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Abstract 

Noise is an ongoing concern in the fluid power industry. A great deal of research has been invested in reducing flow 

pulsations in hydraulic systems, from design modifications to adding noise control components. The physical principles 

of noise reduction are the same as for air, however, the much higher sound speed of hydraulic fluid makes creating 

compact noise control devices difficult. This paper introduces a Helmholtz resonator design that uses a compliant, 

voided urethane lining to increase the apparent volume of the device. The addition of the lining permits much smaller 

physical sizes for the same resonance frequency. Specifically, the design presented here has a total volume of 0.31 L 

and generates 20 dB of transmission loss at a resonance frequency of 37 Hz when the hydraulic system is pressurized at 

2.07 MPa. At this pressure, it has a total volume that is two orders of magnitude smaller than a similar, unlined device 

of the same resonance frequency. Experimental data is presented that demonstrates the performance of the device. An 

analytical model was developed and least-squares fit to the experimental data to extract the complex bulk modulus of 

the liner material at hydrostatic pressures from 2.07 - 4.83 MPa, which is the range of available test pressures. This 

work is anticipated to lead to devices and liner materials designed for higher pressures. 
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1 Introduction 

Helmholtz resonators are widely used as a conven-

ient and effective way of reducing noise in a narrow 

band of frequencies. As such, they have been consid-

ered for use in fluid power systems for reducing the 

pressure ripple generated by positive displacement 

pumps. The design of Helmholtz resonators, in the 

simplest case, is governed by the sound speed in the 

resonator cavity and the geometric variables of neck 

length, neck area, and cavity volume. For devices in 

air, the speed of sound cannot be significantly modi-

fied; therefore design of these devices occurs through a 

give-and-take of the remaining geometric variables. 

The challenge for hydraulic systems is creating a de-

vice that is small enough for commercial use while 

being effective at frequencies low enough to match the 

fundamental frequency of the pressure source. 

A number of authors have studied the use of Helm-

holtz resonators in hydraulic systems over the past two 

decades. Kojima and Edge (1994) and Lau, Johnston et 

al. (1994) studied the transmission loss of metallic-

bellows style Helmholtz resonators. They reported  
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resonance frequencies of 300 - 500 Hz, and the devices 

were quite small, with bellows gas volumes as low as 

5.03 cm3, with neck lengths from 23.0-48.2 mm. Kojima 

and Ichiyanagi (1998) and Kojima and Ichiyanagi (2000) 

studied the use of multi-volume side branches and Helm-

holtz resonators for the purpose of attenuating multiple 

frequency bands. Ijas and Virvalo (2000) also studied the 

use of an accumulator, side branches, and Helmholtz 

resonators. However, to achieve a resonance frequency of 

50 Hz their Helmholtz resonator had a diameter of 8 cm 

and a neck that was 420 mm long; the authors acknowl-

edged this was beyond practical limits for mobile machin-

ery. Vael, López et al. (2004) designed a compact Helm-

holtz resonator with a resonance frequency of 3490 Hz to 

combat an internal resonance in their floating cup pump 

design. Kela (2008) and Kela and Vähäoja (2009) have 

also studied the use of Helmholtz resonators, specifically 

with the controllability of variable-volume devices. 

Mikota and Manhartsgruber (2001) and Mikota and 

Reiter (2003) developed a type of compact, hybrid vibra-

tion absorber to be applied to hydraulic systems – essen-

tially a tuned vibration absorber using a hydraulic volume 

as a spring. They reported transmission loss values of 
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15.2 dB at 225 Hz and 19 dB at 450 Hz for two variations 

of their design. 

Bügener, Helduser et al. (2010) presented the use of a 

Helmholtz resonator for cavitation reduction. The zero-

impedance boundary condition imposed by the entry of 

the resonator cancels the resonance frequency at the 

boundary. Therefore, by coupling the resonator close 

enough to the suction port, the negative-going pulses are 

less severe and cavitation effects may be abated. How-

ever, their device was both large (2L volume) and its 

resonance frequency did not appear to correlate with the 

fundamental pumping frequency of the system. 

