual to cross the negative threshold 

(
Ap

r ↓ = 1), and the residual 
Bp

r  to remain within 

thresholds (
Bp

r ↑ = 0 and 
Bp

r ↓ = 0). Considering the 

direction of the residual we could distinguish simul-

taneous external leakage A and B from internal leak-

age and from certain valve faults. 

The faults where the valve opens too wide or too 

little can be instantly isolated from internal leakage 

with a 50 percent probability when both are consid-

ered as likely. The possibility of instant detection 

depends on the test ‘pA > pB’. For example if the first 

four binaries of the fault code are 0110, and the fifth, 

the test ‘pA > pB’ is false, there is offset in the spool 

position, so either the valve opened too little or too 

wide. If the test ‘uc > 0’ is true, the valve opening 

was too small. If it is false, the valve opening was 

too large. It is possible to isolate the valve fault 

when the control signal changes from positive to 

negative or vice versa by observing whether the 

residuals cross the opposite thresholds. Internal 

leakage, on the other hand, is not dependent on the 

sign of valve control signal. 

The rationales behind the patterns are as follows. 

Consider external leakage A as an example. The 

GSA (Nurmi and Mattila, 2011) proved that both 

pressures are sensitive to a chamber A leakage. 

However, only the residual rPA crosses the negative 

threshold, since the pressure differential 
A
p�  is miss-

ing a leakage flow term. The velocity also changes, 

as shown in the GSA (Nurmi and Mattila, 2011). 

However, its effect to pressure residuals is minor. A 

similar description applies to external leakage B and 

internal leakage. However, in internal leakage faults 

a leakage is present in both chambers. In one cham-

ber the leakage flow is negative, and in the other it is 

positive. 

When the valve is given a positive control signal 

and it fails to open as much as it should (fault # 5), 

the flow rate to chamber A is too small compared to 

a fault-free situation. Thus the pressure A measure-

ment is smaller than the UKF estimate and conse-

quently the pressure A residual crosses the negative 

threshold. At the same time, the pressure B residual 

crosses the positive threshold because the measured 

B pressure, as a consequence of the restricting action 

of the smaller notch BT opening, is larger than the 

estimated B pressure. Similar explanations apply to 

faults # 6 to 10. In faults # 9 and 10, the valve is 

completely closed, so the magnitudes of the residuals 

reveal the cause. 
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Table 3: Fault patterns for leakage and valve faults 

# Fault 
Ap

r ↑ 
Ap

r ↓ 
Bp

r ↑ 
Bp

r ↓ pA  

> pB 

Large 

Ap
r  

&  

Bp
r  

uc  

>  

0 

1 
External 

leakage A 
0 1 0 0 0 / 1 0 0 / 1 

2 
External 

leakage B 
0 0 0 1 0 / 1 0 0 / 1 

3 

Internal  

leakage  

A�B 

0 1 1 0 1 0 0 / 1 

4 

Internal  

leakage  

B�A 

1 0 0 1 0 0 0 / 1 

5 

Spool jam-

ming, too 

small an 

opening 1 

0 1 1 0 0 / 1 0 1 

6 

Spool jam-

ming, too 

small an 

opening 2 

1 0 0 1 0 / 1 0 0 

7 

Spool jam-

ming, too 

large an  

opening 1 

1 0 0 1 0 / 1 0 1 

8 

Spool jam-

ming, too 

large an  

opening 2 

0 1 1 0 0 / 1 0 0 

9 

Spool jam-

ming, stuck 

to closed 

position 1 

0 1 1 0 0 / 1 1 1 

10 

Spool jam-

ming, stuck 

to closed 

position 2 

1 0 0 1 0 / 1 1 0 

 

4 Results 

Experimental results for detecting and isolating leak-

ages are given in Section 4.1. In Section 4.2, the detec-

tion and isolation of valve faults is studied with simula-

tions. 

4.1 Experimental Results 

The experimental results consist of external leakage 

A, external leakage B, simultaneous external leakage A 

and B, and internal leakage. The valve was controlled 

with fairly random control signals Fig. 7. 

