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Abstract

Email phishing is a cyber-attack, bringing substantial financial damage to
corporate and commercial organizations. A phishing email is a special type
of spamming, used to trick the user to disclose personal information to access
his digital assets. Phishing attack is generally triggered by emailing links
to spoofed websites that collect sensitive information. The APWG survey
suggests that the existing countermeasures remain ineffective and insuffi-
cient for detecting phishing attacks. Hence there is a need for an efficient
mechanism to detect phishing emails to provide better security against such
attacks to the common user. The existing open-source data sets are limited
in diversity, hence they do not capture the real picture of the attack. Hence
there is a need for real-time input data set to design accurate email anti-
phishing solutions. In the current work, it has been created a real-time
in-house corpus of phishing and legitimate emails and proposed efficient
techniques to detect phishing emails using a word embedding and machine
learning algorithms. The proposed system uses only four email header-based
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heuristics for the classification of emails. The proposed word embedding cum
machine learning framework comprises six word embedding techniques with
five machine learning classifiers to evaluate the best performing combination.
Among all six combinations, Random Forest consistently performed the best
with FastText (CBOW) by achieving an accuracy of 99.50% with a false
positive rate of 0.053%, TF-IDF achieved an accuracy of 99.39% with a false
positive rate of 0.4% and Count Vectorizer achieved an accuracy of 99.18%
with a false positive rate of 0.98% respectively for three datasets used.

Keywords: Email phishing detection, Word embedding, Machine Learning,
Word2ec, FastText, TF-IDF..

1 Introduction

The advent of the internet since 1990 has brought much convenience along
with threats to the privacy of users. Since its inception, the users availing of
the facilities provided by the internet are increasing in an unprecedented way,
and its current users are 4 billion out of 7 billion population on the earth. Most
internet users are unaware of the technicalities of the internet and probable
to fall into a trap designed by some malicious users [1]. In India, there has
been an increase in rural internet users over the past three years with the
introduction of affordable data rates. Out of India’s 1.3 billion population,
about 600 million use the internet, those figures will only rise in the future.
The increase in the number of users also invites phishers fraudulent practices
to attack people’s privacy by exploiting their analphabetism from internet
functionality.

1.1 Phishing Emails:

Phishing is a fraudulent activity conducted by cybercriminals to get unau-
thorized access to the user’s resources. Many studies [2–6] suggest that the
young population is attached to digital devices and communication networks
for their communication, education, entertainment, and financial transactions.
Hence this population is most vulnerable to phishing email attacks. Phishing
is most generally triggered by sending emails containing links to spoofed
websites. Email phishing has become a real and serious threat to electronic
commerce, because, it contains a message from credible looking sources
requesting to disclose and gaining access to steal sensitive information from
individuals and financial organizations. The number of phishing attacks
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Table 1 APWG Email phishing statistics 2019

Quarter-1
Phishing
Emails

Quarter-2
Phishing
Emails

Quarter-3
Phishing
Emails

Quarter-4
Phishing
Emails

January 34630 April 37045 July 35530 October 45057
February 35364 May 40177 August 40457 November 42424
March 42399 June 34932 September 42273 December 45072
Total - Q1 112393 Total – Q2 112154 Total – Q3 118260 Total – Q4 132553

Table 2 APWG Email phishing statistics 2020

Quarter-1
Phishing
Emails

Quarter-2
Phishing
Emails

Quarter-3
Phishing
Emails

Quarter-4
Phishing
Emails

January 52407 April 43282 July 119181 October 143950
February 43270 May 39908 August 119180 November 119700
March 44008 June 44497 September 128926 December 133038
Total – Q1 139685 Total – Q2 127687 Total – Q3 367287 Total – Q4 396688

continued to rise in the fall of 2019 according to the Phishing Activity
Trends Report ( [7] and [8]) of the Anti-Phishing Working Group (APWG).
APWG [7] identified a total of 266,387 phishing sites from July through
September 2019. This was 46 percent higher than the 182,465 seen in the
second quarter of 2019 and almost double the 138,328 seen in [9]. The email
phishing activities reduced drastically in the year 2019, four-quarter statistics
of APWG 2019 unique phishing emails are tabulated in Table 1.

Table 1 shows the amount of unique phishing email messages received
from clients by APWG. According to the latest four quarter reports of
2020, 1031347 unique phishing e-mails (campaigns) were recorded from the
consumers. The four quarter monthly results of 2020 are tabulated in Table
2. The cyber-criminals use COVID-19 related disaster content for phishing
against health care warriors, hospitals, and healthcare facilities. According
to the APWG – 2015 survey report ( [10] and [11]), the highest number
(1,413,978) of phishing emails was identified in the year 2015. The statistics
of phishing emails recorded from 2010 to 2020 can be seen in Figure 1. The
APWG survey clearly states that email phishing is one of the major threats to
be considered for further research to identify efficient anti-phishing solutions.
According to the Mimecast survey report [12], the majorly affected orga-
nizations are Finance 68%, Professional services 66%, and Manufacturing
66%. According to Kaspersky’s third quarter report of 2019 [13], educational
institutions and university sensitive documents are stolen and sold in the dark
market.

As the phishing websites and phishing emails are often nearly identical
to legitimate websites and emails, current filters have limited success in
detecting these attacks, and leaving users vulnerable to a growing threat.



282 Somesha M. and A. R. Pais

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
0

2

4

6

8

10

12

14

·105

Year

N
o

of
at

ta
ck

s
*

10
5

Figure 1 Email Phishing attacks from 2010 to 2020.

Users become a victim and end up revealing private (sensitive) information
due to,

• Lack of computer system knowledge
• Inadequate knowledge of security and security indicators
• Replication of original sites with minor change mostly goes unnoticed

by users
• Ignoring security warnings.

1.2 Word Embeddings:

Word embedding is a collective term for a group of language models and
methods for selecting features often referred to as word representation. Its
primary objective is to map textual terms or phrases into a continuous
low dimensional space. Word embeddings convert human textual language
meaningfully into a numeric representation. The converted text to numbers
may be a different numeric representation of the same text.

• Need of word embeddings: Many machine learning algorithms and all
deep learning algorithms or architectures are incapable of processing
strings or plain text in their raw form. They require numbers as inputs to
perform any sort of jobs (classification, regression, etc). A huge amount
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of data present in the text format is imperative to extract knowledge
out of it and build applications. The real world text based applications
are sentiment analysis of reviews by business organizations, document
or news classification or clustering by google, etc. A word embedding
format generally tries to map a word using the dictionary to a vector.
Example: Sentence = ”Word embeddings are word converted into num-
bers” Words in the sentence are ’embeddings’ or ’numbers’. A dictio-
nary may be the list of all unique words in the sentence, so a dictionary
may look like [’Word’,’embeddings’,’are’,’converted’,’into’,’numbers’].

• Word embedding types: Word embedding is categorized into two types:
(1). Frequency-based, and (2). Prediction-based embedding techniques.

1.2.1 Frequency-based word embedding
Frequency-based word embedding counts words in each document and is a
very basic, fast, and easy method to create word vectors. There are two types
of embeddings, TF-IDF and Count vectorizer.

TF-IDF: Term Frequency and Inverse Document Frequency vectoriza-
tion works, by finding out the most unique words present not just in the
document but in the entire corpus of the documents. The intuition behind
this is that the more frequent words may not be the relevant words. Some
words just appear in the documents more number times. IDF works by finding
such words and giving better unique words present in the entire corpus
of documents as the more frequent irrelevant words hold little to no new
information. TF, the number of times a word has appeared in a document.
Further, it can be divided by the total number of words in a document.
Therefore,

TF (t, d) =
x

y
(1)

where x is the count of t in document d, and y is the number of words in
document d.
IDF measures the uniqueness of the word across the corpus.

IDF (t, d) = log(
N

n
) (2)

where N is the total number of documents present in the corpus, and n is the
number of documents where the term t appears.

TFIDF = TF ∗ IDF (3)

Count Vectorization (CV): In count vectorization, a matrix of size d×n
will be created. Where d is the size of the corpus i.e number of documents
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and n is the number of unique tokens in the documents. This matrix holds the
count of each word appearing in a document. The similarity between each
of the vectors generated is calculated using the cosine similarity i.e the angle
between the two vectors.

