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Abstract

Within a forensic examination of a computer for illegal image content, robust
hashing can be used to detect images even after they have been altered.
Here the perceptible properties of an image are used to create the hash
values. Whether an image has the same content is determined by a distance
function. Cryptographic hash functions, on the other hand, create a unique
bit-sensitive value. With these, no similarity measurement is possible, since
only with exact agreement a picture is found. A minimal change in the
image results in a completely different cryptographic hash value. However,
the robust hashes have an big disadvantage: hash values can reveal something
about the structure of the picture. This results in a data protection leak. The
advantage of a cryptographic hash function is in turn that its values do not
allow any conclusions about the structure of an image. The aim of this work
is to develop a procedure for which combines the advantages of both hashing
functions.
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1 Introduction

Today one sees a rapid increase of digital images available on the Internet
and also stored on devices like PCs or smartphones. This results in large
collections to be sighted during forensic investigations, for example during
an investigation regarding the possession of child pornography.

If there is a suspicion of illegal possession of such images, an investi-
gation of storage devices is carried out. If large amounts of data are to be
examined, a manual search of a suspect’s computer or the classification of
the stored images is very time-consuming and morally questionable. The
privacy of the person concerned or other users sharing the same devices
(primarily family) is no longer protected. This problem is avoided by using
automated techniques that are efficient and precise. A common approach
is cryptographic hashing. Programs such as PERKEO++ (Program for the
Recognition of Relevant Child Pornographic Unique Objects) are used, which
quickly and easily check files on a data carrier (similar to a virus scanner)
using cryptographic hash values and provide information as to whether
suspicious content has been found. However, cryptographic hash methods
can only locate exact copies of a file. This is particularly problematic in the
case of a digital image. Saving the file again under lossy JPEG compression
will produce an image with a different cryptographic hash. The result is two
images with contents identical to a human observer, which have a different
hash value and are thus incorrectly classified as different images.

An alternative or an solution further variant is the robust hash, which does
not compare bitwise for exact files, but saves an abstraction of the perceptible
image content as a hash value in order to make it comparable. This provides
a good robustness against changes to the image not altering its actual content.
Figure 1 illustrates this process. But a drawback which is sometimes raised
is that as the robust hashes store information describing the content of the
image, the hashes may also tell something about the content of a hashed
image. This could become a privacy risk in some scenarios.

In a forensic investigation, an investigator could be assigned to verify
the possession of so called ‘revenge-porn’ on a computer of a suspect. The
original content would come from the person shown on the images and also
accusing the suspect of possession and distribution. This person would prefer
to ensure minimal leakage of the compromising photos. In the case of a false
accusation, the investigator should learn nothing about the content of the pho-
tos. If the accusation is true, the investigator will find the copies of the photos,
therefore having access to the content. So from a security protocol point
of view, the relevant challenge is to prevent the investigator from learning
anything about the content of the images in the case of a false accusation.
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Figure 1 Bob steals a compromising photo of Alice e.g. from her camera. He stores a smaller
copy of it on his smartphone. Alice accuses Bob of doing so and provides a robust hash of the
original photo to an investigator who searches Bob’s devices for a photo matching to the robust
hash.

2 Related work

In this section we address a number of areas relevant for our work. As the
subject of our research is the handling of digital photos in forensic investi-
gation, we provide a brief discussion of the different methods of relevance.
We also mention the current state in privacy-preserving forensics. As robust
hashing is the base of our approach, we give a short introduction and also
briefly describe the block hash used in this work.

The security of robust or perceptual hashing which respect to aspects
beyond privacy is not within the scope of this work. This has been discussed
in the literature in e.g. [12] with respect to authentication by robust hashing.
Also not within the scope of this work is the interaction of robust hashes
and secret keys in protocols for integrity verification as in [22]. Using a
robust hash as part of a digital signature by replacing the cryptographic
hash in the protocol by a perceptual hash and signing it has already been
suggested in 1996 [17]. All these approaches use a hash as a method of robust
authentication but do not address the risk of leaking information about the
hashed content.
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2.1 Tasks of Image Handling

In forensics, there are several tasks which address the handling of photos or
similar images. On a top level, this can be divided into two groups:

2.1.1 Re-Identification
Here the image is assumed to be already known, e.g. from a earlier inves-
tigation. It is to be re-identified and matched to some information about it
stored in a database. This database can be a black or a white list. A black
list will raise an alarm for an investigator telling him he has found relevant
evidence. A white list will remove the image from any deeper investigation
as the image is known to be of no relevance. As an example for this task, we
have described a black list concept for identification of child porn based on a
block hash in [20]. This strategy is used today by many users worldwide.