With regard to the use of linings with Helmholtz reso-

nators, the only studies found in the literature have con-

sidered devices used in air systems. A Helmholtz resona-

tor lined with a fibrous material was presented by 

Selamet, Xu et al. (2005) that demonstrated a frequency 

shift from the unlined case of up to 25 Hz. The frequency 

shift is attributed to the flow resistivity of the lining; in-

creasing its thickness lowered the resonance frequency. 

An isothermal model for the sound propagation through 

the fibrous material could also account for a lower sound 

speed in the lining material, as found in Pierce (1989), 

thus making the resonator acoustically larger and shift the 

resonance frequency down. However, this phenomenon is 

not addressed by the authors. 

For hydraulic oil, the speed of sound can be signifi-

cantly modified from its nominal value of 1400 m/s by the 

use of a compliant lining. Previous work by Earnhart, 

Marek et al. (2010a) and Earnhart, Marek et al. (2010b) 

has demonstrated the effectiveness of such a lining in an 

in-line hydraulic silencer. 

This work considers the use of a compliant lining in a 

Helmholtz resonator. Instead of being limited to geomet-

ric changes to modify the resonance frequency, the sound 

speed is changed through use of a compliant lining. This 

results in a device that is two orders of magnitude smaller 

than an unlined device of the same resonance frequency. 

The Helmholtz resonators previously discussed in the 

literature are generally impractical for use in hydraulic 

systems, with the notable exception of the metallic-

bellows style resonators studied by Kojima and Edge 

(1994) and Lau et al. (1994): either the resonator volume 

becomes very large or the length of the neck becomes 

impractically long. This work seeks to improve the com-

pactness of noise control devices for fluid power - specifi-

cally, Helmholtz resonators. The size of the resonator is 

reduced by lowering the compliance of the resonator 

volume through the use of a voided urethane lining.  

The fundamental theory of Helmholtz resonators will 

be discussed, followed by the formulation of a lumped-

parameter model. The test rig used to measure the trans-

mission loss of a prototype resonator will be presented, 

along with experimental data for the prototype resonator 

at varying static pressures. The output of the theoretical 

model will be compared against the appropriate experi-

mental results, and the complex bulk modulus of the liner 

is given for system pressures in the range of 2.07 -

 4.83 MPa. While these pressures are low for common 

industrial hydraulics, this is the pressure range of the 

available test equipment. This work is anticipated to lead 

to higher pressures and liner materials designed for such. 

Results will also be presented comparing a voided and 

unvoided liner in the prototype resonator to show the 

effect of the voiding on the performance of the resonator. 

2 Modelling 

The wavelengths of sound in hydraulic systems tend 

to be, at the frequencies considered, very long relative to 

the dimensions of a Helmholtz resonator. The funda-

mental frequency of a common 9-piston axial piston 

pump is 270 Hz; at this frequency the wavelength, λ, of 

sound in hydraulic fluid is over 5 meters assuming the 

speed of sound is c0 = 1400 m/s. Therefore, a lumped 

parameter model works sufficiently well to model the 

behavior of the system, so long as any characteristic 

dimension of the device is much less than λ. The devel-

opment of the model follows the derivation given in 

Kinsler, Frey et al. (1999). Fig. 1 is a schematic of a 

Helmholtz resonator with a compliant lining, and with 

resolved incident and transmitted waves and relevant 

dimensions. Fig. 2 indicates an analogous electric circuit 

model. The lumped parameter impedance of the resona-

tor is given by 

 
H

1
Z R j L

C
ω

ω

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
 (1) 

where R, L, and C are the equivalent acoustic resis-

tance, inductance, and compliance, respectively, and ω 

is the radian frequency. The resonance frequency oc-

curs when the reactance ωL - 1 / ωC in Eq. 1 goes to 

zero. The compliance of the cavity is the inverse of the 

effective stiffness, which has contributions from the 

bulk modulus of both the fluid and liner. It is neces-

sary, then, to find the compliance of the resonator con-

sidering the volume and bulk modulus of both media. 