In the residual figures, the black vertical line shows 

the time when the fault was added, the solid red line the 

residuals, and the dashed black lines the thresholds. 

 

Fig. 7: Example control signal to the 4/3-directional valve 

that was used in the external leakage B experiment 

4.1.1 External Leakage in Chamber A 

The external leakage A was added to the system at 

around the 35th second. The evolution of pressure A 

and pressure B measurements and estimates are given 

in Fig. 8. The estimates are in blue and the measure-

ments in red colour. 

 

Fig. 8: The evolution of pressure A and B estimate and 

measurement 

 

Fig. 9: Pressure residuals (in solid red) with a varying 

external leakage in chamber A of average 

1.40 l/min. The thresholds are the dashed black 

lines 
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Between the 35th and 50th second the difference be-

tween the pressure A measurement and its estimate is 

not clear-cut. From the 50th second onwards, the differ-

ence becomes clear and is indistinguishable between 

pressure B measurements and estimates Fig. 8. 

The external leakage A was detectable two seconds 

later when the pressure A crossed the negative threshold at 

-0.04 MPa, see Fig. 9. Therefore, according to the fault 

patterns in Table 3, the fault could be isolated as external 

leakage A (fault # 1). The magnitude of the residual indi-

cates that the fault is severe. According to flow measure-

ments, a detectable external leakage was close to 0.40 

l/min or 10 % of the flow rate passing the valve. 

The residuals were momentarily decreased to zero 

since there were some non-fault related discrepancies 

between measurements and UKF estimates when the 

pressure B was close to zero or the boom angle was 

zero. Excluding these situations, the scheme worked. 

4.1.2 External Leakage in Chamber B 

The external leakage B was added to the test bed at 

around the 30th second. The fault was detectable a few 

seconds later when pressure B crossed the negative 

threshold, as illustrated in Fig. 10. 

 

Fig. 10:  Pressure residuals with an external leakage in 

chamber B with average 0.50 l/min 

According to fault patterns in Table 3, the fault 

could be isolated as external leakage B (fault # 2). As 

pressure B was smaller than pressure A, the thresholds 

for B residuals could be considerably smaller allowing 

for a smaller leakage to be detected. At the time of 

detection, the threshold was -0.015 MPa and the mini-

mum detectable leakage approximately 0.17 l/min, or 

5 % of the flow through the 4/3 directional valve, sig-

nificantly smaller than the detectable leakage from 

chamber A. The leakage varied between 0.14 l/min and 

1 l/min (see the varying magnitude of residual), but on 

average it was 0.50 l/min. 

When the pressure A residual approached the 

threshold, the threshold increased, proving that the 

thresholds were indeed pressure dependent and so the 

proposed adaptive threshold worked. 

 

 

 

4.1.3 Simultaneous External Leakage in Chambers A 

and B 

An external leakage A and B were simultaneously 

introduced to the test bed at the 18th second, as shown 

in Fig. 11. The external leakage A was detectable only 

a second later, but the external leakage B took over 30 

seconds to detect. The reason for the slow detection 

was the decreased pressure A that decreased pressure B 

causing a minor leakage from chamber B. The leakage 

in chamber B rose to 0.18 l/min before the actual detec-

tion of the fault, but a short leakage peak of this magni-

tude could not be detected. The leakage peaked at 

0.52 l/min (average 0.30 l/min) and 0.60 l/min (average 

0.34 l/min) at 50 and 65 seconds, and at those instants 

the threshold of residual B was clearly crossed. 

An external leakage A of 0.50 l/min could be de-

tected as that was the leakage magnitude at the time of 

detection. The leakage averaged at 1.6 l/min between 

40 and 70 seconds, but the residual during this period 

was well over the threshold. 

The isolation follows the patterns in Table 3. For 

the reasons in Section 4.1.1, the residuals were momen-

tarily forced to zero.  