1.2.2 Prediction-based word embedding
Prediction-based word embeddings are more efficient and accurate language
modeling techniques in modern research and are considered a byproduct
of language models according to Almeida and Xexéo [14]. Some of the
prediction-based word embedding techniques such as Word2Vec, FastText,
and GloVe are discussed below.

Word2Vec (W2V): To infer any relationship between two words is
difficult in their one-hot encoding representation. Sparsity is another issue
with the one-hot encoding as there are many redundant ”0” in their vector
representation. Word2Vec solves these problems by using surrounding words
in representing the target words. Word2Vec is a predictive model which tries
to learn embedding from the given text. It is a three layer architecture with
a small hidden layer that does the task of generating embeddings from given
text. The size of input and output given is generally the same. Word2Vec has
two algorithms, those are Continuous Bag of Words (CBOW) and SkipGram
(SG).

• CBOW: Continuous Bag of Words tries to predict the word with the help
of the context. This context can be a single word or a group of words.
CBOW uses a neural network as continues distributed representation of
the context of words and predicts a word as an output. The working
and architecture of the CBOW and SkipGram models were presented by
Mikolov et al [15]. This model predicts the probability of occurrence of
a word given the context of words surrounding it.

• SkipGram model: SkipGram model tries to predict the context of the
given word. The architecture is just opposite to that of the CBOW model.
SkipGram takes the input as the target word and outputs the context
words that surround the target word.
For example: Given the sentence, ”It was an apple pie”, if the input is
”a”, the output would be ”It”, ”was”, ”apple”, and ”pie” for the window
size of 5. The dimension of all the input and output data is the same
and one-hot encoded. This model consists of one hidden layer with a
dimension equal to the embedding size, which is lesser than the vector
size of input/output. A softmax activation function is applied at the end
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of the output layer which describes the likelihood of the appearance of a
specific word in the context.

Two challenges that appear with Word2Vec are,

• Out of Vocabulary (OOV) words: Word2Vec can handle only words it
has encountered during its training. For example, Word2Vec vocabulary
containing words such as ”tensor” and ”flow” can not handle embedding
for the word ”tensorflow”, i.e., a compound word. Thus it leads to an
”out of vocabulary” error.

• Morphology: Word2Vec does not do any parameter sharing for words
such as ”eat” and ”eating” with the same radicals. Each word is uniquely
learned based on the context in which the word appears. Thus the
internal structure of the word can be utilized properly to make the
embedding more efficient.

FastText (FT): FastText is the library developed by Facebook AI
Research (FAIR) [16], and it is given as an open-source free library. FastText
uses unsupervised or supervised learning algorithms to create word vectors. It
uses two algorithms which are Continues Bag of Words and Skip Gram model
similar to Word2Vec. FastText is used to develop word embedding for a word
using the n-gram of each character. Thus, FastText allows the generation of
vector representations of previously unseen words in the text. And also used
for finding semantic similarities, text classification, and fast training of large
datasets.

GloVe: Glove represents Global Vectors, and it is an unsupervised learn-
ing distributed word representation model to obtain vector representation of
words. Global Vectors are generated using the co-occurrence matrix statistic
from a corpus. The matrix denoted by X, Xi,j represents the number of
times word j appears in the context of the word i. Pi,j = Xi,j/Xi which
gives the probability that the word j occurs in the context of the word i.
These probabilities can provide some potential to encode some form of the
underlying meaning of the contextual meaning.

The research contributions of our work are listed below:

• Creation of In-house real-time phishing and legitimate email datasets.
• Proposed a novel phishing email detection technique using word embed-

ding and machine learning.
• The proposed novel architecture uses only FOUR email header features

and achieved competitive accuracy.
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• Proposed work outperformed all other existing works on publicly
available datasets.

• The proposed work justified that the newly created datasets are accurate
and obtained nearly similar results as with publicly available datasets.

The rest of the paper is organized as follows: In section 2, the literature
survey about phishing email detection and word embedding techniques used
are provided. The major section of our paper is the proposed work and
is discussed in section 3. This section clearly describes the architecture
and its stages. Processing of emails, heuristics selection, feature extraction,
vector generation, and classification of emails is the core part of this section.
Section 4 describes the implementation of the proposed model. Results and
discussions are given in section 5 to justify the performance of the proposed
method in comparison with all existing works. The conclusion of our work
and the future enhancement is given in section 6.

2 Literature survey

”Phishing Email” is a deceptive activity performed by fraudsters by spoofing
emails ostensibly from some trusted companies or organizations to gain
financial benefits from victims by camouflage emails. This is usually done
by including a link that appears to take the victim to the fake website to fill
victim’s personal information. The provided information goes directly to the
crooks behind the scam.

Phishing attacks are categorized into deceptive and malware phishing.
Deceptive phishing is the major concern of this literature survey. Deceptive
phishing is related to social engineering schemes, which depend on forged
email claims that appear as originated from a legitimate organization. And
also, an embedded link redirects the user to fake websites to obtain personal
information to defraud the user. The emails are classified as phishing or
legitimate by using filtering (particularly keywords or learning-based filters
which analyze a collection of labeled training data). Email messages majorly
consist of two parts, header(s) and body.

Email header consists of a structured set of fields, such as From, To,
Subject, Message-id, etc. The body is the content of the email message. The
taxonomy (Figure 2) and structure (Figure 3) of the email clearly describe
the format of the email message. These figures are obtained from Almomani
et al [17]. The strategy of a phishing email is to attract victims and direct
them to a particular phishing website. The received emails are embedded
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Figure 2 Email message Taxonomy – Courtesy [17].

with URLs and trick the user to mouse click on the embedded link to reveal
confidential information. Several email phishing features are identified by
many researchers and found many different mechanisms to achieve the iden-
tification of legitimate and fake emails. According to Almomani et al [17],
there exist three types of feature sets, such as basic features, latent topic
features, and dynamic Markov chain features. The author [17] identified
different anti-phishing approaches contributed by researchers. A brief survey
of techniques used in machine learning, deep learning, word embedding, and
natural language processing is discussed in detail.

2.1 Machine Learning Based Techniques

Fette et al [18] proposed a live filtering solution, based on PILFER a machine
learning based classification approach. They used 10 features, out of which
nine features were extracted from the email itself and the tenth feature
represents the age of the linked-to-domain names. Toolan and Carthy [19]
proposed an extension to the work of Fette et al [18], using classifier ensem-
bles for the classification of phishing and non-phishing emails. They used the
C5.0 algorithm and achieved a very high precision. Toolan and Carthy [19]
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Figure 3 Email message structure – Courtesy [17].

used only FIVE features on approximately 8000 emails, half of which were
phishing and remaining legitimate.

Bergholz et al [20] proposed new filtering approaches by selecting novel
features suitable to identify phishing emails. The selected features suite of
statistical models for low dimensional descriptions of email topics. The work
was carried out by sequential analysis of email text, external links, and
detection of embedded logos as well as indicators for hidden salting (inserting
white text on white background). They used 27 basic features with two novel
features (logo detection and hidden salting) and obtained an f-measure of
99.46%. Toolan and Carthy [21] identified 40 features extracted from the
email body of over 10,000 emails which are divided among ham, spam,
and phishing. The selected features are evaluated using an information gain
algorithm and classified as Best-IG, Median-IG, and Worst-IG features. Best-
IG features outperformed among all with an average accuracy of 97.1%. The
freely available datasets from SpamAssassin and Phishing corpus were used
(4202-ham, 1895-spam, and 4563-phish).

Khonji et al [22] proposed feature subset evaluation and feature subset
searching methods. The primary focus of this is to enhance the classification
accuracy of phishing emails by finding the effective feature subsets from



Classification of Phishing Email Using Word Embedding 289

the number of previously proposed features. There are a total of 21 features
selected (email body, email header, URL, JavaScript, and external features)
from Fette et al [18], Bergholz et al [20], Toolan and Carthy [21], and
Gansterer and Pölz [23]. After evaluating with various feature selection meth-
ods, Wrapper with RF performed the best with 21 features and an f1-score
of 99.396%. The authors used publicly available datasets of 4116 phishing
emails from monkey.com1 and 4150 ham emails from SpammAssasin.com2.
Abu-Nimeh et al [24] proposed distributed phishing detection by applying
variable selection using Bayesian Additive Regression Trees (BART). They
presented a distributed client-server architecture to detect phishing e-mails by
automatic variable selection. BART improves its predictive accuracy when
compared to other classifiers. This architecture is also used to detect phishing
attacks in a mobile environment. Abu-Nimeh et al [24] used 71 features for
training and testing of 6 Machine learning algorithms (RF, LR, SVM, Nnet,
CART, BART), and proved that there is no standard classifier for phishing
email prediction.