Solving for the compliance, C, from Eq. 1 gives 
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where ωr is the resonance frequency and L is the induc-

tance, given by 

 2

n
L m S=  (3) 

where m is the mass of fluid in the neck and Sn is the 

cross-sectional area of the neck. The mass m is a func-

tion of the density of the fluid and the cross-sectional 

area and length of the neck, 

 
f n n

m S Lρ ′=  (4) 

where the length of the neck is corrected to include 

acoustic radiation loading by 

 
n n n

1.7 .L L r′ = +  (5) 

The bulk modulus is related to the speed of sound 

by 

 
2

cβ ρ= . (6) 

The effective stiffness of the resonator cavity is 

given in Kinsler et al. (1999), and is expressed as  
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The compliance is the inverse of the stiffness, and 

substituting Eq. 6 into Eq. 7 for c2 yields 

 
2

n
.

S V
C

s β
= =  (8) 

For liner materials that exhibit viscoelastic behavior 

(the stress and strain are not in phase), the bulk 

modulus may be represented as a complex value, 

where the real part is the storage modulus and the 

imaginary part is the loss modulus as 

 
L L L

iβ β β′ ′′= + . (9) 

The ratio of the loss modulus to the storage 

modulus is referred to as the loss tangent or tan δ, and 

is a measure of the viscoelasticity of the material, 

 L

L

tan .
β

δ
β

′′

=

′
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Thus, the liner introduces additional losses in addi-

tion to the acoustic radiation and viscous losses of the 

resonator (these latter losses are discussed below). If 

the resonator cavity has a compliant lining, the compli-

ance of the cavity can be decomposed into the compli-

ances of the liner and fluid acting in series, such that 

 
L f

C C C= +  (11) 

where CL represents the compliance of the liner and Cf 

represents the compliance of the fluid. Substituting Eq. 

9 into Eq. 8 for the liner, and using Eq. 11 yields an 

equation for the compliance of the resonator cavity, 
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Substituting Eq. (8) into Eq. (11) and rearranging 

gives 
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Then, consider a liner that is much more compliant 

than the fluid, such that βf >> β’L, and has a similar 

volume VL ~ Vf. Equation 13 becomes 

 L

L

VV
C

β β
=

′

�  (14) 

which reveals that for a device with a liner that is much 

more compliant than the fluid, essentially all of the 

compliance of the cavity comes from the liner. Rear-

ranging Eq. (2) yields an equation for the resonance 

frequency with respect to the compliance, 

 
r

1

LC

ω = . (15) 

It can be easily seen from Eq. 15 that a larger value 

for the compliance of the cavity leads to a lower reso-

nance frequency. From Eq. 12 raising the compliance 

requires either making the device larger or lowering the 

bulk modulus of the liner or fluid. Since the fluid has a 

fixed, high value of bulk modulus, introducing a liner 

that is significantly softer than the fluid is an effective 

way of raising the compliance, and thus lowering the 

resonance frequency for a given volume. Alternately, 

given a fixed resonance frequency, introduction of the 

liner lowers the required cavity volume. 

The damping effects of the resonator need to be ac-

counted for as well. First, the acoustic resistance of the 

fluid in the neck, including both viscous effects and 

radiation resistances, is 

 ( ) 2

r w n
.R R R S= +  (16) 

The radiation resistance is given from Kinsler et al. 

