
Detection and Analysis of
Tor Onion Services

Martin Steinebach1,∗, Marcel Schäfer2, Alexander Karakuz
and Katharina Brandl1

1Fraunhofer SIT, Germany
2Fraunhofer USA CESE
E-mail: steinebach@sit.fraunhofer.de
∗Corresponding Author

Received 28 November 2019; Accepted 28 November 2019;
Publication 23 January 2020

Abstract

Tor onion services can be accessed and hosted anonymously on the Tor
network. We analyze the protocols, software types, popularity and uptime
of these services by collecting a large amount of .onion addresses. Websites
are crawled and clustered based on their respective language. In order to
also determine the amount of unique websites a de-duplication approach
is implemented. To achieve this, we introduce a modular system for the
real-time detection and analysis of onion services. Address resolution of
onion services is realized via descriptors that are published to and requested
from servers on the Tor network that volunteer for this task. We place a
set of 20 volunteer servers on the Tor network in order to collect .onion
addresses. The analysis of the collected data and its comparison to previous
research provides new insights into the current state of Tor onion services
and their development. The service scans show a vast variety of protocols
with a significant increase in the popularity of anonymous mail servers and
Bitcoin clients since 2013. The popularity analysis shows that the majority
of Tor client requests is performed only for a small subset of addresses. The
overall data reveals further that a large amount of permanent services provide
no actual content for Tor users. A significant part consists instead of bots,
services offered via multiple domains, or duplicated websites for phishing

Journal of Cyber Security and Mobility, Vol. 9_1, 141–174.
doi: 10.13052/jcsm2245-1439.915
This is an Open Access publication. c© 2020 the Author(s). All rights reserved.

142 M. Steinebach et al.

attacks. The total amount of onion services is thus significantly smaller than
current statistics suggest.

Keywords: Tor, Darknet, onion services, analysis.

1 Introduction

In recent years, the demand for online privacy has become an increasingly
important topic. This is evident both at the political level and in everyday life.
New regulations such as The General Data Protection Regulation in the EU
[17] or the California Consumer Privacy Act in the USA [5] and an increasing
range of privacy friendly online services try to give individuals more control
over their personal data and their privacy. This trend is also reflected in the
growing number of users that rely on online services as the search engine
DuckDuckGo or the anonymisation network Tor, to anonymise their personal
data. Over the past four years, DuckDuckGo has registered an annual increase
of one to three billion searches [8].

The Tor network, with a total of almost two million daily users [29],
was able to establish itself as an important tool for bypassing government
surveillance and commercial data collection. Tor is the combination of an
open network and open source software that protects its users against online
surveillance and traffic analysis. An increasingly popular feature of the Tor
network are onion services. These are online applications that, unlike com-
mon Internet services, can be both visited and hosted anonymously. They
are used in very diverse ways. Organizations and news outlets like The New
York Times or The Guardian use them to communicate anonymously with
whistle-blowers [20]. Others circumvent censorship or exchange information
in countries with strong government surveillance [13]. And again other users
utilize them to offer or buy illicit content and goods [4].

The Tor Project, Inc., the organization primarily responsible for main-
taining the Tor software, provides statistics in the form of extrapolated and
aggregated meta data on the development of the Tor network. These statistics
include data like the estimated amount of users or average traffic throughput
since the end of 2014. The total amount of .onion addresses (addresses
used to identify onion services – similar to Internet URL addresses) has
been steadily growing over the past four years. Their estimated amount has
quadrupled from 26,878 on 2015-01-01 to a total of 112,628 on 2018-11-15.
The same increase can be seen in the onion service related traffic. While
on 2015-01-01 the estimated total throughput of data was 0.52 Gbit/s, it

Detection and Analysis of Tor Onion Services 143

IP 2

1

1
1

23

4

5

6

77

8 8

Alice

IP 1

IP 3

RP

HSDir

Bob

Figure 1 Tor hidden services are announced and reached by a multi-step protocol.

amounted to 1.37 Gbit/s on 2018-11-15. With this huge increment and given
the dynamic and anonymous nature of the Tor network, it is hard to picture an
accurate state of the network based on those old results. It is rather speculating
than determining what kind of applications are hosted, how popular they are
or what content they provide.

1.1 Hidden Services

The setup and communication procedures of onion services are documented
in [25] (a recent update is availab le in [26]) and can be divided into
several steps. For illustrative purposes the protocol is explained based on a
communication between the two parties Alice and Bob. Alice represents a
client using the onion service whilst Bob represents the provider.

The overall procedure consists of three main phases. In the first phase
(Creating an onion service identity) Bob’s onion proxy generates all neces-
sary files and a descriptor, containing the contact information with which
his service can be reached. During the second phase (Publication of the
onion service) this descriptor is published to the responsible Tor relays. In
the final phase (Connecting to the onion service) the descriptor is retrieved
by the connecting party and subsequently used to establish an anonymous
connection. The following exemplification describes the individual steps of
each phase in more detail. The numeration of these steps corresponds to the
numbers depicted in Figure 1.

144 M. Steinebach et al.

In the following, we show the communication between Alice’s and Bob’s
onion proxies OPA and OPB . Before the onion service can go online for the
first time, Bob’s onion proxy OPB generates an asymmetric key pair. i.e. a
private key SKB and its corresponding public key PKB . The private key
SKB will be used to sign published data. The public key PKB is used to
verify Bob’s signatures and to generate the permanent identifier under which
the service can be reached. This identifier is generated by hashing PKB

using SHA1, truncating it after the first 80 bits and encoding the result using
Base32. Afterwards a “.onion” suffix is attached to the permanent identifier.
This results in what is referred to as the .onion address of the service. This
address is used in a similar way as common URLs on the Internet but can
only be resolved by the Tor Browser.

Step 1: Establishing introduction circuits
Bob’s onion proxy OPB chooses up to 10 relays from the consensus which
will be used as introduction points (IP). Introduction points are relays that
serve as the first contact point for the onion services. OPB creates one new
RSA key pair – called service keys – for each introduction point and sends
the keys to each relay. The introduction points then reply with a confirmation
message and terminate all other circuits, associated with the received service
key. This way only one circuit between the introduction point and the onion
service can exist. Introduction circuits can only ever be used for onion service
introductions.

Step 2: Publishing the Hidden Service descriptor
The next step begins with OPB generating two HS descriptors. The descrip-
tors contain all information Alice needs in order to establish an anonymous
connection to the onion service. Once the descriptors are generated they are
published. For each descriptor, OPB chooses the Hidden Service Directory
(HSDir) relay with a relay fingerprint closest to the descriptor-id and the two
subsequent neighbors in the hash ring. The relays receive these descriptors
via a HTTP-POST requests over Tor circuits. OPB will publish a new v2
descriptor once every hour or whenever its content changes.

Step 3: Alice’s onion proxy OPA queries the HS descriptor
Alice receives the .onion address from Bob. OPA uses the address to cal-
culate the current descriptor-ids of the service. OPA determines the currently
responsible HS directories and requests the descriptor from them. The HTTP-
GET request is performed to one random server out of the set of six. If the
request fails, a different server is queried. The directory responds with the

Detection and Analysis of Tor Onion Services 145

most recent descriptor published by Bob. Once received, the descriptor is
validated. The public key can be validated using the .onion address and the
signature can in turn be verified via the public key. Finally the descriptor is
stored in Alice’s cache.

Step 4:OPA establishes a rendezvous point
OPA chooses a random relay from the consensus and establishes a ren-
dezvous circuit by sending it a data package containing a rendezvous cookie.
This cookie is an arbitrary 20 byte long value and is associated with the estab-
lished rendezvous circuit. The rendezvous point responds with a confirmation
message.