Chandrasekaran et al [25] proposed a technique to classify phishing based
on the structural properties of phishing e-mails. They used one-class SVM
to classify phishing e-mails before it reaches the user’s inbox, essentially
reducing the human exposure based on selected features. The prototype sits
between users Mail Transfer Agent (MTA) and Mail User Agent (MUA) and
process each arriving email. Their results claim a detection rate of 95% of
phishing e-mails with a low false positive rate. Cohen et al [26] proposed a
novel set of general descriptive features for enhanced detection of malicious
emails using machine learning methods. The proposed features are extracted
directly from the email itself, therefore the features are independent, don’t
require internet or any other tools, and meet the needs of real-time systems.
These features are from all components, i.e., header, body, and attachments.
The authors used 33142 emails which contain 38.73% of malicious and
61.27% benign emails. Applied 30 most prominent features of the 100
features extracted by applying three main feature selection approach those
are, Filter methods, wrapper methods, and embedded methods. Random
Forest (RF) classifier achieved the highest detection accuracy of 92.9%, TPR
94.7%, FPT 0.03 among 9 commonly used machine learning classification
algorithms (J48, RF, NB, Bayesian Networks, LR, LogitBoost, Sequential
Minimal Optimization, Bagging, and Adaboost).

1https://monkey.org/ jose/phishing/
2https://spamassassin.apache.org/old/publiccorpus/
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2.2 Deep Learning Based Techniques

Smadi et al [27] proposed a framework that is a combination of neural
networks and reinforcement learning to detect phishing attacks in the online
mode. The proposed model can adapt itself to identify newly arrived phishing
emails for newly explored behaviors of emails dynamically. A novel algo-
rithm adopts to explore new phishing behaviors in the new datasets. The
dynamic system achieves an accuracy of 98.63%, TPR of 99.07%, and TNR
of 98.19%. The drawback of this approach is learning dynamic updates of
features and datasets for every email may slow down the system. Nguyen et
al [28] presented a deep learning model with hierarchical-LSTM and a super-
vised attention mechanism. The hierarchical LSTM structure is implemented
first for words at the lower level, whose results are then passed to the LSTM
structure in the sentences at the upper level to generate vector representation
for the email. An attention mechanism is used to combine these two levels
and to assign the contribution weights to each of the words and sentences in
the email. A deep learning model is used to automate the feature engineering
process for phishing email detection. With the use of both the email headers
and body, they achieved precision, recall, and F1 scores of 0.990, 0.992, and
0.991 respectively.

Li et al [29] proposed LSTM based phishing detection model for big
email data. The proposed model includes the sample expansion stage and
testing stage. The model combines KNN with K-means algorithms to expand
the training data for deep learning. In this work, the author used private
data set generated from their email servers, and mailboxes collected from
some organizations. In this work, they used seven header and content-based
features and achieved an accuracy of 95%. Alhogail et al [30] proposed Graph
Convolutional Network (GCN) based phishing email detection using body-
based text features and natural language processing techniques. The author
achieved an accuracy of 98.2% and a false positive rate of 0.015, and used
the CLAIR collection of fraud emails dataset.

2.3 Word ebedding Based Techniques

Fang et al [31] proposed a model called THEMIS, which is a combination
of deep learning and Word2Vec techniques for phishing email detection.
The model uses improved Recurrent Convolution Neural Networks (RCNN)
with multilevel vectors and attention mechanisms. They used word level
and character level vectorization for a rich set of vectors. The extracted
vectors are tuned, trained, and tested using RCNN to obtain an efficient
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phishing accuracy of 99.848% and FPR of 0.043%. The obtained results are
competitive, but the same would have been trained and tested with other
word embedding and deep learning techniques. The author used multiple
datasets to have a bulky dataset. Bagui et al [32] proposed approach uses deep
semantic analysis, ML, DL techniques to classify phishing and legitimate
emails. They used private datasets collected from various industries in the
USA. The proposed approach uses hybrid features as text and achieved an
accuracy of 98.89% with word phrasing and 96.34% without word phrasing
using n-gram analysis and one-hot encoding techniques. In the proposed
work, Bagui et al [32] claim that stop words are not removed and used both
header and body features.

Castillo et al [33] proposed email threat detection using a distinctive neu-
ral network approach. The author described different approaches for detecting
malicious content in emails. The proposed model is a combination of machine
learning and natural language processing and used publicly available and
private datasets. The model uses only email contents as input data set to
classify emails as malicious or benign. In this work, the Gensim-Word2Vec
model is used to generate numeric word vectors and achieved testing accuracy
of 95.68% with 1025 emails. Ra et al [34] used the combination of word
embedding, a neural bag of n-grams, and some of the deep learning models
such as CNN, RNN, LSTM, MLP for the detection of phishing emails.
Deep learning models are used to extract the optimal features and non-linear
activation functions are used for classification. All the models are trained
on an anti-phishing shared task corpus at IWSPA-AP 2018. The proposed
model achieved a training accuracy of 99.1% with word embedding vector
and LSTM network.

Hiransha et al [35] made use of IWSPA-AP 18 datasets to train the
model consisting of Keras word embedding and CNN. The proposed model
combining word embedding and CNN gives a vector representation for the
words in the emails which are then used in the classification of legiti-
mate and phishing emails. The proposed model without an email header
has an accuracy of 96.8% and has an accuracy of 94.2% with the email
header. Harikrishnan et al [36] made use of TF-IDF and some classical
machine learning algorithms such as RF, AdaBoost, NB, DT, and SVM.
The proposed method uses TF-IDF for vector representation of words and
SVD, NMF for feature extraction, and dimensionality reduction. This model
is trained on IWSPA-AP 18 datasets. The proposed model has a test-
ing accuracy of 90.29% for emails with headers using TF-IDF and NMF
representation.
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Verma et al [37] proposed ”Detecting phishing emails the natural lan-
guage way” in the year 2012, the first scheme used natural language process-
ing techniques and contextual information in detecting phishing emails. The
scheme uses all parts of the email including the header, text in the body, and
the links present in an email. The proposed model named ”PhishNet-NLP”
operates between a mail transfer agent and a mail user agent. The proposed
method achieves an accuracy of 97%. The obtained accuracy is comparatively
less than in other works. Gutierrez et al [38] proposed a model called SAFE-
PC for detecting a new form of phishing attacks, a semi-automated feature
generation model for phishing classification. The model uses a huge corpus
received from the Purdue university’s central IT organizations with the help
of a state-of-the-art email filtering tool called Sophos installed on a Microsoft
exchange server. The author used three datasets as caught, uncaught, and
benign of size 388,264 emails, 37,606 and 158,444 emails respectively, and
used 806 features from email header, body, and links. The authors also tested
their model with SpamAssassin open-source corpus and noticed the model
performed better with collected real-time datasets. The authors claim that the
proposed work is an extension of work carried out by Verma et al [37]. Used
features in the proposed work are huge and may require more time to process
in a real-time environment.

Valecha et al [39] used a new convention called Persuasion cues instead
of features, keywords, or phishing techniques used by other researchers. The
proposed technique uses Word2Vec with four machine learning classifiers
and compared the candidate model for gain, loss, and gain loss persuasion
cues with the baseline model and achieved an improvement of approximately
5 to 20%. The model with Word2Vec and SVM achieved the highest gain
accuracy of 96.52%, loss of 96.16%, and gain loss accuracy of 95.97%.

A summary of major works based on machine learning to detect phishing
emails is tabulated in Table 3. The table describes related works based on
seven parameters, those are authors of the paper, model or algorithms used,
number of features used, input dataset, the accuracy achieved, weakness, and
techniques used. Some major related works based on word embedding with
machine learning or deep learning to detect phishing emails are tabulated in
Table 4. It may be observed that the related works are also evaluated based
on the parameters used. According to the survey conducted, the majority of
the research works carried out on both the header and body of an email,
and some works on attachments along with the header and body of an
email. None of the works focused exclusively on email header features or
word vectors based on email headers. After analyzing the research gaps, this
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work proposes a model which uses only email header-based heuristics for
efficient phishing email detection. The study of related works gave clarity
to adopt word embedding for our research with machine learning classifiers.
The architecture in the next section evaluates the best possible combination
of the classification process with multiple word embedding and machine
learning classifiers. Based on the research summary, it may be concluded
that word embedding techniques may generate more suitable word vectors
to classify given emails as phishing or legitimate using different machine
learning classifiers. Hence, a new word embedding and machine learning
based phishing email detection technique is proposed in this paper.