(1999) as 

 
2 2

f eff eff n

r

2

c k S
R

ρ

π
=  (17) 

where 
eff effk cω= is the effective wavenumber in the 

resonator, at the frequency considered. The effective 

sound speed in the resonator is given by 
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where the effective density is the total mass of the 

material in the cavity divided by its total volume. The 

derivation of the viscous resistance of the fluid motion 

in the neck begins with the approximation for the com-

plex wavenumber for fluid lines given by Kojima and 

Edge (1994), 
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υ υ
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where υ is the kinematic viscosity of the fluid and rn is 

the radius of the neck. The loss factor in the complex 

wave-number is determined by the ratio of the imagi-

nary to complex part of the complex wave-number, 

 ( ) ( )
w

Im Re .k kα ξ ξ= −  (20) 

Finally, the loss factor is used in the equation for 

the viscous resistance in the resonator neck, as given 

by Kinsler et al. (1999) 

 
w w

2 .R mωα=  (21) 

The transmission loss can be calculated from the 

elements of the transfer matrix for the resonator. The 

transfer matrix is 

 

H
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.
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The transmission loss is the input-output acoustic 

energy balance across a two-port device. The transmis-

sion loss of the resonator in a system with an infinite 

downsteam pipe (or anechoic termination downstream) 

can be calculated from the transfer matrix elements by 

 12
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0

1
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where tij are the transfer matrix elements and Z0 is the 

characteristic impedance of the test pipe, given by 
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0

c
Z

S

ρ
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where S is the cross-sectional area of the pipe. 
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Fig. 1: Helmholtz resonator with compliant lining 

         

Fig. 2: Helmholtz resonator electric circuit analogy 

A theoretical model for the transmission loss of a 

Helmholtz resonator has thus been developed. From a 

design perspective, it is of interest to evaluate the theo-

retical performance of the device given assumed mate-

rial properties for the liner and fluid, and the impact of 

variation of the properties on the performance. First, 

consider two devices of identical neck geometry and 

resonance frequency. Then, Eq. 15 is used for compari-

son, such that 

 
1 1 2 2

1 1

LC L C
=  (25) 

Since L is a function of the fluid density and neck 

geometry only, it is the same for both devices and 

L1 = L2 
Substituting Eq. 8 for compliance C and rear-

ranging yields 

 1 1

2 2

V

V

β

β
=  (26) 

Therefore, the ratio of cavity volume between oth-

erwise identical devices is directly proportional to the 

ratio of the effective bulk modulus of the material in 

the cavities. Assuming the introduction of the liner 

reduces the effective bulk modulus from that of the 

fluid alone, approximately 1.7 GPa, to 15.97 MPa, this 

leads to a volume reduction of a factor of 108. The 

device with the liner would be two orders of magnitude 

smaller than the unlined device, with all other aspects 

unchanged. 

Likewise, the effect of introducing a liner to the 

cavity can be explored in terms of the transmission 

loss. Fig. 3 depicts the transmission loss of a Helm-

holtz resonator of the schematic in Fig. 1 and the di-

mensions in Table 1, for three configurations: no liner, 

a liner with a bulk modulus of 672 MPa, and a liner 

with a bulk modulus of 15.97 MPa. The resonance 

frequencies are 347 Hz, 228 Hz, and 37 Hz, respec-

tively – since the resonance frequency is directly re-

lated to the effective bulk modulus of the cavity by 

 
r

LV

β
ω =  (27) 

which is found from substituting Eq. 8 into Eq. 15. 

Through comparison of the lined vs. unlined TL predic-

tions, it is evident that a significant reduction in the 

resonance frequency of two orders of magnitude may 

be obtained solely by introducing a compliant liner to 

the cavity. The peak TL decreases and quality factor 

increases as the resonance gets higher in frequency due 

to the viscous and radiation resistances, both which 

increase with increasing frequency.  