Images can be either identified by cryptographic or robust hashes. It needs
to be stressed that this task is about re-identifying the images, not the persons
shown on it as discussed in e.g. [6].

2.1.2 Classification
In this case [9] it is not assumed that the image is already known. To
help the investigator with sighting a huge amount of images, meta-data is
automatically generated, for example by matching the image to reference
images with similar features. Thereby the investigator can browse through
a selected set of images with relevant features and ignore the rest. For image
classification, trained deep learning nets are known to provide the best results
[4]. There are multiple general nets available allowing automated tagging
or annotation of images. Our work based on deep learning [14] follows the
concept of classification-based sorting of image sets. The network does not
decide whether an user needs to view a given image but rather estimates its
relevance and sorts the images by it. Therefore the user is more likely to
quickly find relevant material.

In this work, we address the challenge of re-identification of images with
the help of robust and cryptographic hashes.

2.2 Privacy and Forensics

The idea to execute a forensic investigation in a privacy-preserving manner is
not new. In this section we provide a brief overview on approaches discussed
in the literature.
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Srinivasan et al. [18] describe various policies for preserving privacy
during an investigation. They do not focus on technical solutions, but rather
on correct behavior of investigators and acceptance of evidence by the court.
Adams [1] discusses the requirements of a forensics tool to be compliant with
the laws of the United States. One aspect addressed is logging the actions of
investigators, allowing to trace privacy breaches.

Hou et al. [8] present a technique is presented to search encrypted data
for multiple search words. In the scenario presented, there are two roles. An
investigator who performs an investigation and only has access to relevant
data and an administrator who manages the data. A similar approach is taken
by Armknecht and Dewald [2]. Here a third party is investigating emails
of a company. All emails are encrypted, and only if a sufficient number of
keywords within the emails are found, the full text of these individual emails
can be decrypted.

Various research also addresses risks to privacy and the role of technology
as potential evidence. Stahlberg et al. [19] explore the role of databases in the
context.

Peter et al. introduced the need for improved privacy in han-
dling images during forensic investigations in their discussion [16] of a
‘Privacy-Preserving Architecture for Forensic Image Recognition’. Their
approach was to derive cryptographic keys from the images to be sighted
and protect sensitive elements of the images by these keys.

We also contributed to the domain of privacy-preserving forensics by
introducing a protocol based on partial encryption, face recognition and key
exchange [13]. Here during an investigation faces in images are recognized
and encrypted. Only if a scene is of relevance for an investigator, he can ask
for decryption keys provided by a third party.

2.3 Cryptographic Hash Functions

Cryptographic hash functions (see e.g. [10]) are a common primitive of
security protocols with many applications. We only describe them briefly as
a reminder here. They calculate hash values of fixed length from information
of arbitrary length. They must meet a number of requirements including:

• Efficiency: They must be efficient to calculate
• Collision-Resistant: It must be extremely unlikely to find two pieces of

information that have the same hash value
• One-way function: It must be practically impossible to find the informa-

tion associated with a hash value.
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Among the best known one-way hash functions are MD5 and the Secure
Hash Algorithm (SHA).

2.4 Robust Hash Functions

Several robust or perceptual hashes for various media types are known, which
provide different levels of robustness. For example, Roover et al. [3] provide
an image hash algorithm which is robust against geometrical operations like
scaling and rotation; the hash draws its robustness from the use of the Radon
transform. Friedrich and Goljan propose an approach based on random noise
similarity in [5]. As there are too many algorithms to mention here, we
recommend surveys like the one by Haouzia et al. [7] or Neemila and Singh
[15]. There are also methods for audio and video streams as well as text data.

Robust hashing extracts perceptually relevant features from multimedia
content for identification purposes. They must meet a number of require-
ments. The most important are:

• Distinction: Perceptually different pieces of media data shall have
different hash values.
• Robustness: The robust hash values shall show a certain degree of

perceptual invariance, i.e. two pieces of media data that are perceptually
similar for an average viewer/listener shall be similar, too.
• Security: The features must survive attacks that are directly aimed

at the feature extraction and consecutive processing steps. Similar to
cryptographic hash functions, the robust hash values shall be equally
distributed among all possible pieces of media data and pairwise statis-
tically independent for two pieces of media data that are perceptually
different.