3 Proposed work

The architecture of the novel work proposed to detect phishing emails is
shown in Figure 4. The architecture has multistage functionality to process
and classify the email as phishing or legitimate. The steps involved in this
process are:

• Input Emails
• Feature extraction
• Dictionary creation
• Vectorization
• Classification

Figure 4 Architecture of Phishing Email Detection.
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3.1 Input Emails

Emails are the actual messages communicating between two or more known
peers in electronic messaging media. Initially, the raw emails are grouped
as datasets repositories. These emails are processed to extract the required
heuristics. The required heuristics are extracted from email headers of pre-
processed datasets taken from public and in-house generated repositories.

3.2 Feature Extraction

Feature extraction is the first step in the proposed model. In this stage, the
required heuristics are extracted from the emails.

Python scripts are written to extract only required header heuristic fea-
tures from MBOX format files. After extracting the required heuristics,
unwanted tags, text, garbage characters, and some special symbols are
removed. The extracted data from individual emails are stored and saved as a
CSV file. The generated CSV file is an input to the proposed architecture to
classify phishing or legitimate emails. The selected heuristics are discussed
below.

3.2.1 Description of selected heuristic features
As discussed in section 2, most of the existing works used hybrid features, and
some works have used only content-based features. In this work, only four
header labels are selected as heuristic features. The selected heuristic features
are From, Return-Path, Subject, and Message-id from the email header.

• From: This is a label for the sender’s email address and name. The
address may be a person, a company, or an association that created an
internet account from the email service provider. The genuine email
account from address will be used by fraudsters to send web links,
malware, and other means to defraud users.

• Return-Path: Email header generated by SMTP protocol to keep track
of reverse path, and is used for collecting and processing bounced
emails. These bounced email return paths are used by fraudsters to steal
sensitive information by broadcasting vulnerable links to targeted users.

• Subject: This is a brief description of an email message to convey the
information. The subject is a major vulnerable heuristic among all four
fields. Subject contains catchy, urgency, bank, financial, and account-
related information for conducting fraudulent activity.
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• Message-ID: This is a globally unique identifier for every individual
email and has a specific format. The generated Message-ID is specific
to the email address and message, thus no two emails have the same
Message-ID. The generated message-ID will be used by a fraudster to
project as a legitimate user interacting to gain the personal information
of the end-user.

3.3 Dictionary creation

The extracted heuristics are tokenized using the nltk library. Tokenization is
the process of splitting input documents into smaller units such as words or
terms. The input document may be a phrase, sentence, paragraph, or an entire
document. Each of these smaller units is called a token. The output of tok-
enization is fed to the lemmatization process. Lemmatization tries to remove
the inflectional endings from the word and provide the dictionary form of the
words. This process is achieved using vocabulary and morphological analysis
i.e studying the structure and formation of the word. Lemmatization converts
and correctly identifies a word to its base form and helps in considering the
context of the word which is being used.

Example: Let us consider the following sample feature,
Subject = ”Transaction alerts for your State Bank of India Debit Card”
When the subject is tokenized, the string looks like,

[’Transaction’, ’alerts’, ’for’, ’your’, ’State’, ’Bank’, ’of’, ’India’,
’Debit’, ’Card’]

The output from the tokenizer is fed to the lemmatizer, the obtained output
from the lemmatizer as below,

[’Transaction’, ’alert’, ’for’, ’your’, ’State’, ’Bank’, ’of’, ’India’, ’Debit’,
’Card’]

3.4 Vectorization

The vectorization processes are generally unsupervised learning methods
to convert words into a numeric format. The obtained numeric vectors are
trained using classification models. Before generating vectors, pre-processing
of extracted features from the emails should be cleaned up by removing
special symbols, extra space, irrelevant numeric data, and garbage characters
as a tokenization process. The extracted words are lemmatized to remove
inflectional endings and lowered. In this work, two common vectorization
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methods, such as frequency (count of words/context co-occurrences) and
prediction-based methods are used. The prediction-based methods are Fast-
Text & Word2Vec, and the frequency-based methods used are TF-IDF &
Count vectorization. These word embedding techniques are used to represent
words, allowing machine learning algorithms to understand words that have
similar meanings. Word vectors are just numerical vectors that represent
the meaning of a word. Word vectors are multidimensional floating-point
values that represent semantically comparable words that are mapped to
approximate positions in geographic space.

Word2Vec – SkipGram: In the proposed mechanism, Word2Vec Skip-
Gram takes a dictionary of words generated in the earlier step as input and
generates corresponding vectors. SkipGram works well with unknown words.
Word2Vec has several parameters as input and cosine similarity techniques
for the generation of vectors. The used parameters are vector size, window
size, minimum count, number of workers, number of iterations, and input
datasets. Fine-tuning of these parameters results in obtaining suitable vectors
to achieve better efficiency.
Word2Vec – CBOW: CBOW works opposite of the SkipGram model. In
the proposed mechanism, CBOW takes a dictionary of words generated and
predicts the target word by taking context words as an input. CBOW is faster
and works better with frequently occurring words. All the parameters used
in Word2Vec – CBOW model is the same as with the SkipGram model to
generate corresponding word vectors of real numbers. The vectors generated
depends on the vector size and other parameters assigned to a Word2Vec
function.
FastText – SkipGram: FastText is a library developed by FAIR based
on two papers Bojanowski et al [16] & Joulin et al [45]. The proposed
library function includes a set of parameters namely input corpus, vector
size, window size, minimum count, and the number of workers to generate
vectors. This algorithm uses hierarchical classifiers and n-gram techniques
for unlabeled datasets to train the model. In the proposed mechanism, the
FastText SkipGram model takes a dictionary of words generated in the earlier
section 3.3 as input and generates corresponding real-valued vectors.
FastText – CBOW: In this method, the model captures all the words in a
surrounding window and uses some of their vectors to predict the target.
TF-IDF: Term Frequency and Inverse Document Frequency works by
finding out the most frequent unique words present in the entire corpus of
the documents. TF identifies the most frequent words in a document. IDF
provides words uniquely present in the corpus of documents which does
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provide some relevant information about the document. The vectors are
generated by replacing true or false conditioned boolean values of vector
size for the words of the dictionary. TF-IDF terms need to be normalized
to reduce the bias in term frequency from terms in short or longer documents.
The corresponding sparse matrix is generated to identify term frequency and
inverse document frequency of corpus.
Count Vectorization: Count Vectorizer tokenizes the text along with per-
forming very basic pre-processing. It removes the punctuation marks and
converts all the words to lowercase. The vocabulary of known words is
formed which is also used for encoding unseen text later. An encoded vector
is returned with a length of the entire vocabulary and an integer count for the
number of times each word appeared in the document. We need to normalize
Count Vectorizer terms to reduce bias in term frequency from terms in short
or longer documents. The normalized resultant vector generated of size 100
and the corresponding sparse cse matrix is obtained from the count vector-
izer. The generated vectors are further fed into machine learning classifiers
to classify the given email as phishing or legitimate. The working of word
embedding algorithms used in the proposed work is discussed in section 1.2.

3.5 Classification

The rich set of vectors are generated from the vectorization module, these
vectors are amazingly powerful because they allow identifying similarity
across different words in a continuous vector space. The generated vectors
from word embedding techniques are classified into phishing or legitimate
emails using five machine learning classification algorithms. The machine
learning algorithms used in the proposed work are Random Forest (RF),
Decision Tree (DT), Support Vector Machine (SVM), XGBoost, and Logistic
Regression (LR). These algorithms are very efficient in classifying emails as
phishing or legitimate.

4 Implementation

The proposed model uses Pandas, nltk, sklearn, gensim, and numpy, libraries.
Pandas library used for database processing and reshaping, nltk used for
statistical natural language processing. Sklearn is used for classification,
regression, clustering, and dimensionality reduction. Gensim model is an
open-source library used for converting word to vector, document to vector,
and finding text-similarity in word embeddings.
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4.1 Dataset preparation

The Datasets are prepared by two methods, 1. Using open-source corpus, and
2. In-house corpus generation.