 

Fig. 3: Theoretical model for Helmholtz resonator:  No 

liner,  Liner with β’ = 672 MPa,  Liner with 

β’ = 15.97 MPa 

Table 1: Dimensions of Helmholtz resonator 

 Inner 

Radius 

Outer 

Radius 

Length 

Neck - 2.97 mm 37.34 mm 

Lining 13.30 mm 31.75 mm 97.28 mm 

 

  

Fig. 4: Theoretical model for lined Helmholtz resonator: 

 Liner tan δ 0.0, 0.2, 0.4, 0.6  

The effect of increasing the losses in the liner by in-

creasing the tan δ of the liner material can also be ex-

plored using the theoretical model. The transmission 

loss for a lined Helmholtz resonator, where the liner 
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has a bulk modulus of 672 MPa, is shown in Fig. 4 for 

liner tan δ values of 0.0 through 0.6. The implication of 

Fig. 4 is that the quality factor of the resonance, along 

with the maximum of the transmission loss, decreases 

with increasing tan δ, and can be modified independent 

of the resonator geometry through appropriate design 

or selection of the liner’s material properties. 

3 Experiment 

3.1 Prototype 

A prototype Helmholtz resonator was constructed 

per the schematic in Fig. 1, with its relevant dimen-

sions indicated in  

Table 1. The main chamber of the resonator is cy-

lindrical with a cylindrical liner insert. There are two 

different liner materials of equivalent geometry for use 

with the resonator. The first is a voided urethane mate-

rial, the second is an unvoided liner with properties 

similar to the host matrix of the voided liner. 

3.2 Test Rig 

A test rig was built to measure the transmission loss 

of two-port acoustic devices: a schematic of the rig is 

shown in Fig. 5. In order to determine the transmission 

loss of a two-port acoustic device, it is necessary to 

resolve both the forward- and reverse-travelling wave 

up- and downstream of the device. The two sections of 

pipe up- and downstream of the component under test 

are constructed according to the standard ISO-15086-2 

(2000), since measurements in each section are used to 

determine the speed of sound. Of particular importance 

is the sensor spacing, which is 0.33 m between sensors 

1 and 2 and 0.47 m between sensors 2 and 3 in each 

section, per the aforementioned standard. The sensors 

were calibrated to within 0.2 degrees relative phase at 

40 Hz, and consistent data may be obtained as low as 

10 Hz. A variable frequency drive controls a hydraulic 

power unit containing an axial-piston pump. A needle 

valve in the upstream line is left mostly open to gener-

ate broad-band noise in the flow. The mean flow is less 

than 10% of the speed of sound, so it is considered 

negligible. The termination silencer is a bladder-style, 

commercially-available hydraulic silencer and is 

mounted at the downstream end of the test section to 

isolate the test section from noise generated down-

stream. A needle valve at the downstream end serves as 

a load to regulate the static pressure at the component 

under test, measured by static pressure sensors. Six 

piezoelectric pressure transducers, three per side, are 

mounted flush with the inner surface of the rigid pipe 

and are unequally spaced to avoid a half-wavelength 

indeterminacy, as addressed by Johnston, et al. (1994). 

Data is acquired with a 24-bit data acquisition system 

mounted in a PC. The test method uses transfer func-

tions to acquire and process data – the sensors were 

therefore calibrated relative to one another by mount-

ing them circumferentially in a block, each exposed to 

the same acoustic pressure. To keep the noise floor low 

and improve the fidelity of the measurements, 100 

vector averages are taken of the experimental transfer 

functions. 

3.3 Test Method 

The test method involves determining the acoustic 

pressure and velocity incident on the faces of the sec-

tion of fluid exposed to the device under test. The up- 

and down-stream forward- and reverse-travelling 

waves are indicated in Fig. 3 as waves A, B, D, and E. 