The robustness brings the risk of leakage. When two images are very
similar, their hashes are also similar. Distinction goes only so far that two sim-
ilar images will not have an identical hash, but both hashes will be more
similar than the hashes of two images with different content. As an example:
Portrait photos with a human face in the center and a light plain background
all share a similar robust hash structure. This leads to false positives in robust
hash function higher than expected given the theoretic number space spanned
by a hash. As an example, Steinebach et al. show this in [21] with two
landscape photos and motivate their own countermeasure of using sub-hashes
of image areas.
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Figure 2 Similar images have similar robust block-based hashes. The mid column shows a
differential block hash, the right column the block hash from the phash library.

We have verified this by comparing a landscape photo with other photos
and different robust block hash algorithms. Figure 2 shows that the hamming
distances between the top image and the other images are small enough to
be confused for the original image by common thresholds between 16 and
32 bits for re-identification. If we have the robust hash of the first image but
do not know the image, we can compare the hash to hashes of images we
know and will learn which of our images are likely to be similar.

Figure 3 shows four other examples created with a simple blockhash
implementation to further illustrate this. Here the images are placed next to
their low res 16× 16 grey scale representation and the resulting binary block
hash. The similar structures lead to similar hashes.
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Figure 3 Similar images have similar robust block-based hashes. The mid column shows
the small grey scale version of the image, the right column the block hash.

2.5 Block Hash

In 2006, Bian Yang et al. proposed a block mean value based perceptual
image hash function [23]. Four slightly different methods are proposed.
The latter two additionally incorporate an image rotation operation to
enhance robustness against rotation attacks. This increases the computational
complexity of the latter two methods. Here we focus on the simplest method:

• Convert the image to grey scale and normalize the original image into a
preset size.
• Let N denote the bit length (usually 256 bit) of the final hash

value. Divide the pixels of the image I into non-overlapped blocks
I1, I2, . . . , IN .
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Figure 4 Left: Image. Right: Gray scale 8 × 8 pixel version.

• Calculate the mean of the pixel values of each block. That is, calculate
the mean value sequence M1,M2, . . . ,MN from the corresponding
block sequence. Finally obtain the median value Md of the mean value
sequence.
• Normalize the mean value sequence into a binary form and obtain the

hash value h(i) as 0 if Mi < Md or 1 if Mi >= Md.

In 2012, Steinebach et al. suggested a number of improvements to the
approach [21]. One is based on the observation that the individual hash bits
are not equally robust or stable. Depending on their distance to the median
value, they are more likely to skip. Hash bits with a small difference between
Mx and Md are less robust than those with a large difference.

As this finding is the base for our approach to combine robust and
cryptographic hashes, we illustrate this with a simplified example. In Figure 4
we show an example of a photo and the downscaled gray scale version of
it. We only use 8 × 8 pixel in the example for a more simple visualization
while the actual size is 16× 16 pixel. In Figure 5 the values (we use a range
from 1 (white) to 100 (black) here ) of the gray scale pixels are shown. From
these values the median is calculated, which is 15. We can now calculate the
difference of the values from the median and see a high variance between
0 and 80. For calculating a binary hash, one would map all values above or
equal the median to a bit value of 1 and all smaller to bit value 0.

3 Concept

Our aim is to combine the robustness of robust hashes with the privacy
given by the one-way nature of cryptographic hashes. This could be done
straightforward: a robust hash strategy usually allows a given number of bits
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1 2 3 4 5 6 7 8

1 20 10 10 10 10 10 20 10

2 15 10 10 95 10 8 10 10

3 20 10 10 80 75 80 10 10

4 15 10 8 45 75 78 10 10

5 20 10 8 75 75 8 10 10

6 15 20 10 75 80 8 10 10

7 20 20 20 40 70 30 30 20

8 20 20 20 10 20 20 20 20

1 2 3 4 5 6 7 8

1 5 -5 -5 -5 -5 -5 5 -5

2 0 -5 -5 80 -5 -7 -5 -5

3 5 -5 -5 65 60 65 -5 -5

4 0 -5 -7 30 60 63 -5 -5

5 5 -5 -7 60 60 -7 -5 -5

6 0 5 -5 60 65 -7 -5 -5

7 5 5 5 25 55 15 15 5

8 5 5 5 -5 5 5 5 5

Figure 5 Left: Values from Figure 4 (right). Right: Distance from median 15.