Step 5:OPA contacts one ofOPB’s introduction points
OPA chooses one random introduction point and sends that relay an introduc-
tion message. This cell contains, among other necessary data, the respective
service key, information about the previously established rendezvous point,
the first part of a Diffie-Hellman key exchange handshake and the rendezvous
cookie.

Step 6: The introduction point relays the rendezvous points toOPB

The relay successfully matches the service key to an introduction circuit
and sends a confirmation message to OPB forwarding the rendezvous
information.

Step 7:OPB and OPA establish a connection via the rendezvous point
OPB creates a circuit to the rendezvous point using the rendezvous cookie
and the Deffie-Hellman key exchange response. The rendezvous point for-
wards OPB’s message to OPA who also creates the shared secret using their
Deffie-Hellman key exchange.

Communication
OPA opens a TCP-stream to the rendezvous relay. Alice and Bob can
exchange data bidirectionally using the rendezvous point as a middle point
to relay information. Alice and Bob only know the rendezvous point and are
connected to it via a Tor circuit. As a result, both parties remain anonymous.

1.2 Objectives

We aim to determine the types of onion services offered on the Tor net-
work, their respective popularity and uptime. The detected protocols and

146 M. Steinebach et al.

applications are clustered to illustrate the variations of hosted services. The
popularity data depicts what services are most in demand. Aggregated uptime
durations show whether they are hosted permanently or if their use is pre-
dominantly short term. A more specific analysis is conducted on websites. At
first, they are clustered by their language. This shows whether web content is
offered in other languages than English and in what proportion. Second, the
collection is filtered for duplicates. This will determine the amount of unique
websites.

2 State of the Art

This chapter provides an overview over the past research on the content of
onion services and their popularity. The existing data is also evaluated.

2.1 State of the Art Research on Onion Service Usage

In [2], Biryukov et al. demonstrated that it was possible to collect a majority
of currently published .onion addresses using a technique they named ‘shad-
owing’. This method takes advantage of an old artefact in the Tor source code.
Normally, the directory authorities would include only up to two Tor relays
per IP in the consensus. Both relays can then be reached by the combination
of their shared IP and a pre-configured port. However, if a server hosted more
than just two Tor relays, all of them would still be constantly measured by
the directory authorities. The additional relays would obtain flags as if they
were part of the Tor network but not be published on the consensus. If one of
the two published relays were to go offline, one of the not published relays
would be incorporated instead. This relay would then instantly have all the
relay flags as if it was part of the consensus all along. These concealed relays
were named shadow relays. The researchers brute-forced the RSA identity
keys of 1,392 relays, so that the resulting fingerprints would place them
evenly distributed over the complete Hidden Service Directory (HSDir) hash
ring. Once every relay acquired the HSDir flag they gradually took down
two relays of each IP every hour and fetched the received descriptors from
their memory. This way they were able to traverse the complete Distributed
Hash Table twice in 24 hours with just 58 virtual instances. Since every onion
service should publish its descriptor at least once every hour, an iterative
hourly change in relays would provide descriptors for most onion services
running for 24 hours as well as an additional amount of shorter living
services. The result was a collection of 39,824 unique .onion addresses.

Detection and Analysis of Tor Onion Services 147

Three months later Alex Biryukov et al. published their results of a
content and popularity analysis on the collected onion services [3]. Out of
the 39,824 .onion addresses 24,511 were still accessible during the time of the
conducted port scans. The analysis showed a total of 22,007 open ports. The
results of the port scan showed that a significant majority of onion services
belonged to a botnet called Skynet. The second most popular services were
web based. The subsequent crawling of these websites yielded a total of 1,813
classifiable English web pages. The analysis was performed for English texts
only (84% of the web pages). Each of the other 16 languages accounted for
less then 3% of all websites. The total sum was 432 non-English websites.
Web services were the only ones classified by topic. Platforms for drugs
and pornographic content were the most frequent. In total, the amount of
illicit content made up roughly half of all web pages (category services
included since it contained e.g. offers for money laundering or hiring of
thieves and hitmen). The two most frequent non-illicit topics were politics
and anonymity. According to [3], the politics category included topics like
corruption, repressions, violations of human rights and freedom of speech.
The anonymity category were websites offering guidelines and discussions on
anonymous services and anonymity in general. The researchers also tracked
client requests for specific descriptors. During the data collection a total
of 1,031,176 requests for 29,123 unique descriptors were logged. 80% of
the requests were, however, for descriptors that were never published. The
total amount of successfully resolved addresses was 3,140. The majority of
requests were related to either the botnet ‘Goldnet’, the botnet ‘Skynet’, the
drug market ‘Silk Road’ or pornographic content.

These results also support the findings of [9] which indicated a large
centralized botnet using the Tor network to hide the location of its CC
servers. ‘Skynet’ was a botnet created through a modified version of the Zeus
Trojan horse malware package. It was used for a variety of purposes such as
DDOS attacks or Bitcoin mining. For this purpose, the malware additionally
contained the Tor software package, mining tools as well as various software
libraries. The individual bots and the CC center hosted onion services on
the Tor network and used them to communicate via an IRC protocol. This
setup helped to reduce the traceability of the botnet. Another botnet, labeled
‘Mevade’, was discovered in August of 2013, when the amount of Tor users
suddenly spiked from roughly 800,000 to 5,000,000 in the time period of one
month [22].

A second study was carried out by Owen and Savage in 2015 [18]. The
researchers operated 40 relays on the Tor network and passively collected

148 M. Steinebach et al.

descriptors for a duration of 6 months. The collected amount of unique
addresses was 80,000, with 15% still online for the subsequent analysis.
The researchers estimated an average uptime rate based on whether services
republished their descriptor at later points in time. A wide range port scan was
not documented and the evaluation focused mainly on a topic classification
for the detected websites. The popularity of individual services was measured
by their descriptor requests. 0.6% of all descriptors were partially encrypted
with a descriptor cookie.

Another study was conducted by Daniel Moore and Thomas Rid in the
year 2016 on the usage of onion services. Moore and Rid [14] describes
an in-depth scan of onion service websites. The researchers used a web-
site crawler specifically designed to crawl web based onion services. The
resulting HTML-data was classified using Support-Vector Machines SVM –
a supervised learning model used to categorize text into topics based on
a pre-classified training set [30]. The seed, used as basis for the crawler,
was taken from ahmia.fi and onion.city. The two search engines provided
5,615 unique web based .onion addresses. Multimedia files such as images or
videos where excluded from the analysis due to possible legal complications.
The crawler also followed links on the analyzed domains if these linked to
another onion service. The final result where a total amount of 5,205 crawled
websites, out of which 2,723 were successfully classified into 12 categories.
It is noteworthy, that the category finance was compromised mainly of money
laundering, illegal credit card trade and counterfeit currency.

2.2 Evaluation of the Available Data on Onion Service Usage

In [3] is shown that in the beginning of 2013, a predominant amount of onion
services consisted of bots taking advantage of the anonymity provided by
the Tor network. While a total amount of 39,824 onion services suggested a
decently sized network of services, the analysis revealed that just a fraction
actually provided content for Tor clients. After removing websites with less
than 20 words and those which solely contained the default Torhost.onion
hosting service page, only 1,813 English web pages remained. Even including
the most frequent chat applications and not analysed non-English websites,
the services amounted to less than three thousand. Also, while the popularity
analysis revealed a total of 1,031,176 requests in just 24 hours, only 20% of
them referred to services that were also online. This suggests a high amount
of automatised queries by bots and other scanners, instead of actual Tor users.
The study [18] was based on a 6 months observation. The data enabled the

Detection and Analysis of Tor Onion Services 149

researchers to determine an estimated uptime for the collected services. Only
15% of all services existed for a duration of 6 months suggesting a high churn
rate. Their popularity analysis depicted roughly the same results as in [3],
with the majority of descriptor requests being either for pornographic content,
drug markets or botnet related onion services.