 

Fig. 11:  Pressure residuals with an external leakage in 

chambers A and B. An external leakage A of 11 % 

(average 1.60 l/min) and an external leakage B (av-

erage 0.30 l/min) of 5 % of flow through the valve 

were detectable 

4.1.4 Internal Leakage 

The internal leakage was added to the test bed at the 

30th second, as shown in Fig. 12. The positive threshold 

of pressure B residual was crossed roughly three sec-

onds sooner than the negative of pressure A residual. 

The leakage varied between 0.35 l/min and 2 l/min, and 

on average it was 0.94 l/min. During the experiment 

when the leakage dropped significantly below the aver-

age, the thresholds remained in the fault range, showing 

that an internal leakage of below 0.50 l/min could be 

detected, or a leakage in the range of 5 - 10 % of the 

flow passing the 4/3-directional valve. 

The isolation of the internal leakage was not entirely 

straightforward following Table 3. Since pA > pB was 

always true, at the time of detection the fault was either 

an internal leakage (fault # 3), or the spool had opened 

too wide (fault # 7 and # 8) or too little (fault # 5 and # 

6). As time progressed, the residuals did not cross the 
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other threshold as the control signal changed. Therefore 

the fault could be isolated as internal leakage. 

 

Fig. 12:  Pressure residuals with an internal leakage of 

average 0.94 l/min 

4.2 Simulation Results 

The accuracy of the UKF process model in simula-

tions guaranteed that the residuals stayed close to zero 

in a faultless situation. For consistency the adaptive 

threshold was used in simulations. White, normally 

distributed noise was added to simulation pressures so 

that they bore more of a resemblance to experimental 

measurements. In addition, the UKF parameters were 

retuned. The process noise variances of pressures were 

reduced to 104 Pa2 and the measurement noise vari-

ances to 105 Pa2. The 4/3 directional valve control sig-

nal used in simulations is shown in Fig. 13. 

 

Fig. 13:  The valve control signal in simulation experiments 

4.2.1 Too Small Valve Opening 

The ‘too small valve opening’ fault was introduced 

to the system at the 35th second, as is illustrated in. 

After a second, the fault was detected but could not 

be immediately isolated since pattern was similar to 

internal leakage (# 3). Once both residuals, as a conse-

quence of the valve control signal change, crossed the 

other threshold at approximately the 42th second, the 

fault could be isolated as too small valve opening fault 

(# 5 and 6). 

 

Fig. 14:  The spool jams so that the opening is too small 

4.2.2 Too Large Valve Opening 

The fault ‘too large valve opening’ (# 7 and 8) was 

added to the system at the 35th second, as shown in 

Fig. 15. The residual behaviour was reversed compared 

to fault case ‘too small valve opening’. Hence the isola-

tion was possible immediately after detection. 

 

Fig. 15:  The spool jams so that the opening is too large 

If the internal leakage would have occurred from 

chamber B to A, this fault could have been isolated, 

although not instantly following detection. 

4.2.3 Valve gets Stuck to Closed Position 

At the 35th second, the valve spool got stuck to 

closed position, shown in Fig. 16. 

The residual behaviour was similar to internal leak-

age (# 3), except that the residuals crossed the opposite 

threshold when the valve control signal was reversed at 

the 40th second. The magnitudes of the residuals re-

vealed the cause as being a closed valve (# 9 and 10). 
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Fig. 16:  The valve spool stuck to closed position 

5 Conclusions 

In this paper a real-time scheme based on a re-

duced-order Unscented Kalman Filter (UKF) for de-

tecting and isolating leakage and valve faults from a 

generic valve-controlled hydraulic cylinder driving a 

manipulator joint in varying loading conditions was 

devised and applied to a hydraulic boom test bed. The 

method is a practical load-independent solution for 

detecting and isolating especially leakages. In the pa-

per, a comprehensive set of fault patterns were pre-

sented, and an adaptive threshold facilitating fault de-

tection was devised. The basis for this work was 

founded in (Nurmi and Mattila, 2011), where a Global 

Sensitivity Analysis (GSA) of the test bed was carried 

out. The results of the analysis were used in this paper, 

showing that GSA facilitates a systematic and verified 

approach to model-based condition monitoring. The 

usefulness of GSA increases with more complicated 

nonlinear models. 