4.1.1 Open-source corpus
The dataset preparation is one of the major tasks of the current work.
Most of the works published till today used two well known open-source
datasets available in the open access repositories for phishing and legitimate
emails called phishing corpus1 and ham corpus2. These two corpora contain
a periodically updated email repository of legitimate and phishing emails.
These two corpora have duplicate emails due to periodic updates of emails
to the same repository. We have selected unique 6295 legitimate2 and 9135
phishing1 emails as Dataset-1 by eliminating duplicate emails from the
repository. For Dataset-2 we have used the phishing emails from Dataset-1
and legitimate emails from an in-house dataset of size 18270.

4.1.2 In-House corpus
The dataset creation by examining individual emails is one of the most
important steps in email phishing. The innovative researchers require updated
new real-time data to understand the day-to-day activities of the phisher.
Most of the works carried out by researchers have used existing open-source
datasets as in Dataset-1. The selected SpamAssasin2 datasets are collected in
the year 2002, and Phishing corpus1 datasets are collected during the period
2004 to 2007 and 2015 to 2017. The ham email datasets are older than
phishing corpus emails collected after November 2004. Both open-source
datasets mismatch with their period of recording the repository. The duration
mismatch may lead to the failure of phishing email detection. Phishers may
modify unnoticeable parameters to lure victims. The phisher’s behaviors and
techniques are changing every day to trick victims by obtaining sensitive
credentials to defraud users. To overcome the above problem, and tackle
the current tricks, Dataset-3 is created using real-time in-house phishing
and legitimate datasets. The new repositories are collected from institution
students, research scholars, family members, and friends to understand the
behavior of fraudsters with a diversified set of users. The selected emails are
analyzed manually and labeled individual emails as phishing and legitimate.
The selected datasets and their size are shown in Table 5. In the process of
dataset creation, some basic steps are followed to identify emails as phishing
or legitimate and they are given below.
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Table 5 Datasets used

Dataset
Legitimate
Emails

Phishing
Emails

Total

Dataset – 1 6295 9135 15430
Dataset – 2 18270 9135 27405
Dataset – 3 18270 8986 27256

• Analyse the behavior of suspicious emails.
• Analyse the source code of the original email message.
• Analyse the Google warning indicators.
• Using MxTOOLBOX3 online tool to analyze email headers.

4.2 Evaluation metrics

Evaluation metrics are used to analyze the performance of the proposed
model. The evaluation metrics used to evaluate our proposed model are given
below.

• The sensitivity or recall is known as true positive rate (TPR):

TPR =
TP

(TP + FN)
∗ 100 (4)

where, TP = No. of phishing emails classified as phishing, and (TP +
FN) = Total no. of phishing emails.

• Specificity as true negative rate (TNR):

TNR =
TN

(TN + FP )
∗ 100 (5)

where, TN = No. of ham emails classified as ham, and TN + FP) = Total
no. of ham emails.

• Accuracy (Acc):

Acc =
(TP + TN)

(TP + FP + TN + FN)
∗ 100 (6)

where, (TP + TN) = No. of correctly classified phishing and ham emails,
and (TP + FP + TN + FN) = Total no. of emails.

3https://mxtoolbox.com/Public/Tools/
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• Precision (P):

P =
TP

(TP + FP )
∗ 100 (7)

where, TP = No of phishing emails classified as phishing, and (TP +
FP) = Total no. of emails classified as phishing.

• F-score (F) :

F = 2 ∗ P ∗ TPR

P + TPR
(8)

• Matthews Correlation Coefficient (MCC): This measure is considered as
a balanced measure, used for different class size datasets. MCC provides
a correlation coefficient between predicted and observed outcomes.

MCC =
TP ∗ TN −−FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(9)

The equations (4) (5) (6) (7) (8), and (9) represent an evaluation of the
input sample for their rate of positive and negative rates. The metric TP is
truly positive, which represents the number of phishing emails classified as
phishing, TN is true negative represented as the number of legitimate emails
classified as legitimate. The other two basic metrics used are false positive
(FP) and false-negative (FN), the FP represents the number of legitimate
emails classified as phishing, and FN represents the number of phishing
emails classified as legitimate. These basic metrics are used to calculate recall
(4), specificity (5), accuracy (6), precision (7), F-measure (8), and Matthews
Correlation Coefficient (9).

4.2.1 System requirements
The basic system configuration used to run the experiments are, CPU –
ThinkStation, processor – Intel Xeon(R) CPU E5-2650 v3 @ 2.30GHz x 40,
Memory – 64GiB. The other basic setup required to run the word embedding
and machine learning algorithms are Ubuntu 18.04, Pycharm professional
tool to run python scripts, and required datasets.

5 Results and discussion

To conduct experimentation, the three different datasets as mentioned in
Table 5 is used. The training and testing are performed with 70% & 30%
of each dataset’s total size with a window size of 10. Before performing the
main experiments, a series of prerequisite tasks are needed. To minimize as
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much noise as possible, python scripts are written to remove empty spacing,
angle brackets, single and double quotes, and so on. The parsed email header
heuristics are then saved as a CSV file. The training on these selected CSV
files is conducted to train the proposed model with word embedding and
ML algorithms. The highest training accuracy achieved from dataset-1 is
100% with Word2Vec (CBOW & SkipGram) and RF for vector size 300. In
the similar training experiments conducted on dataset-2, the highest training
accuracy achieved is 99.88% with Word2Vec (CBOW) and RF for vector
size 200. The training is also conducted on a purely in-house repository i.e.
dataset-3, the achieved highest training accuracy is 99.87% with Word2Vec
(CBOW & SkipGram) and RF for vector size 150. From the training results,
it is observed that Word2Vec with RF consistently performed the best with
all three datasets.

5.1 Experiment-1

Dataset-1 is the input to our proposed model. To perform this experiment
the following word embedding algorithms such as TF-IDF, Count Vector-
ization, Word2Vec (CBOW), Word2Vec (SkipGram), FastText (CBOW), and
FastText (SkipGram) are used. The output vector size of these algorithms
is varied from 50 to 300 to study the performance of each algorithm. The
results are tabulated in Table 6. It may be observed that TF-IDF with RF,
DT, XG Boost, and LR achieves an accuracy of 99.37%, 99.13%, 98.62%,
and 99.07% respectively for the vector size 300. Similarly, TF-IDF with
SVM achieves an accuracy of 98.16% for the vector size of 150. Count
Vectorizer also performed the same as TF-IDF. The RF, DT, XG Boost, LR,
and SVM achieve an accuracy of 99.33%, 98.92%, 98.42%, 98.77%, and
97.17% for vector sizes 300 and 150 respectively. From the above results,
TF-IDF and CV efficiency improve as the vector size increases in four cases
except for SVM.

The results of Word2Vec (CBOW) with RF & DT are observed that the
accuracy achieved are 99.26% & 98.79% respectively for vector size 300.
Similarly, Word2Vec (CBOW) with SVM achieves an accuracy of 98.90%
for vector sizes 100 & 200. XG Boost and LR achieve an accuracy of 98.92%
and 99.16% for the vector sizes of 100 and 200 respectively. Word2Vec
(SkipGram) achieves an accuracy of 99.35%, 98.96%, and 99.26% with RF,
DT, and LR respectively for vector size 200. Similarly, SVM and XG Boost
achieve an accuracy of 98.90% and 98.92% for vector sizes 50 and 150
respectively. The results observed from Word2Vec are not uniform for the
selected vector size.
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Table 6 Selection of vector size with Dataset-1
Word

Embedding
Machine
Learning

Testing Accuracy(%) of Vectors
50 100 150 200 300

TF-IDF

RF 98.92 98.59 99.07 99.16 99.37
DT 98.49 98.03 98.64 98.66 99.13

SVM 97.08 97.73 98.16 98.08 97.97
XG Boost 98.25 97.64 98.27 98.27 98.62

LR 98.21 98.16 98.62 98.92 99.07

Count
Vectorizer

RF 98.90 98.59 98.98 99.29 99.33
DT 98.55 98.08 98.55 98.87 98.92

SVM 96.11 97.08 97.17 97.10 96.37
XG Bosst 98.33 97.86 98.34 98.38 98.42

LR 98.18 97.77 98.53 98.64 98.77

Word2Vec
(CBOW)

RF 98.81 98.94 98.87 99.09 99.26
DT 97.73 98.25 98.49 98.40 98.79

SVM 98.72 98.90 98.85 98.90 98.75
XG Boost 98.70 98.92 98.40 98.79 98.79

LR 99.15 98.90 98.92 99.16 98.90

Word2Vec
(SkipGram)