to be different from the original hash and still identify both hashes as equal.
Commonly this is calculated by a hamming distance between both hashes.
A threshold n is used as the maximal hamming distance accepted. So in theory
we could derive all versions of a robust hash with a size of m bit where up
to n bit differ and calculate a cryptographic hash of each version. Thereby
we would have a set of cryptographic hashes which represent each potential
copy of the robust hash deemed equal to the original hash. But this would
result in a vast amount of hashes: a common robust block hash has a size of
256 bit and the typical accepted hamming distance is 32. So the number of
cryptographic hashes would be

(
256
32

)
or 5.824459× 1040.

But from research on the block hash [21] we know that we can make
assumptions about the positions in the robust hashes where changes are most
likely. Table 1 shows a small robust hash of 10 bit calculated from values
between 0 and 1. In the row ‘Dist. M.’ we see that the differences of the hash
bits from the median vary strongly. Those bits with the smallest difference
are the least stable bits most likely to change. In the example these are bits 4
and 7. Figure 7 illustrates the behavior of the hash bits with respect to value
and median-based decision.

Now if we need to guess which bits will change, we would guess bit
4 and bit 7. So if we wanted to generate a set of cryptographic hashes from
the robust hash which represent a robustness equal to an allowed hamming
distance of 2 from the original hash, we would create versions of the robust
hashes where these 2 would flip. The rows Com1 to Com4 show the 4 varia-
tions resulting of this idea. So instead of

(
10
2

)
or 45 hashes we only calculate

4 hashes. Of course this comes with a price: while the bits 4 and 7 are the most



Privacy and Robust Hashes Privacy-Preserving Forensics 121

Table 1 Conceptual example of strategies for a set of 10 value with median 0.37. HashBit
shows the regular hash. Dist. M. is the difference of the actual value to the median. 0-neu.
is the hash calculated by the 0-neutral strategy. X-neu. shows the X-neutral strategy. The
lines Com1 to Com4 show the first 4 variations of the hash starting from the lowest median
difference

Bit# 1 2 3 4 5 6 7 8 9 10
Value 0.61 0.28 0.25 0.33 0.51 0.26 0.41 0.31 0.77 0.68
HashBit 1 0 0 0 1 0 1 0 1 1
Dist.M. 0.24 0.10 0.12 0.04 0.13 0.12 0.04 0.07 0.40 0.30
0-neu. 1 0 0 0 1 0 0 0 1 1
X-neu. 1 0 0 X 1 0 X 0 1 1
Com1 1 0 0 0 1 0 0 0 1 1
Com2 1 0 0 0 1 0 1 0 1 1
Com3 1 0 0 1 1 0 0 0 1 1
Com4 1 0 0 1 1 0 1 0 1 1

likely to change if the image the hash is calculated from is changed, there is
no guarantee that in some cases e.g. bit 1 would change but bit 4 and 7 stay
unchanged. This would result in a hamming distance of 1 to the original hash.
The original robust hash would correctly see this as an equal copy. The set
of 4 cryptographic hashes would not include this new hash. Robustness with
this strategy is therefore robustness with a specified threshold. This threshold
also controls the number of cryptographic hashes to be calculated. It therefore
rules the compromise between robustness and hash quantity.

There is also an alternative to building a set of hashes based on a thresh-
old: bits likely to flip can be set to a ‘neutral’ position. A distance lower
than the threshold would change a hash bit to a neutral bit. This neutral bit
can either be one of the two values ‘0’ and ‘1’ or it can be an additional
symbol like ‘X’. The lines ‘0-neu.’ and ‘x-neu.’ illustrate this strategy. The
advantage is limiting the number of cryptographic hashes to one single hash.
The drawback is that the distance of the values to the threshold can change
during operations on the hash. This is an additional source of errors leading to
a cryptographic hash not matching the hash of the original image. In Figure 6
we illustrate the steps of our approach.

3.1 Phases

From a more formal perspective, the suggested process can be structures as
follows based on the block hash from Section 2.5:

1. Computation of hash block values M1,M2, . . . ,MN and median Md

2. Computation of robust block hash H1, H2, . . . ,HN
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Figure 6 The hybrid concept: From a photo, a robust hash is derived. This hash is then
processed and one or more cryptographic hashes are calculated from it.