To resolve the wave amplitudes, a least-squares regres-

sion is used to avoid half-wavelength indeterminacies 

that would otherwise occur between two sensors. The 

acoustic pressure in the upstream section of pipe can be 

expressed as 

 ( )-γx γx jωt
P Ae Be e= +  (28) 

where the acoustic velocity is given by 

 

-γx γx
jωt

0

Ae Be
Q e

Z

−
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The downstream acoustic pressure and velocity are 

expressed in the same form as Eq. 28 and 29, inter-

changing D and E for A and B, and y for x, respec-

tively. The impedance and wavenumber are given by 
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c

ω
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Fig. 5: Schematic of test rig 
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where an approximation to the viscous effects, given 

by Kojima and Edge (1994), is shown previously as 

Eq. 19. Here, rp is the inner radius of the pipe and is 

used instead of rn. The transfer matrix is given by 

 
u d11 12

u d21 22

P Pt t

Q Qt t

⎛ ⎞ ⎛ ⎞⎡ ⎤
=⎜ ⎟ ⎜ ⎟⎢ ⎥
⎣ ⎦⎝ ⎠ ⎝ ⎠

 (31) 

which is a set of two equations and four unknowns, 

where the subscripts u and d indicate the pressure at the 

upstream and downstream ports. This implies that two 

independent sets of experimental data are required to 

uniquely solve for tij. However, assuming that the 

transfer matrix section is symmetric and reciprocal, 

Pierce (1989) states that the determinant of the transfer 

matrix must be unity, which gives 

 
11 22 12 21

1t t t t− =  (32) 

and 
11 22
t t= , which reduces the number of unknowns 

to two. Using these assumptions and rearranging Eq. 

31 yields a set of equations for the transfer matrix ele-

ments expressed in terms of the pressures and veloci-

ties calculated to be present at the upstream and down-

stream ports of the device in the system as tested: 
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Of interest here is the device-specific transmission 

loss; that is, the transmission loss of the device that 

would be observed when installed in a system with an 

anechoic termination. Such is typically calculated by 

 
10

20 log
A

TL
D

=  (34) 

when an anechoic termination is realized. Since achieving 

an anechoic termination is difficult in practice, the trans-

mission loss cannot be measured directly, rather, it must be 

calculated from the transfer matrix elements determined 

from the measured transfer functions between the sensors in 

the test rig. The transfer matrix method is able to determine 

the transfer matrix unique to the device regardless of termi-

nation, as was explored by Song and Bolton (2000) and 

which is evident in the papers of Kojima and Edge (1994), 

Johnston et al. (1994), and Lau et al. (1994). A key finding 

of the Song and Bolton paper is that one cannot simply use 

the resolved wavefields “A” and “D” to compute the TL 

that would be observed if the device was anechoically 

terminated unless the device actually was anechoically 

terminated when the transfer functions were measured. 

Physically, this is so because “A” and “D” are the wave-

fields that exist for the device as tested, for whatever the 

termination impedance may have been. 

To explore this latter point in greater detail, note that 

through the definition of the elements of the transfer ma-

trix elements, Eq. 33, it is possible to obtain an expression 

for the TL that would be observed with an anechoically-

terminated device using the resolved wavefield observed 

when the device is not anechoically terminated. Since Eq. 

33 include the total pressure and velocity at each face of 

the device, the respective terms are decomposed as 
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Substituting the decomposed pressures and veloci-

ties in Eq. 35 into Eq. 33, then into Eq. 23 gives 
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Equation 36 accounts for the existence of a reverse-

travelling wave in the downstream section. Due to the 

long acoustic wavelengths in hydraulic fluid, especially 

relative to the length of the pipe section immediately 

downstream of the device under test, this term cannot be 

ignored. However, if there existed an anechoic termina-

tion (or equivalently, an infinitely long downstream 

pipe) wave amplitude E would vanish and Eq. 36 would 

collapse to Eq. 34 which is the more familiar form of the 

transmission loss equation. 