RF 98.94 99.00 98.98 99.35 98.79
DT 98.29 98.23 98.44 98.96 98.68

SVM 98.90 98.75 98.77 98.85 98.46
XG Boost 98.75 98.57 98.92 98.77 98.66

LR 99.11 99.07 99.16 99.26 98.92

FastText
(CBOW)

RF 99.42 99.50 99.50 99.31 99.16
DT 98.92 99.03 99.11 98.94 98.64

SVM 98.38 98.29 97.95 97.79 97.45
XG Boost 98.87 99.29 98.64 98.94 98.70

LR 98.66 99.05 98.72 98.94 98.55

FastText
(SkipGram)

RF 99.44 99.33 99.39 99.37 99.46
DT 98.75 98.94 99.24 98.94 98.79

SVM 98.87 98.46 98.31 97.86 97.79
XG Boost 99.26 98.96 99.18 98.85 98.96

LR 99.44 99.16 99.03 99.37 99.24

Facebook proposed a vectorization algorithm called FastText with two
word learning techniques as in Word2Vec called CBOW and SkipGram. It
may be observed that FastText (CBOW) with RF achieves an accuracy of
99.50% for vector sizes 100 and 150. Similarly, DT and SVM achieve an
accuracy of 99.11% and 98.38% for vector sizes of 150 and 50 respectively.
XG Boost and LR achieve an accuracy of 99.29% and 99.05% for vector
size of 100 respectively. Similarly, FastText (SkipGram) with RF achieves
an accuracy of 99.46% for vector size 300. The algorithm vectors applied
to DT achieved an accuracy of 99.24% for vector size 150. Similarly, SVM,
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Table 7 Selection of vector size with Dataset-2
Word

Embedding
Machine
Learning

Accuracy(%) of Vector size
50 100 150 200 300

TF-IDF

RF 95.99 98.47 99.05 99.39 99.28
DT 95.51 97.86 98.42 98.77 98.50

SVM 94.96 97.20 97.80 97.94 97.74
XG Boost 95.44 97.91 98.36 98.66 98.67

LR 95.00 97.38 98.34 98.83 98.94

Count
Vectorizer

RF 95.96 98.51 99.01 99.37 99.37
DT 95.78 98.02 98.40 98.62 98.56

SVM 94.93 96.69 97.33 97.53 96.68
XG Bosst 95.42 98.0 98.40 98.70 98.77

LR 95.10 97.14 98.28 98.73 98.75

Word2Vec
(CBOW)

RF 98.39 98.58 98.47 98.42 98.62
DT 97.44 97.43 97.88 97.70 97.60

SVM 97.46 98.60 98.40 98.33 98.40
XG Boost 98.03 97.88 98.12 98.10 98.09

LR 97.91 98.16 98.21 98.13 98.38

Word2Vec
(SkipGram)

RF 98.68 98.58 98.72 98.38 98.56
DT 97.78 97.50 97.44 97.88 97.86

SVM 97.97 97.99 97.87 97.35 97.53
XG Boost 98.23 98.06 98.02 97.84 98.11

LR 98.61 98.77 98.68 98.70 98.96

FastText
(CBOW)

RF 98.72 98.62 98.58 98.39 98.64
DT 97.94 98.00 97.98 97.44 97.64

SVM 97.98 97.61 97.35 96.82 96.78
XG Boost 98.15 98.08 97.85 97.61 97.83

LR 98.00 97.85 97.87 97.30 97.46

FastText
(SkipGram)

RF 98.48 98.47 98.71 98.59 98.50
DT 97.54 97.75 97.48 97.77 97.49

SVM 97.24 97.16 97.05 96.82 96.65
XG Boost 98.05 98.03 97.93 98.11 98.10

LR 98.41 98.36 98.43 98.50 98.30

XG Boost, and LR achieved an accuracy of 99.87%, 99.26%, and 99.44% for
vector size 50 respectively. Overall, FastText (CBOW) with RF achieves the
best accuracy of 99.50% for vector size 100.

5.2 Experiment-2

The experiment-1 is repeated with Dataset-2, and the results are tabulated
in Table 7. To validate our proposed technique, an experiment is conducted
using the in-house generated legitimate dataset. It may be observed that TF-
IDF with RF, DT, and SVM achieved an accuracy of 99.39%, 98.77%, and
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97.94% respectively for a vector size of 200. Similarly, XG Boost and LR
achieve an accuracy of 98.67% and 98.94% for vector size 300 respectively.
Count vectorizer also achieved the highest accuracy with RF, DT, and SVM
of 99.37%, 98.62%, and 97.53% for vector size 200. XG Boost and LR
achieved an accuracy of 98.77% and 98.75% respectively. As observed, TF-
IDF and count vectorizer performed better for vector sizes 200 and 300. The
obtained result of Word2Vec (CBOW) with RF is 98.62% accuracy for vector
size 300. Similarly, DT, SVM, XG Boost, and LR achieved an accuracy of
97.88%, 98.60%, 98.12%, and 98.38% for vector sizes 150, 100, 150, and
300 respectively. Word2Vec (SkipGram) with RF achieves an accuracy of
98.72% for vector size 150, similarly, DT, SVM, XG Boost, and LR achieve
an accuracy of 97.88%, 97.99%, 98.23%, and 98.96% for vector sizes 200,
100, 50. and 300 respectively. The achieved accuracy for CBOW with RF,
SVM, XG Boost, and LR is 98.72%, 97.98%, 98.15%, and 98.00% for
vector size 50. DT achieves an accuracy of 98.00% for vector size 100. The
FastTxet (SkipGram) achieves an accuracy of 98.71% with RF for vector
size 150. Similarly, FastText (SkipGram) with DT, SVM, XG Boost, and LR
achieves an accuracy of 97.77%, 97.24%, 98.11%, and 98.50% for vector
sizes 200, 50, 200, and 200 respectively. The overall results observed from
the experiments with dataset-2 are different for different vector sizes. The
best accuracy achieved is 99.39% with TF-IDF and RF for vector size 200.

5.3 Experiment-3

Dataset-3 is a purely in-house prepared repository. The in-house repository
is an input for the proposed model in the current experiment. The results
are tabulated in Table 8. It may be observed that TF-IDF with RF achieves
an accuracy of 99.12% for the vector size of 150 and 200. Similarly, TF-IDF
with DT achieves an accuracy of 99.03% for the vector size of 200. SVM, XG
Boost, and LR achieve an accuracy of 97.60%, 98.74%, and 98.34% for the
vector sizes of 100 and 150 respectively. For the Count Vectorizer, the RF, DT,
SVM, XG Boost, and LR achieve an accuracy of 99.18%, 99.09%, 97.63%,
98.86%, and 98.49% for the vector sizes of 150, 200, 150, 200, and 150
respectively. The results of Word2Vec (CBOW) with RF and SVM achieve
an accuracy of 98.86% and 98.50% for a vector size of 150. DT, XG Boost,
and LR achieve an accuracy of 98.69%, 98.52%, and 98.54% for vector sizes
of 100, 50, and 200 respectively. Similarly, Word2Vec (SkipGram) with RF
achieved an accuracy of 99.06% for the vector size of 100. DT, XG Boost,
and LR achieved an accuracy of 98.69%, 98.76%, 98.86% for a vector size of
300. Similarly, SVM achieves an accuracy of 98.69% for the vector size 50.
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Table 8 Selection of vector size with Dataset-3
Word

Embedding
Machine
Learning

Accuracy(%) of Vector size
50 100 150 200 300

TF-IDF

RF 98.73 99.06 99.12 99.12 99.08
DT 98.58 98.71 98.70 99.03 98.93

SVM 96.46 97.60 97.60 97.05 97.03
XG Boost 98.24 98.74 98.52 98.69 98.64

LR 97.64 98.00 98.34 98.16 98.08

Count
Vectorizer

RF 98.75 99.06 99.18 99.17 99.12
DT 98.67 98.92 98.79 99.09 98.93

SVM 96.32 97.49 97.63 97.04 96.93
XG Boost 98.49 98.72 98.73 98.86 98.79

LR 97.71 98.08 98.49 98.09 98.09

Word2Vec
(CBOW)