Both studies did not consider the issue of duplicate web services. Some
websites can be represented multiple times in the collection of the crawled
HTML-data. Due to their cryptic appearance .onion addresses might even
be more prone to phishing attacks or they could be reachable through mul-
tiple .onion domains. Such duplicates may lead to an over-representation of
specific services in the data set. The data might also no longer provide an
accurate portrayal. As stated above, the total amount of onion services has
almost quadrupled since the first study was conducted. The botnets might no
longer be active and the nature of the dominant services could have changed.

2.3 Collection of .onion Addresses

There are several ways to collect .onion addresses. The naive approach might
be to brute-force all possible .onion addresses and probe the results in order
to determine those currently used. An address is 16 characters long with
32 possible values for each character. The total amount of possible unique
variations is 3216. This solution is hence not feasible, especially as the next
generation (“v3”) address length will be 56 characters (e.g. [24]).

Another approach is collecting publicly available .onion addresses. Sev-
eral previously described onion services index a few thousand addresses
that were published online or found by crawling. As described in 2.2, these
addresses are, however, just a fraction of the total amount. They are also,
for the most part, limited to web domains. This approach would not provide a
sufficiently diverse representation. This would also skip over possible botnets.

A third approach is to host relays with a hidden service directory (HSD)
flag and use those to collect the data set. Every hidden service descriptor HS is
published to two pseudo-randomly selected relays and to their two successors
in the hash ring. In order to collect all published HS descriptors at any given
time, one would have to place a new relay in every second gap of the directory
hash ring. According to [23], the hash ring consisted on average of 3,605
nodes during the months April to September 2018. This means that at least a
total of 1,803 relays would have to be hosted, requiring 902 individual IPs.
Whilst this approach would produce the best result, it also requires a high
amount of resources.

150 M. Steinebach et al.

3 Concept

This section conceptualizes an approach for the real-time detection and
examination of onion services. The approach is based on the objective to
collect and evaluate data on their software type, popularity, uptime and, for
web services, content.

3.1 Relay-based Onion Address Collection

The quantity of the collected addresses should be high enough to be consid-
ered representative for the collective as a whole. As discussed in the previous
section, known approaches are either incomplete or resource-intensive.

Instead, in this paper we propose a slightly different approach: We col-
lected descriptors over a longer period of time by incorporating only a small
subset of relays. Given a sufficiently long time span these relays are able to
collect most onion services that are permanently on the network as well as a
representative subset of short-lived ones.

The amount of relays and the needed time span can be calculated using
the geometric distribution model with each change of the descriptor-id as
a single Bernoulli trial. For this model to apply, three assumptions must
hold true. First, the sequence of events have to be independent trials. This
assumption applies, since the calculation of a new descriptor-id is indepen-
dent of the previous values. Second, the occurrence is a binomial trial. Each
daily change of the descriptor-id can be defined as either a successful or
unsuccessful outcome. The successful being that at least one of the recording
relays received the descriptor of the permanent onion service. Therefore,
the second assumption applies as well. The third assumption is that the
probability of success remains the same for every trial. This proves to be
problematic. There is no way of predicting the exact probability of future
publications since the amount of total relays fluctuates. The fluctuation in the
past months has, however, been marginal with a maximal increase by 170
and a maximal decrease by 41 relays (considering the total number of relays
from 2018-04-01 until 2018-09-01, taking the first day of each month [23]).
We will hence assume a constant probability based on the average amount
of relays in the period from 2018-04-01 to 2018-09-30. The probability of a
single onion service publishing a descriptor to one of the recording relays, at
least once during a given time period n, can then be calculated as:

P (X ≥ 1) = 1− (1− p)n

Detection and Analysis of Tor Onion Services 151

Every descriptor is published to two relays and their two successors respec-
tively. If we assume that none of the recording relays are ever in the same
receiver group, the adjusted formula can be written as:

P (X ≥ 1) = 1− (1− p)2n

Consequentially, p can be determined by the amount of needed relays in
relation to the total amount of hidden service directory relays.

P (X ≥ 1) = 1−
(
1− 3r

a

)2n
where:
p: The probability of receiving the descriptor on a descriptor-id change
n: The amount of descriptor-id changes (days)
r: The amount of owned HSD relays
a: The total amount of HSD relays on the network.

3.2 Detection of the Underlying Services

In order to classify the onion services by type it is necessary to detect the
applications running on them. Hence, the next step is a port scan over each
service. An open port, however, only implies the possible type of application
listening on this port. It is e.g. possible that the host runs a web service on
a port usually used for IRC applications. Because of this, the detection of
an open port is followed by a best effort detection of the underlying service
and operating system. The studies described in 2.1 have also shown another
important aspect that has to be taken into account: Some services have a
short life span. This means that it is important to conduct the analysis as
fast as possible after their detection. Hence, the implemented system scans
each service soon after its publication.

3.3 Evaluation and Categorization

The evaluation provides insight into the following aspects of the detected
onion services:

Type of service
All recorded addresses and the respective services found during the port scan
were persisted in a database. The data fields indicated the type of service, the
operating system and additional information on the used software for each
address.

152 M. Steinebach et al.

Amount of services protected by descriptor cookies
Onion services using the basic client authorization method cannot be tracked,
even when the HSD descriptor is known. A connection cannot be established
since the introduction points are encrypted. The key length of such a cookie
can vary but Tor Project recommends a length of 128 bits. To brute force
this secret would, for one, be exceptionally time consuming and secondly
compromise their privacy. For this reason, services protected by this method,
had to be excluded from the analysis. Still, by checking whether the intro-
duction points of each published descriptor are encrypted, we estimated the
percentage of services relying on this technique.

Uptime
For each collected .onion address the lifetime of the underlying service was
tracked. This statistic provides insight into the persistence of onion services.
It shows whether the majority of applications are used for short term data
exchanges or whether they provide long term services for Tor clients.

Popularity
All requests for HSD descriptors were tracked for both v2 and v3 services.
While this form of popularity tracking does not differentiate between real Tor
users and automatic requests (e.g. by bots, scanners or crawlers) it showed
how often specific services are requested on the network. Also, the logged
requests were distinguished between such that failed to be resolved and those
that were successful. The most popular services were examined more closely.
Finally, the popularity of v2 and v3 services was compared to show how well
the new protocol was adopted by Tor’s users.

Language of each web service and duplicates
Each detected website was additionally crawled and the underlying HTML-
data persisted for further analysis. Due to the possibility of illicit content
in the form of images or video data the crawler refused downloading any
multimedia content and processed solely HTML-text. Also, it followed all
links to other .onion domains. Each web domain was categorized by the main
language and similar websites were filtered from the collection.

4 Implementation

This section describes the architectural decisions made during the
implementation.