4 Results 

The prototype Helmholtz resonator, with both the 

voided and unvoided urethane linings, was tested at static 

system pressures from 2.07 to 4.83 MPa in 0.34 MPa inter-

vals (these pressures were a consequence of pressure limita-

tions in the available test rig). The transfer matrix elements 

tij from Eq. 33 are shown in Fig. 7. The experimental 

transmission loss results for 2.07, 3.45, and 4.83 MPa are 

shown in Fig. 6. The resonance frequencies for each of the 

static pressures are approximately 37 Hz, 59 Hz, and 92 Hz, 

respectively. The maximum measured TL is 22.5 dB at 39 

Hz at the 2.07 MPa pressure. The maximum TL decreases 

with increasing static pressure - this is a consequence of the 

pressure-stiffening behavior of the liner material.  

  

Fig. 6: Transmission loss for prototype Helmholtz resona-

tor: ♦ 2.07 MPa, ■ 3.45 MPa, ○ 4.83 MPa 

The analytical model was used within a least-squares 

routine to fit the model to the experimental data for the 

purpose of calculating the real and imaginary parts of the 

bulk modulus for the liner. The results of the least-

squares fit for static pressures of 2.07, 3.45 and 4.83 

MPa, using the voided liner, are given in Fig. 8 to 10. At 

each of the static pressures, the model underestimates 

the measured peak TL by 2 - 4 dB. At 2.07 MPa, the 

model overestimates the measured TL from 50 - 140 Hz 
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by approximately 1 dB. The least-squares fit appears to 

underestimate the damping in the liner; however, using a 

narrower band of frequencies to estimate the properties 

does not significantly change the results. 

 

 

 

 

Fig. 7: Transfer matrix elements for prototype Helmholtz 

resonator at 2.07 MPa. a) Term t11 b) Term t12 c) 

Term t21 d) Term t22. For all plots, ▬ real part, ▬, 

imaginary part 

The resonance frequency for the Helmholtz resonator 

using both the voided and unvoided linings, as well as the 

calculated bulk modulus and tan δ are given in Table 2. 

The tan δ is the loss in the liner only, separate from the 

losses due to radiation resistance and wall losses in the 

neck. The host materials of both liners have similar prop-

erties at atmospheric pressure; however, under hydrostatic 

pressure, the unvoided liner is much stiffer than the 

voided liner, and exhibits a much lower tan δ. The bulk 

modulus of the unvoided liner is 42 times higher at 2.07 

MPa, and 14 times higher at 4.83 MPa. 

 

Fig. 8: Transmission loss for prototype resonator at 2.07 

MPa with lumped-parameter model: ◊ Experiment, 

▬ Model 

 

Fig. 9: Transmission loss for prototype resonator at 3.45 

MPa with lumped-parameter model: ◊ Experiment, 

▬ Model 

 

Fig. 10: Transmission loss for prototype resonator at 4.83 

MPa with lumped-parameter model: ◊ Experiment, 

▬ Model 
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Table 2: Resonance frequency for prototype Helmholtz resonator, with estimated bulk modulus for voided  

and unvoided urethane lining by static pressure 

 Voided lining Unvoided lining 

Static Pres-

sure [MPa] 

Resonance 

Frequency 

[Hz] 

Bulk 

Modulus 

[MPa] 

Tan Delta 

Resonance 

Frequency 

[Hz] 

Bulk 

Modulus 

[MPa] 

Tan Delta 

2.07 37 15.97 0.32 228 672.2 0.089 

2.41 42 23.38 0.26 247 814.6 0.082 

2.76 46 26.31 0.23 261 941.0 0.088 

3.10 52 31.45 0.25 272 1040.2 0.081 

3.45 59 39.56 0.24 283 1157.3 0.069 

3.79 66 54.43 0.23 289 1215.5 0.071 

4.14 74 63.93 0.17 295 1291.9 0.074 

4.48 83 81.21 0.15 302 1381.5 0.052 

4.83 92 99.71 0.17 308 1447.1 0.042 

 

To put the size of the device and its resonance fre-

quency in perspective, if the liner was not present in 

the resonator, it would have a resonance frequency of 

347 Hz – an order of magnitude higher. Conversely, in 

order for an unlined resonator to have the same reso-

nance frequency as the prototype at 2.07 MPa, the 

volume of the cavity would need to be 108 times larger 

than the lined device. 