The fault patterns were verified with simulation and 

experimental studies. The studies, with leakage patterns 

verified experimentally, showed the possibility of dis-

tinguishing external leakage A and B, and simultaneous 

external leakage A and B from valve faults (spool 

jamming to too large an opening, to too small an open-

ing and stuck to closed position). 

The lowest detectable external leakage was 

0.17 l/min, but it varied between experiments. The 

pressure residuals alone were not enough to distinguish 

internal leakage and valve faults, so information from 

the sign of the control signal and the larger chamber 

pressure were used. The control signal test meant that 

the time from fault detection to isolation was consid-

erably long in some valve opening or internal leakage 

fault cases. The fault patterns for those two different 

faults were found similar, and hence very difficult to 

distinguish. 

The fault-to-isolation time could be shortened and 

the fault patterns could be expanded by utilizing a 

spool position measurement. This measurement, how-

ever, is not usually available. Moreover, the scheme 

already requires multiple measurements, and increasing 

measurements would increase the probability of sensor 

failures. The required measurements, however, are: 

cylinder chamber pressures A and B, supply pressure, 

valve control signal, piston position or boom angle, and 

piston velocity or boom angular velocity measurement. 

If a separate velocity measurement is not available, the 

velocity could be differentiated from position. 

The scheme will be extended to mobile valves using 

position and velocity sensors more suitable for applica-

tion domain specific environmental conditions in the 

future. 

Nomenclature 

H Measurement matrix [-] 

K Kalman gain [-] 

P Posteriori state covariance matrix [-] 

P
- Priori state covariance matrix [-] 

Pxy Cross-covariance matrix [-] 

Pyy Measurement covariance matrix [-] 

Q Process noise covariance matrix [-] 

R Measurement noise covariance 

matrix 

[-] 

r Residual [MPa] 

tpos,neg(µp) Positive and negative threshold 

polynomial 

[MPa] 

x State vector [-] 

x̂  State estimate vector [-] 

(i)
�x  Sigma point vector [-] 

y Measurement vector [-] 

µp Pressure average [MPa] 

v Measurement noise vector [-] 

w Process noise vector [-] 

 

Subscripts: 

k Discrete time instant  

Acknowledgements 

This work was funded by the Academy of Finland 

under the project 133273, Sensor network based intelli-

gent condition monitoring of mobile machinery. The 

authors gratefully acknowledge the Academy of 

Finland for the financial support. 

References 

An, L. and Sepehri, N. 2008. Leakage fault detection 

in hydraulic actuators subject to unknown external 

loading. International Journal of Fluid Power, vol-

ume 9, issue 2, August 2008, pp 15 - 25. 

Chen, L. 2010. Model-based fault diagnosis and fault-

tolerant control for a nonlinear electro-hydraulic 

system. Ph.D. Thesis. University of Kaiserslautern. 

Goharrizi, A. Y., Sepehri, N. 2010a. A wavelet-based 

approach to internal seal damage diagnosis in hy-

draulic actuators. IEEE Trans. on Ind. Electron., 

Vol. 57, No. 5, pp. 1755 - 1762. 

 



Detection and isolation of leakage and valve faults in hydraulic systems in varying loading conditions, Part 2: Fault Detection and Isolation Scheme 

International Journal of Fluid Power 13 (2012) No. 1 pp. 17-27 27 

Goharrizi, A. Y., Sepehri, N. and Wu, Y. 2010b. A 

wavelet based approach for diagnosis of internal 

leakage in hydraulic actuators using on-line meas-

urements. International Journal of Fluid Power, 

Vol. 11, No.1, pp. 61 - 69. 

Goharrizi, A. Y., Sepehri, N. and Wu, Y. 2011. A 

wavelet-based approach for online external leakage 

diagnosis and isolation from internal leakage in hy-

draulic actuators. Inernational Journal of Fluid 

Power, Vol. 12, No. 2, pp. 37 - 47. 