Detection and Analysis of Tor Onion Services 153

4.1 Resources

The hosted relays are only capable to capture a fraction of the Tor Dis-
tributed Hash Table (DHT). To collect a representative amount of addresses,
we had to record for a sufficient duration. This time span had to be long
enough for most permanent onion services to publish at least once to one
of those relays. For this purpose, we determined the desired probability
of receiving a descriptor from a permanent service to be at least 90% or
an equivalent of 90 days. Consequently to the analysis in 2.3, the aver-
age amount of HDS relays on the network was estimated to be 3,605
for the duration of the data collection. Inserting these values and a pub-
lication probability threshold of 95% into the formula defined in 2.3 we
were able to calculate the required resources of 20 relays. Since two relays
can be hosted per IP, the amount of needed servers and IPs was reduced
to 10.

The data collection and analysis was performed on separate systems. An
additional system was used for each server. Each performed the analysis
solely for its respective server. This separation allowed for a fast and dis-
pensed evaluation and also helped to prevent race conditions. The resulting
data is persisted in a remote central database.

4.2 Architecture

The overall architectural structure and the interactions of the individual
systems are illustrated in Figure 2. A set of 10 virtual machines hosts a total
of 20 relays on the Tor network. The relays run a modified version of the most
recent Tor software package (0.3.4.9). The modifications trigger an event
whenever a descriptor is published to the relay or whenever one is requested
by a Tor client. The respective meta data of each event can then be read at the
control port of the Tor process. Scripts, subscribed to these events, archive
the publications and requests to respective log files.

Additionally, the data is also processed and persisted in a remote database.
Analysis tasks are performed on an additional set of 10 VMs of which each is
responsible for two relays. They retrieve and process the data based on pre-
defined relay fingerprints. The overall process is controlled through a remote
workstation which uploads, starts and stops the used scripts and performs
other administrative tasks. For authentication purposes and to prevent the
transmission of data in plain text a simple PKI was set up.

154 M. Steinebach et al.

Tor network

Database

Relay
VM

Workstation

Analysis
VM

Relay
VM

Relay
VM

Analysis
VM

Analysis
VM

Set of VMs hosting
Tor relays

Set of VMs analysing and
processing the collected

data

Figure 2 Architecture overview.

4.3 Harvesting Hidden Service Descriptors

Tor relays with the HSD flag are placed in the DHT according to the SHA1
value of their public RSA identity key. In order to achieve the best possible
coverage of the DHT and to prevent the hosted relays from being in the
same receiver group for individual descriptors, new RSA key pairs were brute
forced. The new keys were chosen in a manner that would place the relays
evenly spread over the hash ring. Once the necessary flags were acquired, the
modified Tor software triggers events whenever a descriptor was published to
the node. Instead of directly persisting the published data to the database, it

Detection and Analysis of Tor Onion Services 155

was written to a log file. This redundancy provided an additional backup of
the collected data and ensured the continuity of the collection process. The
individual log files consisted of the following data.

• Received v2 descriptors
• Received v3 descriptors
• Resolved v2 descriptor requests with indicator if successful
• Resolved v3 descriptor requests with indicator if successful

The log file for v2-descriptors is constantly pooled for new publications.
An additional offset file markes the last successfully parsed entry. Since the
descriptors do not include the .onion address of the respective service, it is
calculated by hashing the enclosed public RSA key, taking the first 10 bytes of
the result and appending the “.onion” suffix. The usage of descriptor cookies
is detected by inspecting the introduction points field within the descriptor
and checking whether the information is encrypted.

4.4 Logging the Amount of Descriptor Request

The popularity of individual services was determined by evaluating the
requests for each descriptor. Since Tor clients use the descriptor-id, instead
of the .onion address, the underlying address cannot be determined by
the request alone. To map the requests onto the respective address, the
onion_descriptor_history table is queried for the corresponding addresses.
The log files were parsed as a whole at the end of the data collection. Since
the requests could always be compared with every descriptor-id logged during
this time, no data was lost. The database entries for failed requests were
aggregated by their descriptor-id.

The log files for v3-descriptors were also parsed as a whole at the end of
the data collection phase. Since v3-descriptors are encrypted they cannot be
mapped to their respective .onion address without knowing it beforehand. The
collected data can be used in two ways. For one, the total amount of failed
and successful requests can still be determined. Secondly, v3-addresses found
during the crawling of v2-services can retrospectively be linked to the request
logs. This is realized by comparing the blinded public keys, each collected
v3-service has during the analysis phase, with the logged requests.

4.5 Logging the Uptime of Onion Services

The uptime of an onion service can be determined by routinely querying each
service directly via a connection to one of its ports. Whether the port is open

156 M. Steinebach et al.

or closed is irrelevant since a received answer does already indicate that the
service itself is running.

A query during the first 24 hours is not necessary, since the service will
publish the descriptors itself. However, if the publication stops within this
first time frame, a query will be performed every 3 hours. This allows for a
window of 3 failed publications. After this first period, queries are performed
once on a daily basis for the first week. After one week, the scans occur every
7 days and after one month every 4 weeks. In order to compensate for short
outages of the service, this routine repeats itself on every status change of the
service. This means that whenever a service goes from online to offline, or
vice versa, the routine resets to the first phase for this specific service.

These requests might, however, influence the popularity analysis. If the
queries were performed at the collecting relays, these would in turn log
an increased amount of potential visits. This is prevented by calculating
the responsible relays for each descriptor-id beforehand and ignoring the
recording relays during the query.

4.6 Port and Software Detection

The classification of the logged onion services was determined by their open
ports and the underlying software. In order to collect this data, a port scan
routine with a simultaneous software detection was implemented.

By default, onion services slow down port scans by closing rendezvous
point circuits whenever an unrecognized port is accessed [28]. Hence, every
detection of a closed port results in a repeated setup routine for a new
rendezvous point circuit. This means that the scan time per service has to
be taken into account. Test runs with common port scanners like Nmap, Ncat
and Netcat revealed that, while Ncat performed the fastest for single service
scans, Nmap outperformed all other scanners when a set of addresses was
used. Additionally, Nmap allows to simultaneously check detected ports for
more than 2,000 well-known services [16].

The procedure is an incremental scan of each service. Instead of scanning
the complete port range, only an increasing subset of ports is scanned until at
least one open port is detected. Since web applications appear to be the most
frequent services, the port scanner starts with port 80 and 443. Subsequently,
a variety of common Tor applications, such as TorChat, Jabber, common IRC
and RPC ports, Torrent tracker and ports known to be used by the Skynet
and Trickbot botnets, are examined. This is followed by an additional scan
of the 100 most commonly used ports (as determined by Nmap’s list of well

Detection and Analysis of Tor Onion Services 157

known ports [15]). Finally, if no open port is found, the scan continues with
the 1,000 most common ports. This set of ports does include some of the
previously scanned ones.

4.7 Web Services

Subsequently to the port scan, each onion service was crawled for which an
open port with the HTTP was detected. The HTML-text data was collected
and persisted for further analysis. Once the data collection was completed,
the text was classified by its language and type of content.

The crawler was specifically designed to crawl onion web services and
provides the option to exclude multimedia data due to possible legal com-
plications. Multimedia content like pictures or videos were not downloaded
and the analysis of the web services was limited to the returned HTML-texts.
Web services detected through links were also crawled, provided they linked
to another onion service. The crawler was modified so that it can run on
multiple VM’s in parallel without performing crawls multiple times on the
same service.

Subsequent to the crawling, the HTML-data was filtered and clustered
by different procedures. The first procedure filtered out web services that
returned solely HTTP-error codes and marked them accordingly for later
evaluation. The second procedure clustered duplicate websites. Some web-
sites can be offered via multiple addresses or be cloned to carry out phishing
attacks.

4.8 Classification of Languages

Additionally to the previous clustering methods, the collected websites were
also classified by their main language.