Figure 7 The robust hash is calculated by a threshold based on the median of the pixel
values. Depending on the distance between median and values, decisions are more or less
stable.

3. Computation of differences D1, D2, . . . , DN by Di = |Mi −Md|
4. Identification of weak bits W1,W2, . . . ,WN based on a threshold t by

Wi = 1 if Di <= t else Wi = 0
5. Creation of robust hash variant(s) based on (2) and (4)
6. Computation of cryptographic hash(es)
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Figure 8 Original image.

The phases only differ in (5) and (6) depending on the strategies.

• Combinations: Here in (4) all variations of the original hash H are
calculated based on the weak bits W and one cryptographic hash is
computed for each version.
• 0-neutral: Here in (4) hash bits of Hi are set to ‘0’ when Wi = 1. Only

one cryptographic hash is computed.
• 0-neutral: Here in (4) hash bits of Hi are set to ‘X’ when Wi = 1. Here

also only one cryptographic hash is computed.

3.2 Blockhash Behavior

For a deeper analysis of the behavior of the block hash we discuss its changes
due to lossy compression in detail in this section. As an example image, we
use the image of a horse as shown in Figure 8. The Figures 9 and 10 show the
result of the blockhash calculation on the original image and a copy which
has been stored as a quality factor 50 JPEG file, therefore subject to medium
lossy compression. While the overall structure of the hashes seems to be
identical, some positions differ from each other. Figure 11 gives the actual
positions where both hashes differ: L2, K6, G9, J10 are the first of twelve
such positions.

Now we look at the pixel values of the downsized 16 × 16 version
of image 8 shown in Figure 12. The median of these 256 values is 135.
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Figure 9 Hash of original image.

Figure 10 Hash of image compressed by JPEG quality factor 50.

In Figure 13 we subtract the median from the pixel values and see values
between −118 and 85. Now we can observe two things: The positions where
a hash change has occurred all have low values: L2 = −4, K6 = −4,
G9 = −1, J10 = −1 and so on. But not all positions with small values
show hash changes. As examples, positions H1 = 1 and N1 = −2 but the
hash values remain the same.

Therefore one can estimate where hash changes occur; small distances
from the median obviously lead to weaker hash values with a higher
likelihood to skip. But not all small distances will flip. Without additional
hints where changes will occur due to image structure and impact of
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Figure 11 Difference of both hashes shown above. Row and column numbers have been
added for easy reference.

Figure 12 Pixel values of image used to calculate the hash from Figure 9.

compression algorithms, our strategy can only assume that all small values
up to a given threshold will skip.

A quick look at the image used as an example shows that the task to guess
the correct hash positions where changes will occur. In Figure 14 we show the
original image and the 16× 16 grey scale image derived from it which is the
base of the block hash calculation. It is a visualization of the matrix given
in Figure 12. Figure 15 shows the first four positions where hash flipping
occurred by a modifying the color channel values for the respective hash
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Figure 13 Distance of pixel values from median 135.

Figure 14 The image and its grey scale 16× 16 hash calculation base.

Figure 15 Four positions where hash bit flipping occurred.
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block areas. Among the flipping positions are grass areas, one patch of fur
and one leg position with grass in the background. These are plain areas as
well as textured ones, and areas with and without strong changes in color and
lightness.

4 Implementation

The implementation of the concept we describe above is straightforward. We
briefly describe the individual steps in the following section.

4.1 Robust Hash

For the robust hash function, we use our own implementation of the
block hash as described in 2.5. The only important difference to standard
implementations like phash [11] is that not only the binary hash vector is
exported by the hash function, but also the distance Di of each block value
from the median.

4.2 Hash Processing

The processing of weak bits is a central point in the concept of this work. In
order to generate suitable cryptographic hashes from the robust hash values,
it is not sufficient to calculate the cryptographic hash value for a given robust
hash of an image. To locate weak bits, the first step is to use a parameter
to distinguish the bits into strong and weak bits via their distance form the
median Di. The method checks which bits have a distance smaller a given
threshold and stores the positions of the respective bits.

Then depending on the three strategies, the identified weak bits are either
replace by their neutral values ‘0’ or ‘X’ or the set of combinations of
individual robust hash variants is calculated.