Isermann, R. 2006. Fault-diagnosis systems, an intro-

duction from fault detection to fault tolerance. 

Springer-Verlag Berlin Heidelberg. p. 475. 

Julier, S. J., Uhlmann, J. K. and Durrant-Whyte, H. 

F. 1995. A new approach for filtering nonlinear sys-

tems. Proceedings of the American control confer-

ence, Seattle, Washington, 1995, pp. 1628 - 1632. 

Julier, S. J. and Uhlmann, J. K. 1997. A new exten-

sion of the Kalman filter to nonlinear systems. Pro-

ceedings of AeroSense, the 11th international sym-

posium on aerospace/defence sensing, simulation 

and controls, pp. 182 - 193. 

Le, T. T., Watton, J. and Pham, D. T. 1997. Fault 

classification of fluid power systems using a dy-

namics feature extraction technique and neural net-

works, Proc. Instn. Mech. Engrs, Vol. 212, Part I, 

pp. 87 - 96. 

Muenchhof, M. and Isermann, R. 2005. Comparison 

of change detection methods for a residual of a hy-

draulic servo axis. Proceedings of the 16th IFAC 

world congress, international federation of auto-

matic control, Czech Republic. 

Muenchhof, M. and Beck, M. 2008. Model adjustment 

and multi-model based fault diagnosis for hydraulic 

servo axis. Proceedings of the 17th world congress, 

the international federation of automatic control, 

Seoul, Korea. 

Nurmi, J. and Mattila, J. 2011. Detection and isola-

tion of leakage and valve faults in hydraulic sys-

tems in varying loading conditions, Part 1: Global 

Sensitivity Analysis. International Journal of Fluid 

Power, Vol. 12, No. 3. 

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., 

Cariboni, J., Gatelli, D., Saisana, M. and Taran-

tola, S. 2008. Global sensitivity analysis: the 

primer. John Wiley & Sons. p. 292. 

Sepasi, M. and Sassani, F. 2010. On-line fault diagno-

sis of hydraulic systems using unscented Kalman 

filter. International journal of control, automation, 

and systems, Vol. 8, Issue 1, 2010, pp. 149 - 156. 

Simon, D. 2006. Optimal state estimation: Kalman, 

H∞, and nonlinear approaches. Wiley-Interscience. 

p. 526. 

Tan, H. and Sepehri, N. 2002. Parametric fault diag-

nosis for electrohydraulic cylinder drive units. IEEE 

Trans. Industrial Electronics, Vol. 49, pp. 96 - 106. 

Wan, E. A. and van der Merwe, R. 2000. The Un-

scented Kalman Filter for nonlinear estimation. 

Proceedings of IEEE adaptive systems signal proc-

essing, communication and control symposium, Oc-

tober 2000, pp. 153 - 158. 

Watton, J. 2007. Modelling, monitoring and diagnos-

tic techniques for fluid power systems. Springer-

Verlag London Ltd. p. 360. 

Welch, G. and Bishop, G. 2001. An introduction to the 

Kalman filter. Department of computer science, 

University of North Carolina, Chapel Hill, TR95-

041. 

 

 

 

Jarmo Nurmi 

Jarmo Nurmi graduated with a B.Sc. and 

M.Sc. in hydraulic engineering in 2009 and 

2011, respectively, at the Tampere University 

of Technology (TUT). He is currently working 

as a researcher at TUT in the department of 

Intelligent Hydraulics and Automation (IHA). 

His research interests are mobile hydraulics 

and condition monitoring. 

 

 

 

 

Jouni Mattila 

Professor, Dr. Tech. Jouni Mattila received 

M.Sc. (Eng.) in 1995 and Dr. Tech 2000 both 

from TUT. He is a TUT program manager in 

ITER Remote Handling robotics maintenance 

projects. He is a coordinator of Marie Curie 

Initial training Network program: PURESAFE 

with 15 PhD-students across the EU. His 

research interests include machine automation 

and preventive maintenance, and fault-tolerant 

control system development for advanced 

machines utilizing lean systems engineering 

framework. 

 