To achieve a precise categorization, the documents are classified based
on a voting poll of three natural language processing applications. The
respective applications are fastText (a NLP library created by Facebook’s AI
Research lab), polyglot (a natural language pipeline and language detector
using Google’s C++ library Compact Language Detector 2) and langdetect
(a python based port of Google’s language-detection library). Each tool votes
on the three most likely languages for the text – also stating the estimated
probability. The main language is determined by a majority vote of two or, if
no majority can be achieved, by the overall most probable language.

158 M. Steinebach et al.

5 Results

In total, a sum of 318,787 unique descriptors were published to the relays.
These resolved to 173,190 unique .onion addresses. The discrepancy between
the amount of descriptors and .onion addresses has two causes. First, different
relays were responsible for the same .onion address at different points in
time. Second, contrary to the Tor protocol, some services published multiple
descriptors to the relays whether they were currently responsible for them or
not. The detection of potential honeypot services requires an active querying
process of the published addresses, which was done only in a shorter amount
of time for technical and policy reasons. However, those services could still
be retrospectively identified. This was done by comparing the collected data
with archived consensus documents. Each publication was then checked on
whether it was published to the correct position. In total, 850 descriptors were
published to relays which were not responsible for the received descriptor-id.
These publications were performed by only 216 onion services. All of these
services are HTTP-based but appear to have nothing else in common.

The crawler provided an additional amount of 3,086 addresses. Out of all
detected services, only 6,186 used a descriptor cookie. That is, only 3.57%
of the collected services used the basic client authorization feature to encrypt
their introduction points. Since the cookie prevents any unauthorized access
to these services, 170,090 remained to be analyzed.

5.1 Services

Out of the 170,090 accessible onion services (collected by the relays and
the crawler) 82,145 were scanned to different extends. The discrepancy of
52% is the result of the interruption in the data collection process and the
subsequent passive monitoring during which the missing services went offline
again. For 60,036, i.e. 73% of those services, at least one open port was
detected. Because most services of the second data collection had to be
scanned collectively at the end, there was not enough time left to scan the
complete port range of all services. Toward the end of the data evaluation,
9,966 services with no detected open ports were still online. The achieved
port range coverage for these services was 45%.

5.1.1 Distribution of service types
The collection of 60,036 services yielded a total of 65,987 open ports. These
belong to 219 unique protocols on 1,370 unique port numbers.

Detection and Analysis of Tor Onion Services 159

Figure 3 Distribution of all protocols.

The results show that a majority of 49,659 open ports, are used for the
HTTP protocol. This is followed by the SSH protocol and the SMTP. 92%
of all HTTP-services were found on port 80. 77% of SSH-services accept
connections at port 22 and 95% of SMTP-services on port 25. Figures 3
and 4 illustrate this distribution. The remaining of the 10 most common
protocols follow the same pattern of predominantly complying with the
standard port allocations. While HTTP and SSH based services were also the
most frequently detected protocols in [3], the SMTP and Bitcoin protocols
were not. This shows that a change in service usage occurred between the
years 2013 and 2018. Anonymous Email servers and Bitcoin clients have
become significantly more popular.

Only 1,076 of the detected onion services use HTTPS. Subsequent to the
crawling, these services were queried for the respective certificates. 843 of
them were still reachable. 333, i.e. 39,5%, of the TLS certificates were self
signed. Of the not self signed certificates, the most commonly used CA was
the Let’s Encrypt Authority with 276 (32.7%) issued certificates followed
by the COMODO RSA Domain Validation Secure Server CA with 20.
Additionally, the trust chain was also examined.

160 M. Steinebach et al.

Figure 4 Top 10 most frequent protocols without http.

5.1.2 Distribution of detected software
For 54,849 (83%) open ports the underlying software was determined. The
remaining ports could not be classified because either the software product
was not part of the Nmap service database or because a firewall prevented
the detection. Table 1 lists the most popular applications for the 5 most
frequent protocols (Bitcoin was excluded because no underlying application
was determined).

In consistence with the protocol distribution, the majority of detected
software products were web servers. The most popular web server is Nginx
which is also, together with lighttpd, the software recommended by The
Tor Project [27]. Even though Tor Project specifically discourages the use
of Apache web servers, as they may be more prone to de-anonymization
attacks, it is still the second most popular web server. All of the software
products depicted above are open source products with a majority putting
also an emphasis on security features.

The port scans were able to detect the version of an application in 11,207
cases. This data shows that onion service hosts, for the most part, tend to
not keep them up to date. In fact, many applications are outdated by at least
2 years.

Detection and Analysis of Tor Onion Services 161

Table 1 Software distribution
Software Amount

SSH

OpenSSH 3,931

Dropbear 257

MikroTik RouterOS sshd 210

other 66

SMTP

Postfix 2,506

Exim 19

Netqmail 5

other 9

Jabber

Prosody server 284

Prosody client 134

ejabberd 56

other 31

IRC

InspIRCd 103

ngircd 31

UnrealIRCd 25

other 42

HTTP

Nginx 38,960

Apache httpd 4,294

lighttpd 551

Node.js 503

other 827

5.1.3 Operating systems
The underlying operating system was detected on 5,074 services. As can be
seen in 5, almost all of them are Linux or Unix derivatives with a majority of
84% being either Debian or Ubuntu. Figure 5 provides a graphical illustration
of the distribution.

5.2 Service Uptimes

This section evaluates and illustrates the aggregated data on the uptime
of the discovered onion services. These are clustered into three groups.
The cluster “Permanent” encompasses all services which were online for
at least 90% of the time. All services were monitored for at least two
months. The cluster “Once” contains those that appeared for one contiguous
time span and afterwards never reappeared. The third cluster, “Mixed”, are

162 M. Steinebach et al.

Figure 5 Distribution of operating systems.

services that were periodically on- and offline. The complete amount of
evaluated services is 47,439.

The overall distribution of the respective clusters is depicted in Figure 6.
To avoid that the relays are banned, the active analysis of the onion services
during the last two weeks was conducted with a delay of two to three days
after the first publication. 57% of the evaluated services appeared only once
and for a fixed time span. The respective time span clusters are illustrated in
Figure 7. The data shows that 80% of the services within the “Once” cluster
were online for a time span of equal to or less than one week. This is equal to
46% of all evaluated services.

However, this data does not show the ratio of permanent to non-permanent
services. It shows solely the distribution of the collected data. The “Once”
cluster is over-represented. Permanent services, that published to the relays
multiple times, are considered only once while each publication of a short
living onion service will lead to an increase of the “Once” cluster. To
estimate the actual proportions of permanent to non-permanent services we
can expand the cluster by also including those that published a descriptor
during the passive recording and were still online for two months after
the data collection. By comparing this data with the estimates on total
amount of services provided by [23], the real ratio can be approximated.
The requirement of an average uptime of over 90% is considered only

Detection and Analysis of Tor Onion Services 163

Figure 6 Distribution of all monitored services.

Figure 7 Distribution of the “Once” cluster.

164 M. Steinebach et al.

for the subsequent two months period. This results in a total amount of
53,466 permanent services. The Tor Project’s extrapolated average amount
of total online onion services for the same duration was on average 105.000
services per day. We can hence estimate that roughly half of all services were
continuously online for at least a period of 2 months. Over 27,000 of these
permanent services belong most likely to a botnet. A difference in the ratio
of used protocols between permanent and non-permanent services could not
be established.