RF 98.75 98.80 98.86 98.74 98.80
DT 98.57 98.69 98.60 98.52 98.57

SVM 96.83 98.09 98.50 98.22 98.26
XG Boost 98.52 98.46 98.47 98.02 98.08

LR 98.18 97.94 98.24 98.54 98.19

Word2Vec
(SkipGram)

RF 98.81 99.06 99.02 98.63 98.99
DT 98.30 98.58 98.50 98.43 98.69

SVM 98.69 98.31 98.27 98.03 98.12
XG Boost 98.04 98.38 98.59 98.46 98.76

LR 98.38 98.47 98.78 98.78 98.86

FastText
(CBOW)

RF 98.79 98.82 98.86 98.75 98.80
DT 98.50 98.63 98.64 98.76 98.68

SVM 98.16 97.98 97.75 97.88 97.89
XG Boost 98.26 98.46 98.26 98.62 98.32

LR 98.11 98.35 98.31 98.46 98.27

FastText
(SkipGram)

RF 98.85 98.60 98.84 98.73 98.84
DT 98.49 98.49 98.53 98.51 98.62

SVM 98.11 97.42 97.48 97.16 97.22
XG Boost 98.52 98.37 98.46 98.41 98.26

LR 98.46 98.42 98.47 98.47 98.67

FastText (CBOW) with RF achieved an accuracy of 98.86% for a vector
size 150. DT, XG Boost, and LR achieve an accuracy of 98.76%, 98.62%,
and 98.46% for a vector size of 200. And also SVM achieved an accuracy
of 98.16% for a vector size of 50. Similarly, FastText (SkipGram) with RF,
SVM, and XG Boost achieve an accuracy of 98.85%, 98.11%, and 98.52%
for the vector size 50. DT and LR achieve an accuracy of 98.62% and 98.67%
for the vector size 300. Overall Count vectorizer with RF achieved the best
accuracy of 99.18% for the vector size 150.
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Table 9 Performance Evalution with Dataset-1
Word
Embeddings

Algorithm Acc MCC
Preci-
sion

TPR TNR
F-
Score

TF-IDF

RF 99.37 98.71 99.96 98.98 99.95 99.47
DT 99.13 98.22 99.48 99.05 99.26 99.26
SVM 97.97 95.84 99.63 96.99 99.45 98.30
XGBoost 98.62 97.15 99.30 98.36 98.99 98.83
LR 99.07 98.09 99.70 98.72 99.57 99.21

Count
Vectorizer

RF 99.33 98.62 99.85 99.01 99.79 99.43
DT 98.92 97.77 99.26 98.90 98.95 99.08
SVM 96.37 92.58 99.08 94.95 98.61 96.97
XGBoost 98.42 96.75 99.22 98.11 98.88 98.66
LR 98.77 97.46 99.37 98.54 99.10 98.95

Word2Vec
(CBOW)

RF 99.26 98.50 100 98.75 100 99.37
DT 98.79 97.52 98.95 98.95 98.56 98.95
SVM 98.75 97.44 99.89 97.98 99.84 98.93
XGBoost 98.79 97.53 99.77 98.16 99.68 98.96
LR 98.90 97.74 99.40 98.70 99.17 99.05

Word2Vec
(SkipGram)

RF 98.79 97.53 100 97.95 100 98.96
DT 98.68 97.30 99.29 98.44 99.01 98.86
SVM 98.46 96.88 99.92 97.49 99.89 98.69
XGBoost 98.66 97.27 99.89 97.84 99.84 98.85
LR 98.92 97.79 99.85 98.31 99.79 99.07

FastText
(CBOW)

RF 99.16 98.26 99.82 98.77 99.73 99.29
DT 98.64 97.18 99.05 98.65 98.61 98.85
SVM 97.45 94.72 98.39 97.33 97.63 97.86
XGBoost 98.70 97.32 99.60 98.24 99.40 98.91
LR 98.55 97.00 98.98 98.58 98.51 98.78

FastText
(SkipGram)

RF 99.46 98.88 99.89 99.20 99.84 99.54
DT 98.79 97.50 98.76 99.19 98.21 98.97
SVM 97.79 95.48 99.67 96.70 99.50 98.15
XGBoost 98.96 97.85 99.56 98.69 99.36 99.12
LR 99.24 98.44 99.71 99.02 99.57 99.36

5.4 Performance Evalution with Dataset-1

The proposed model is evaluated by using individual datasets selected in the
current study. The results with Dataset-1 are tabulated in Table 9 with six
metrics. Vector size 300 was selected after analyzing the results in section
5.1 and Table 6. According to the input Dataset-1 results, the RF classifier
with FastText (SkipGram) achieved the highest accuracy of 99.46%, and
the related metrics MCC, Precision, TPR, TNR, and F-Score are 98.99%,
99.89%, 99.20%, 99.84%, and 99.54%, respectively. Similarly, Table 9 tab-
ulates and highlights the greatest individual classifier accuracies. SVM with
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Word2Vec (CBOW) attained an accuracy of 98.75%, while XG Boost and
LR with FastText (SkipGram) obtained their best individual accuracies of
98.96% and 99.24%, respectively.

5.5 Performance Evaluation with Dataset-2

Testing procedures with dataset-2 are the same as with dataset-1 discussed
in previous section 5.4. Vector size of 200 is selected based on the results
obtained in experiment-2 as given in Table 7. The testing results of dataset-
2 are tabulated in Table 10 with seven different metrics. Among all results,
TF-IDF performed well with RF, DT, and LR by achieving 99.39%, 98.77%,
and 98.83% accuracies. SVM and XG Boost performed well with FatsText
(SkipGram) and Count vectorizer by achieving accuracies of 98.82% and
98.70% as highlighted in Table 10. The corresponding metrics for the highest
accuracy observed are MCC 98.63%, Precision 99.19%, TPR 98.97%, TNR
99.60%, and F-score of 99.08 are achieved for TF-IDF with RF.

5.6 Performance Evaluation with Dataset-3

The corpus-3 is tested similar way as discussed in the above sections 5.1 &
5.2, and the results are tabulated in Table 13. The obtained results are nearly
the same as with corpus-1 and corpus-2. The achieved results proved that
the procedures followed to create in-house datasets are inline. The obtained
results for the generated corpus are nearly similar as with open access corpus.
This is one of our novel contributions by producing a real-time repository, and
sole property of our Institution. As previously stated, the best result obtained
with the new corpus is 99.18% accuracy with Count Vectorizer and RF, with
corresponding metrics of 98.11%, 98.05%, 99.38%, 99.09%, and 98.71%
for MCC, Precision, TPR, TNR, and F-score. In the resulting Table 11, the
classifiers with the highest accuracy are highlighted.

5.7 Model Validation

The validation method used for email phishing classification is a Train/test
split of rate 70%/30% of total dataset size for all three datasets. This method
uses random partitions of 70% training data and 30% of test data. The
Confusion matrix for the obtained results of individual datasets are listed
in Tables 11 – (a), (b), and (c). The total size of Dataset-1 is 15430, out of
which 10801 emails are used for training and 4629 emails are used for testing.
Dataset-2 has a total of 27405 emails, out of which 19183 emails are used for
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Table 10 Performance Evaluation with Dataset-2
Word
Embeddings

Algorithm Acc MCC
Preci-
sion

TPR TNR
F-
Score

TF-IDF

RF 99.39 98.63 99.19 98.97 99.60 99.08
DT 98.77 97.23 98.16 98.13 99.09 98.14
SVM 97.94 95.35 96.55 97.22 98.29 96.88
XGBoost 98.66 96.98 98.31 97.66 99.16 97.98
LR 98.83 97.36 98.24 98.24 99.13 98.24

Count
Vectorizer

RF 99.37 98.57 99.30 98.79 99.65 99.05
DT 98.62 96.89 97.76 98.08 98.89 97.92
SVM 97.93 94.41 95.37 97.12 97.72 96.24
XGBoost 98.70 97.07 98.38 97.70 99.20 98.04
LR 98.73 97.14 98.09 98.09 99.05 98.09

Word2Vec
(CBOW)

RF 98.42 96.50 99.78 95.60 99.89 97.64
DT 97.70 94.80 97.07 95.97 98.56 96.52
SVM 98.33 96.27 98.96 96.08 99.48 97.50
XGBoost 98.10 95.78 99.15 95.26 99.57 97.17
LR 98.13 95.76 97.44 96.87 98.75 97.15

Word2Vec
(SkipGram)