Figure 1 shows the transmission loss of the resona-

tor with both the voided and unvoided liners at 2.07 

MPa. The resonance frequency is higher for the un-

voided liner, and is approximately 228 Hz. This indi-

cates that the structure of the material is significant to 

the performance of the device under static pressure. 

The structure of the material is also controllable; thus, 

the resonance frequency may be varied independent of 

the size of the device through design and selection of 

the liner’s material properties. This may lead to a de-

vice that can be tailored to attenuate different fre-

quency bands simply by replacing the liner.  

  

Fig. 11: Prototype resonator at 2.07 MPa: ♦ Voided, ■ 

Unvoided 

5 Conclusions 

A lumped-parameter model for a compact, proto-

type Helmholtz resonator for a hydraulic system has 

been presented, along with experimental data for the 

performance of the device. The model was used to 

calculate the bulk modulus of two compliant liners, one 

voided and one unvoided, using the experimental data. 

The prototype resonator exhibited resonance frequen-

cies of 37, 59, and 92 Hz when used in a static pressure 

system of 2.07, 3.45, and 4.83 MPa, respectively. It has 

been demonstrated that the voiding of the urethane 

liner has a significant effect on the resonance fre-

quency of the resonator when compared against an 

unvoided urethane lining. In addition, the volume of 

the prototype is 108 times smaller than that of an 

unlined resonator of equivalent neck geometry and 

resonance frequency when pressurized at 2.07 MPa. 

Future work will involve varying the properties of 

the liner and the voiding. It is also of interest to test the 

device at higher pressures more common for hydraulic 

circuits, specifically, on the order of 20 MPa. A more 

sophisticated theoretical model is also in development 

to better understand and predict the impact of the liner. 

Nomenclature 

αw Loss factor [ND] 

β Bulk modulus [Pa] 

βf Bulk modulus of fluid [Pa] 

βL Bulk modulus of liner [Pa] 

γ Wavenumber [1/m] 

λ Wavelength [m] 

ξ Viscous effects [ND] 

ρ Density [kg/m3] 

ρeff Effective density of cavity [kg/m3] 

ρf Density of fluid [kg/m3] 

ρL Density of liner [kg/m3] 

ω Radian frequency [rad/sec] 

ωr Resonance frequency [rad/sec] 

ν Kinematic viscosity [m2/sec] 

A,B,D,E Wave amplitudes [Pa] 

c Speed of sound [m/s] 

ceff Effective speed of sound [m/s] 

C Equivalent capacitance [m2/kg] 

Cf Capacitance of fluid [m2/kg] 

CL Capacitance of liner [m2/kg] 

f Frequency [Hz] 

j 1−  [ND] 

k Wavenumber [1/m] 
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keff Effective wavenumber [1/m] 

L Equivalent inductance [kg/m2] 

Ln Length of neck [m] 

Lr Length of liner [m] 

P Acoustic pressure [Pa] 

Q Acoustic velocity [m/s] 

r1 Inner radius of liner [m] 

r2 Outer radius of liner [m] 

rp Radius of pipe [m] 

rn Radius of neck [m] 

R Resistance [kg/m4-sec] 

Rr Radiation resistance [kg/sec] 

Rw Viscous resistance [kg/sec] 

s Equivalent stiffness [N/m3] 

S Area of test rig pipe [m2] 

Sn Area of resonator neck [m2] 

tij Transfer matrix element [var] 

T Transfer matrix - 

TL Transmission Loss [dB] 

V Volume of resonator [m3] 

Vf Volume of fluid [m3] 

VL Volume of liner [m3] 

Z0 Characteristic impedance [Pa-sec/m3] 

ZH Impedance of Helmholtz reso-

nator 

[Pa-sec/m3] 

ZL Impedance of load circuit [Pa-sec/m3] 
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