5.3 Popularity of v2-Services vs. v3-Services

The total amount of descriptor queries for v3-services was 6,493,352.
Of these, 2,607,761 were successfully resolved. A total of 1,828 unique
v3-descriptors were successfully requested compared to 97,504 unique
v2-descriptors. Since the v3-protocol does not include .onion addresses,
it is not possible to categorise those addresses by their service type.
371 descriptor-ids were retrospectively assigned to their .onion address.
This was done by recalculating the past blinded public keys of all v3-
addresses, found during the crawling procedure, and comparing them with
the descriptor query records. Of these, the 5 most requested services were
all web-based file hosts. The average request rate was 1,426 per descriptor-
id. While the amount of successfully resolved v3-queries is less than half
of the resolved v2-queries, the total amount of unique v2-descriptors was
53 times higher. This discrepancy indicates that the majority of v3-services
are, for the most part, popular services that adapted early to the new
protocol.

5.4 Popularity of Cookie Protected Services

A total amount of 6,390 v2-services were determined to be using a descriptor
cookie. Out of these, 2,782 services were queried at least once. Collectively,
these services were requested 45,542 times with an average request rate of
16.37 requests per service.

5.5 Language Distribution

The following section depicts the language distribution among the web
based onion services. All languages are named according to their ISO 639-1
language code. Figure 8 provides an overview of their distribution.

Compared to the analysis in [3] in 2013, almost all languages still con-
stitute for less then 3% of all websites. The sole exception is Russian. In

Detection and Analysis of Tor Onion Services 165

Figure 8 Distribution of main languages used on unique onion service websites.

correlation with the increased use of Tor in Russia, the amount of Russian
web services also grew. While the same holds true for most of the other
languages, Russian is the only language to outgrow the previous proportions.

5.6 Top 10 Most Requested Onion Services

The 10 services that received the most requests were further analyzed to
determine their nature. For each service the most requested descriptor-id was
chosen. Four services were disregarded because no information on them was
obtainable.

1. LM Social Server/Backdoor Trojan – 864,505 queries – The only
detected open port on this service has the number 1111, a chat
server called LikeMinds social server. This software is no longer
available and was integrated into IBM’s WebSphere product, using
port 1414 [12]. This port is also known to be used by the backdoor
remote access Trojans Backdoor.AIMvision [10], Backdoor.Ultor [11],
Backdoor.Daodan [21] and W32.Suclove.A@mm [21].

2. TrickBot – 161,421 queries – The .onion address of this service was
associated in [7] with a Trojan called TrickBot. TrickBot is a malware
that appeared first in 2016, infecting its targets via phishing attacks dis-
guised as financial institutions. The Trojan consists of multiple modules

166 M. Steinebach et al.

and can, depending on the current installation, perform a variety of
attacks like collecting emails and credentials, system encryption or
even steal Bitcoins from wallets [31]. In September 2018 the National
Cyber Security Centre in the UK issued an advisory warning relating
to the Trojan. The warning detailed mitigations that organisations and
individuals should implement immediately [6]. In order to modify and
update its modules, the malware uses a CC server hosted as an onion
service. The .onion address was associated with the Trojan because it
was hard-coded into its binary configuration file.

3. Wall Street Market – 75,369 queries – This web based onion ser-
vice was an online marketplace. It offered a variety of products cat-
egorised into drugs, counterfeits, jewellery, carding ware, services,
software, hosting, fraud, digital goods and tutorials. It was in the news
recently – but long after the end of the evaluation for this paper – for
being taken down by a major police investigation, see e.g. [19].

4. Phishing site of a Tor search engine – 61,086 queries – This website
belongs to a collection of phishing sites that were discontinued some-
time toward the end of 2018. The real onion service, which was cloned
by this one, is called “not Evil”, a search engine in the Tor network.

5. Hackers Collective – 52,559 queries – A website claiming to be hosted
by a collection of hackers. It offers services like hacking of social media
accounts, cooperate databases or DDOS attacks.

6. Tradizia – 52,111 queries – A web-based, Russian encyclopedia in the
style of Wikipedia.

7. The Pirate Bay – 49,395 queries – This service is the Tor web presence
of The Pirate Bay. A web based Bittorrent indexer that was started by the
Swedish anti-copyright organisation Piratbyrån. Bittorent is a protocol
used for peer-to-peer file sharing [1].

8. Nitrogensports – 43,992 queries – A web-based betting service.
Allows to anonymously bet on sport events or play a variety of gambling
games. The wagers are placed in Bitcoins. Interestingly, the .onion
service redirects the user always directly to a .eu domain.

9. RosPrawosudie – 33,309 queries – A Russian website created in 2012
for the study of public judicial practice. This free web service offers a
collection of past judicial decisions of different jurisdictions. The texts
are obtained from official websites blocked on Russian territory by the
The Federal Service for Supervision of Communications, Information
Technology and Mass Media in Russia – for illegal distribution of
personal data [32].

Detection and Analysis of Tor Onion Services 167

10. HYDRA Market – 32,474 queries – This onion service is a Russian
web-based market platform. Vendors offer drugs, security services,
counterfeits of legal documents, electronic devices, job offers and other
goods and services.

5.7 Duplicate Clusters

The duplicate clustering algorithm found 33,317 duplicates divided in 1,021
clusters. Each cluster consists of a collection of duplicates and an average
similarity rate based on the determined Jaccard similarity coefficient. Table 2
shows the ten largest duplicate clusters.

The first and largest collection consists of 27,104 duplicates with a
similarity rate of 1.0 (100% identical). The only detected port, for all of
these services, was port 80. Each service is run on a Nginx web server
which hosts a website with just one page. The page displays the logos of
the operating systems Linux and FreeBSD. Within the source code of the

Table 2 Ten largest duplicate clusters
Avg. similarity

Amount coefficient Description
27,104 1.000 Collection of websites displaying the logos of the operating

systems Linux and FreeBSD. Have also a hidden text body
listing a variety of software and security related skills of a
Linux/Unix system administrator.

656 0.999 Collection of former phishing websites. They now display a
message of the host explaining the attack.

346 0.998 Default index page of a Nginx web server.

273 0.972 A collection of websites claiming to collect Bitcoins and return
a multiplied amount within 24 hours.

252 0.986 Single message saying this website is hosted by Daniel’s hosting
service.

172 0.902 DreamMarket login page.

128 0.993 Botoshop login page. A Russian service creating customised bot
programs.

126 0.925 Default index page of Apache2 Debian web server.

100 0.9874 Default index page of cPanel Inc. showing that the website is no
longer reachable.

90 0.865 Index page of torproject.org’s developer machines.

168 M. Steinebach et al.

website is a small, not displayed text body. The text lists a variety of software
and security related skills of a Linux/Unix system administrator and provides
contact information, leading to an anonymous Russian Jabber service called
“exploit.im”.

This layout was found in all 27,104 services. The exact same text can also
be found in some Russian forums where users offer IT services. The amount
of services also fits a noticeable fluctuation, seen in the extrapolated amount
of onion services as provided by [23]. The amount rose drastically 4 times
in the past year, while also falling three times in between. The first surge
in numbers occurred on 2018-04-25, where the estimated amount increased
by 26,455 within 24 hours. Shortly after, the number dropped by 29,899 on
2018-05-08 and rose again on 2018-05-11 by 29,555. This pattern is repeated
two more times. Each decrease and increase ranges in between 28,000 and
31,000 .onion addresses. The short time spans and drastic increases strongly
indicate an automated process, most likely connected to a botnet. Considering
the normal fluctuations and the fact that the amount is only extrapolated, this
botnet might be responsible for the observed behaviour.

Similar to the results provided by [18] and [3], this finding supports that
the Tor network is used by botnets and malware to hide their location and
traffic.