RF 98.38 96.43 99.52 95.77 99.76 97.61
DT 97.88 95.25 97.43 96.24 98.72 96.83
SVM 97.35 94.21 99.12 93.31 99.55 96.13
XGBoost 97.85 95.22 98.42 95.25 99.20 96.81
LR 98.70 97.08 98.57 97.53 99.28 98.05

FastText
(CBOW)

RF 98.39 96.48 99.18 96.23 99.57 97.68
DT 97.44 94.33 96.79 95.76 98.33 96.27
SVM 96.82 93.01 96.79 94.07 98.31 95.41
XGBoost 97.61 94.77 98.25 94.93 99.08 96.56
LR 97.30 94.04 97.29 94.92 98.58 96.09

FastText
(SkipGram)

RF 98.59 96.87 99.56 96.31 99.78 97.90
DT 97.77 94.98 96.77 96.52 98.40 96.64
SVM 98.82 93.09 98.82 92.16 99.39 95.38
XGBoost 98.11 95.82 99.01 95.47 99.50 97.21
LR 98.50 96.63 98.05 97.45 99.03 97.75

training and 8222 emails are used for testing. The total size of Dataset-3 is
27256, out of which 19079 emails were used for training and 8177 emails
are used for testing the proposed system. The list of evaluation matrix rates
computed from the confusion matrix for the binary classifier is tabulated in
Table 12.

Also, it may be noted that the training time for different algorithms ranges
from 67.15 seconds (TF-IDF) to 425.02 seconds (Word2Vec-SkipGram) for
the vector size of 200. The testing time for different algorithms ranges from
50.44 seconds (TF-IDF) to 328.56 seconds (Word2Vec-SkipGram) for the
vector size of 200.
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Table 11 Confusion Matrix (a). Dataset-1, (b). Dataset-2, (c). Dataset-3
True
Positive

True
Negative

TP TN TP TN

False
Positive

2741 1 FP 2701 22 FP 2652 54

False
Negative

22 1865 FN 28 5471 FN 13 5458

(a) (b) (c)

Table 12 Confusion matrix computed rates
Measure (%) Dataset-1 Dataset-2 Dataset-3
Accuracy 99.50 99.39 99.18
MCC 98.97 98.62 98.15
Precision 99.96 99.19 98.00
TPR 99.20 98.97 99.51
TNR 99.95 99.60 99.02
F-Score 99.58 99.08 98.75
FPR 0.05 0.40 0.98

5.8 Performance of Individual Features

In the proposed work only four header labels are used for the classification
of emails. The performance of individual labels is tabulated in Table 14.
The Return-Path achieves an accuracy of 99.34% with FastText and RF. The
second-highest performing feature is Subject with an accuracy of 98.71% for
Word2Vec SkipGram with RF. The other two features ”From” and ”Message-
Id” achieve the highest accuracy of 97.75% and 95.23% respectively. Hence
it may be observed that all the four selected features are very efficient in
classifying the emails.

5.9 Comparison Study

5.9.1 Using Common datasets
In this section, a comparison of our work with other existing works executed
on the same open-source dataset is given. The results of other existing works
are directly taken from the respective papers and tabulated in Table 15 along
with results of our proposed work using the same repository. According to
the summary Table 15, some of the existing works used multiple hybrid
features and achieved less accuracy compared to our proposed work by using
only four header heuristics. The publicly available datasets used by different
researchers are variable in size. Similarly, we have used the same publicly
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Table 13 Performance Evaluation with Dataset-3
Word
Embeddings

Algorithm Acc MCC
Preci-
sion

TPR TNR
F-
Score

TF-IDF

RF 99.12 97.97 97.86 99.38 99.00 98.61
DT 98.70 97.03 98.28 97.68 99.19 97.98
SVM 97.60 94.52 92.62 99.87 96.64 96.11
XGBoost 98.52 96.59 97.17 98.18 98.67 97.67
LR 98.33 96.17 95.76 99.01 98.03 97.36

Count
Vectorizer

RF 99.18 98.11 98.05 99.38 99.09 98.71
DT 98.79 97.22 98.20 98.01 99.15 98.11
SVM 97.63 94.58 92.59 100 96.63 96.15
XGBoost 98.73 97.07 97.63 98.38 98.89 98.00
LR 98.49 96.55 95.64 99.64 97.99 97.60

Word2Vec
(CBOW)

RF 98.86 97.39 98.51 97.95 99.29 98.23
DT 98.60 96.82 98.59 97.11 99.33 97.84
SVM 98.51 96.57 96.53 98.79 98.38 97.65
XGBoost 98.47 96.49 97.49 97.75 98.81 97.62
LR 98.24 95.98 97.90 96.65 99.00 97.28

Word2Vec
(SkipGram)

RF 99.02 97.78 98.51 98.51 99.27 98.51
DT 98.49 96.61 98.48 97.00 99.24 97.73
SVM 98.27 96.12 94.84 99.92 97.52 97.31
XGBoost 98.59 96.82 98.03 97.71 99.03 97.87
LR 98.78 97.24 98.40 97.89 99.21 98.15

FastText
(CBOW)

RF 58.86 97.40 96.97 99.49 98.57 98.21
DT 98.64 96.89 97.54 98.24 98.83 97.89
SVM 97.75 94.88 93.10 99.92 96.82 96.39
XGBoost 98.26 96.02 96.78 97.82 98.47 97.29
LR 98.31 96.13 95.72 99.02 97.99 97.34

FastText
(SkipGram)

RF 98.84 97.38 96.79 99.69 98.43 98.22
DT 98.53 96.69 97.49 98.07 98.76 97.78
SVM 97.48 94.37 92.41 100 96.36 96.05
XGBoost 98.46 96.52 96.09 99.24 98.09 97.64
LR 98.47 96.55 96.54 98.83 98.30 97.67

available dataset of size 9135 phishing emails and 6295 legitimate emails
from the open-source corpus. The proposed model outperformed all other
existing works by achieving an accuracy of 99.50%.

5.9.2 Using Common methods
The Comparison of the proposed work with other word embedding based
techniques is given in Table 16. It may be noted that the proposed technique
outperforms the other techniques with accuracies of 99.50%, 99.39%, and
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Table 16 Summary of the works used Word Embedding and Natural language processing

Author Features Dataset (s)
Dataset
size

Accuracy
(%)

Precision
(%)

F-score
(%)

Nguyen et
al [28]

Hybrid
IWSPA-AP
2018

Legit:4082
Phish:503

– 99.0 99.1

Bagui et
al [32]

Hybrid Private
Legit:14950
Phish:3416

98.89 – –

Castillo et
al [33]

Body
Enron, APWG,
and Non-public

Legit:84111
Phish:30776

95.68 – –

Ra et al [34] Body
IWSPA-AP
2018

Legit:5088
Phish:612

99.1 90.59 93.07

Hiransha et
al [35]

Body
IWSPA-AP
2018

Legit:5088
Phish:612

96.8 – –

Harikrishnan
et al [36]

Hybrid
IWSPA-AP
2018

Legit:5088
Phish:612

90.29 92.5 94.6

Verma et
al [37]

Hybrid PhishCatch
Legit:1000
Phish:2000

97 – –

Gutierrez et
al [38]

Hybrid
Purdue
university’s
Sophos

Legit:158000
Phish:425870

96.5 – –

Valecha et
al [39]

Hybrid
Enron
Millersmile

Legit:19153
Phish:17902

96.52 98.53 96.31

Proposed
Model

Header
Dataset – 1

Legit:6295
Phish:9135

99.50 99.96 99.58

Dataset – 2
Legit:18270
Phish:9135

99.39 99.19 99.08

Dataset – 3
Legit:18270
Phish:8986

99.18 98.00 98.35

99.18% for different datasets. Also, the proposed technique achieved the
accuracies with only four header features of the email.

6 Conclusion and future work

In this paper, we have presented novel techniques for phishing email detec-
tion using word embedding and machine learning classifiers. The presented
techniques use only four email header features for the classification. The
FastText-CBOW algorithm with RF classification achieves the highest accu-
racy of 99.50% with the publicly available datasets. Also, the RF classifier
consistently performed well with all the word embedding algorithms. Hence,
the RF classifier is more suitable for the classification of phishing emails with
word embedding techniques.
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As future work, we would like to extend this work with additional heuris-
tics with the body of the email using word embedding and machine learning
techniques. Also, the performance of these features may be evaluated using
deep learning techniques.
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