The second biggest cluster consists of 656 duplicates. The average sim-
ilarity rate is 0.999. All of these websites have just one page with the title
“You have been scammed!”. The host claims to have been hosting over
800 onion domains on the Tor network with an average of 5.000 hits per
day. The descriptor of one of those web services was even requested 61,086
times, as mentioned above. All domains were phishing websites and aimed
to collect Bitcoin payments or donations. The host further claims to have
received over 200 Bitcoins which led him to retire and reveal the attack. This
change occurred roughly at the middle of the crawling process. Since some
of the duplicates were, therefore, crawled before and some after the phishing
attack stopped, not all of the supposedly 800 duplicates can be identified
retrospectively. Still, if the phishing domain was crawled before the reveal
and another website linked to these phishing domains afterwards, then both
versions of this websites were persisted. In 173 cases both versions of the
web domains are available. An evaluation of the duplicates revealed that just
in this subset the attacker had cloned 68 different unique services. While
most of the duplicates were clones of DreamMarket – an online marketplace
for drugs and other illegal goods – they also consisted of a vast variety of

Detection and Analysis of Tor Onion Services 169

other services like mail, carding and escrow services, search engines, other
drug markets, Bitcoin mixers, image hosts and many more.

6 Summary and Further Work

Tor onion services are TCP-based services that can be accessed and hosted
anonymously on the Tor network. We provide an overview on protocols,
software types, popularity and uptime of these services by collecting a large
amount of .onion addresses. Websites are crawled and clustered based on
their respective language. The analysis of the collected data and its com-
parison to previous research provides new insights into the current state
of Tor onion services and their development. The service scans show a
vast variety of protocols with a significant increase in the popularity of
anonymous mail servers and Bitcoin clients since 2013. In correlation with
an increased amount of Russian Tor users, the quantity of Russian web-
sites also increased considerably over the past years. The evaluation of the
respective service lifetimes reveals a high churn rate for onion services.
The popularity analysis shows that the majority of Tor client requests is
performed only for a small subset of addresses. The overall data reveals
further that a large amount of permanent services provides no actual content
for Tor users. Instead, these consist of bots, services offered via multiple
domains, or duplicated websites for phishing attacks. The total amount of
unique onion services, used by Tor users, is thus smaller than current statistics
suggest.

The conducted research can be continued in several areas. First of all, the
collected data can be further evaluated. One interesting aspect is the topic
classification of the collected HTML-texts. A definitive segmentation of the
websites, by their respective topics, would provide an overview of what they
are used for. Given the large amount of text data, the classification could be
realized using machine learning. First, a manual topic classification would
be needed to generate training data. This data can then be used to train a
supervised learning algorithm which would classify the remaining texts. The
resulting topics can be ranked using the collected popularity data to determine
the most popular topics.

A second possible continuation is the in-depth analysis of the found
botnets, phishing sites or otherwise fraudulent services. An extensive study
on the usage of Tor onion services for malicious purposes could reveal the
approaches and methods of attackers. Resulting findings could in turn be used
to warn users or for the implementation of counter measures.

170 M. Steinebach et al.

Acknowledgment

The joint project PANDA on which this publication is based was funded
by the Federal Ministry of Education and Research under the funding codes
13N14355 and 13N14356. The authors are responsible for the content of this
publication.

References

[1] The Pirate Bay. The pirate bay – about. https://thepiratebay.org/about,
2019. [Online; As seen on 04 February 2019].

[2] A. Biryukov and Weinmann R. Pustogarov, I. Trawling for tor hid-
den services: Detection, measurement, deanonymization. 2013 IEEE
Symposium on Security and Privacy, 2013.

[3] A. Biryukov, R. Weinmann, I. Pustogarov and F. Thill. Content and
popularity analysis of tor hidden services. 2013.

[4] J. Buxton and T. Bingham. The rise and challenge of dark net drug
markets. 2015.

[5] “Legislative Counsel California”. California consumer privacy act.
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201
720180AB375, 2018. Assembly Bill No. 375.

[6] U. K. National Cyber Security Centre. Advisory: Trickbot banking
trojan. https://www.ncsc.gov.uk/alerts/trickbot-banking-trojan, 2018.
[Online; As seen on 03 February 2019].

[7] N. Desai. Summer reruns: Threat actors are sticking with malware that
works. https://cofense.com/summer-reruns-threat-actors-sticking-mal
ware-works/, 2018. [Online; As seen on 03 February 2019].

[8] DuckDuckGo.com. Duckduckgo traffic. https://duckduckgo.com/traffic,
2019. [Online; As seen on 01 February 2019].

[9] C. Guarnieri and M. Schloesser. Skynet, a tor-powered botnet straight
from reddit. https://blog.rapid7.com/2012/12/06/skynet-a-tor-powered-
botnet-straight-from-reddit/, 2012. [Online; As seen on 10 November
2018].

[10] K. Hayashi. Backdoor.aimvision. https://www.symantec.com/securit
y-center/writeup/2002-061316-4604-99, 2002. [Online; As seen on
01 February 2019].

[11] D. Knowles. Backdoor.ultor. https://www.symantec.com/security-center
/writeup/2002-101713-3321-99, 2002. [Online; As seen on 01 February
2019].

https://thepiratebay.org/about
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://www.ncsc.gov.uk/alerts/trickbot-banking-trojan
https://cofense.com/summer-reruns-threat-actors-sticking-malware-works/
https://cofense.com/summer-reruns-threat-actors-sticking-malware-works/
https://duckduckgo.com/traffic
https://blog.rapid7.com/2012/12/06/ skynet-a-tor-powered-botnet-straight-from-reddit/
https://blog.rapid7.com/2012/12/06/ skynet-a-tor-powered-botnet-straight-from-reddit/
https://www.symantec.com/security-center/writeup/2002-061316-4604-99
https://www.symantec.com/security-center/writeup/2002-061316-4604-99
https://www.symantec.com/security-center/writeup/2002-101713-3321-99
https://www.symantec.com/security-center/writeup/2002-101713-3321-99

Detection and Analysis of Tor Onion Services 171

[12] B. Lesser, G. Guilizzoni, J. Lott, J. Reinhardt and R. Watkins. Program-
ming Flash Communication Server. O’Reilly Media; First Edition, P. xii,
2005.

[13] A. J. Martin. Iranian web crackdown drives surge in privacy
technology. https://news.sky.com/story/ iranian-web-crackdown-drives-
surge-in-privacy-technology-11191740, 2019. [Online; As seen on
05 February 2019].

[14] D. Moore and T. Rid. Cryptopolitik and the darknet. Global Politics and
Strategy Volume 58, 2016 – Issue 1, 2016.

[15] Nmap.org. Nmap manual – chapter 14. understanding and customizing
nmap data files. https://nmap.org/book/nmap-services.html, 2019.
[Online; As seen on 03 January 2019].

[16] Nmap.org. Nmap manual – chapter 15. nmap reference guide. https:
//nmap.org/book/man-version-detection.html, 2019. [Online; As seen
on 03 January 2019].

[17] “Office Journal of the European Union”. Regulation (eu) 2016/679 of
the european parliament and of the council of 27 april 2016. https://eur-
lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679,
2016.

[18] G. Owen and N. Savage. Empirical analysis of tor hidden services. IET
Information Security (Volume: 10, Issue: 3 , 5 2016), 2015.

[19] pcmag.com. Police shut down the wall street market, a top dark web site.
https://www.pcmag.com/news/368151/police-shut-down-the-wall-st
reet-market-a-top-dark-web-site, 2019. [Online; As seen on 03 May
2019].

[20] Securedrop.org. Secure drop – share documents securely with these
organizations. https://securedrop.org/, 2019. [Online; As seen on
05 February 2019].

[21] Speedguide.net. Port 1111 details. https://www.speedguide.net/port.
php?port=1111, 2019. [Online; As seen on 01 February 2019].

[22] ProtACT Team and InTELL Team. Large botnet cause of recent tor
network overload. https://blog.fox-it.com/2013/09/05/large-botnet-
cause-of-recent-tor-network-overload/, 2013. [Online; As seen on
10 November 2018].

[23] Torproject.org. Metrics torproject.org. https://metrics.torproject.org/,
2018. [Online; As seen on 16 November 2018].

[24] Torproject.org. Tor 0.3.2.9 is released: We have a new stable series!
https://blog.torproject.org/tor-0329-released-we-have-new-stable
-series, 2018.

https://news.sky.com/story/ iranian-web-crackdown-drives-surge-in-privacy-technology-11191740
https://news.sky.com/story/ iranian-web-crackdown-drives-surge-in-privacy-technology-11191740
https://nmap.org/book/nmap-services.html
https://nmap.org/book/man-version-detection.html
https://nmap.org/book/man-version-detection.html
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://www.pcmag.com/news/368151/ police-shut-down-the-wall-street-market-a-top-dark-web-site
https://www.pcmag.com/news/368151/ police-shut-down-the-wall-street-market-a-top-dark-web-site
https://securedrop.org/
https://www.speedguide.net/port.php?port=1111
https://www.speedguide.net/port.php?port=1111
https://blog.fox-it.com/2013/09/05/ large-botnet-cause-of-recent-tor-network-overload/
https://blog.fox-it.com/2013/09/05/ large-botnet-cause-of-recent-tor-network-overload/
https://metrics.torproject.org/
https://blog.torproject.org/tor-0329-released-we-have-new-stable-series
https://blog.torproject.org/tor-0329-released-we-have-new-stable-series

172 M. Steinebach et al.

[25] Torproject.org. Tor rendezvous protocol, version 2. https://github.com/
torproject/torspec/blob/master/rend-spec-v2.txt, 2018. [Online; As seen
on 09 November 2018].

[26] Torproject.org. Tor rendezvous protocol, version 3. https://github.com/
torproject/torspec/blob/master/rend-spec-v3.txt, 2018. [Online; As seen
on 09 November 2018].

[27] Torproject.org. Configuring onion services for tor. https://www.torpro
ject.org/docs/tor-onion-service.html.en, 2019. [Online; As seen on
23 January 2019].

[28] Torproject.org. Tor dev manual. https://www.torproject.org/docs/tor-ma
nual-dev.html.en, 2019. [Online; As seen on 03 January 2019].

[29] Torproject.org. User metrics. https://metrics.torproject.org/userstats-rel
ay-country.html, 2019. [Online; As seen on 01 February 2019].

[30] Wikipedia. Support-vector machine. https://en.wikipedia.org/wiki/Supp
ort-vector_machine. [Online; As seen on 28 November 2019].

[31] W. Zamora. Trickbot takes over as top business threat. https://blog.mal
warebytes.com/101/2018/11/trickbot-takes-top-business-threat/, 2018.
[Online; As seen on 03 February 2019].

[32] zona.media. Roskomnadzor blocked the website “rospravosudie” on
complaint about the publication of personal data. https://zona.media/
news/2018/07/18/rospravosudie, 2018. [Online; As seen on 05 February
2019].

Biographies

Martin Steinebach is the manager of the Media Security and IT Forensics
division at Fraunhofer SIT. From 2003 to 2007 he was the manager of the
Media Security in IT division at Fraunhofer IPSI. He studied computer sci-
ence at the Technical University of Darmstadt and finished his diploma thesis
on copyright protection for digital audio in 1999. In 2003 he received his

https://github.com/torproject/torspec/blob/master/rend-spec-v2.txt
https://github.com/torproject/torspec/blob/master/rend-spec-v2.txt
https://github.com/torproject/torspec/blob/master/rend-spec-v3.txt
https://github.com/torproject/torspec/blob/master/rend-spec-v3.txt
https://www.torproject.org/docs/tor-onion-service.html.en
https://www.torproject.org/docs/tor-onion-service.html.en
https://www.torproject.org/docs/tor-manual-dev.html.en
https://www.torproject.org/docs/tor-manual-dev.html.en
https://metrics.torproject.org/userstats-relay-country.html
https://metrics.torproject.org/userstats-relay-country.html
https://en.wikipedia.org/wiki/Support-vector_machine
https://en.wikipedia.org/wiki/Support-vector_machine
https://blog.malwarebytes. com/101/2018/11/trickbot-takes-top-business-threat/
https://blog.malwarebytes. com/101/2018/11/trickbot-takes-top-business-threat/
https://zona.media/news/2018/07/18/rospravosudie
https://zona.media/news/2018/07/18/rospravosudie

Detection and Analysis of Tor Onion Services 173

PhD at the Technical University of Darmstadt for this work on digital audio
watermarking. In 2016 he became honorary professor at the TU Darmstadt.
He gives lectures on Multimedia Security as well as Civil Security. He
is Principle Investigator at ATHENE and represents IT Forensics and AI
security. Before he was Principle Investigator at CASED with the topics Mul-
timedia Security and IT Forensics. In 2012 his work on robust image hashing
for detection of child pornography reached the second rank “Deutscher IT
Sicherheitspreis”, an award funded by Host Görtz.

Marcel Schäfer serves as Senior Research Scientist for the Fraunhofer
USA Center for Experimental Engineering CESE in Maryland since 2019.
From 2009 to 2018 he was with Fraunhofer Institute for Secure Information
Technologies SIT in Germany. With a Master’s degree in mathematics from
the University of Wuppertal, Germany and a PhD in computer science from
the Technical University of Darmstadt, Germany, he consults and teaches
for topics on dark web, privacy networks and anonymous communication,
and also serves as a subject matter expert for privacy, e.g. GDPR and data
anonymization. As PI, Co-PI and researcher Dr. Schäfer has lead and worked
in various projects that discover new challenges and opportunities broadly
spread over the fields of cybersecurity and software engineering in both the
public and private sector.

Katharina Brandl studied computer science in Marburg and finished her
master degree in 2012. During her studies she was part of the programming
languages research group of Prof. Ostermann where she also wrote her master
thesis about a type system for parametric tree grammars. Since 2017 she is
part of the PANDA project at the Fraunhofer SIT. The PANDA project is an
interdisciplinary project researching the darknet and there she is responsible
for the computer science part of the project.

	Introduction
	Hidden Services
	Objectives

	State of the Art
	State of the Art Research on Onion Service Usage
	Evaluation of the Available Data on Onion Service Usage
	Collection of .onion Addresses

	Concept
	Relay-based Onion Address Collection
	Detection of the Underlying Services
	Evaluation and Categorization

	Implementation
	Resources
	Architecture
	Harvesting Hidden Service Descriptors
	Logging the Amount of Descriptor Request
	Logging the Uptime of Onion Services
	Port and Software Detection
	Web Services
	Classification of Languages

	Results
	Services
	Distribution of service types
	Distribution of detected software
	Operating systems

	Service Uptimes
	Popularity of v2-Services vs. v3-Services
	Popularity of Cookie Protected Services
	Language Distribution
	Top 10 Most Requested Onion Services
	Duplicate Clusters

	Summary and Further Work