4.3 Cryptographic Hash

We need a cryptographic hash function that hashes the preceding robust
hashes. Thereby we generate a unique value that can be directly compared in
the database without further calculations. The cryptographic hash algorithm
should generate hash values that correspond approximately to the length of
the robust hash, namely 256 bits. No hash function using a secret key is
required. The so-called avalanche effect is supposed to occur. This means
that if only one bit is changed, a completely different hash value is output.
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This means that an attack cannot estimate the original robust hash from
the cryptographic hash with reasonable effort. In addition, the hash function
should be easily calculable, a one-way function and collision-resistant. Since
the SHA-2 meets all requirements, SHA-256 is used as the cryptographic
hash algorithm in this paper.

4.4 Hash Comparison

Re-identifying an image is done by searching a hash database for the hash of
the image under evaluation. As we deal with cryptographic hashes here, we
can use a simple SQL implementation for a lookup of the hash. The hamming
distance based search strategies of robust hashes are not required in this case.

5 Evaluation

The evaluation uses the pictures of a cheerleader team (Galaxy test set). The
image set was already used in the optimization of [21] for evaluation. This set
is particularly suitable, since it is a set of persons in similar poses with only
small differences. This is challenging for a hash strategy sensible to similarity
of image content and addresses the fact that we see as the core challenge of
our work: robust re-identification of images without telling about the content
of the references.

5.1 Test Set

The test set contains 3,804 images. These are first divided into two equally
sized, randomly selected image sets. Since the creation of a database through
combinations can require a large number of entries and would therefore take
a long time (at 12 critical bits, 212 hashes are required per image), we will
use only 10% of a quantity to create the database. So we get two sets of 190
and 1,902 images. Of these two sets, the smaller is defined as known and the
larger as unknown. Most pictures have a resolution of 1000 × 667 pixels, in
landscape and portrait format.

5.2 Attacks

In order to test the new method for its robustness and reliability, images must
be used for evaluation, which are manipulated in common ways. In order to
send or upload images, they are usually subjected to JPEG compression and
resized to minimize their storage requirements. Horizontal mirroring does not
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affect the quality of the content, therefore the basic robust hash was deigned
to be robust against it. It is therefore included in the attacks. The following
15 attacks are carried out on the images:

• JPEG compression (quality factors 90 to 10 in steps of 10)
• Scaling (sizes: 150%, 110%, 90%, 75%, 50%)
• Horizontal mirroring

GIMP version 2.10.6 was used to execute the attacks. Since saving images
with JPEG compression is itself an attack, images in lossless PNG format
were used for scaling and mirroring.

5.3 Design

Our aim is to evaluate the potential to apply our strategies in real-world
scenarios. Therefore we have a close look at the error rates of the approaches.
To compare them, we calculate the recall and precision based on our measure-
ments. When assume that in most scenarios, the challenge will be to find the
best recall with a precision close to 100%. In other words: we want to find
the threshold where false positives are close to zero with the best possible
number of true positives. From our experience with automation tools for
investigations, a minimal false positive rate is preferred to a minimal false
negative rate, as the distribution of samples to analyze often contains many
more negative than positive examples.With a non-minimal false positive rate,
therefore many false alarms would be raised leading to a significant overhead
in the investigation. Still, to prevent bias, we use the same amount of positive
and negative examples for evaluation.

We also need to calculate how many bits are likely to be below a given
threshold and therefore seen as weak or critical. This allows us to estimate
the size of the hash sets for the combination strategy depending on the
threshold. Figure 16 shows the number of bits seen as critical (or weak)
depending on the threshold for 38 test images. As for each image a 256 bit
hash was calculated, the total number of hash bits was 9728. The threshold
is a normalized value between 0 and 1 with 1 being the maximum distance
from the median.

5.4 Results

First we discuss the results for the neutral element approaches 0-neutral and
X-neutral. From our tests we learned that the 0-neutral approach leads to a
high number of false-positives and a low precision as Table 2 shows. The
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Figure 16 Number of critical bits for 38 images based on the given threshold.

Table 2 Recall and Precision for the 0-neutral approach depending on various thresholds
Threshold

0.1 0.2 0.3 0.4 0.5 0.6
Recall [%] 45.3 50.9 51.9 60.7 72.3 78.2
Precision [%] 100 100 100 100 92.4 52
ACT [ms] 38.4 38.4 38.8 38.9 39.2 39.3
AVT [ms] 17.5 17.8 17.6 17.7 17.6 17.7

Table 3 Recall and Precision for the X-neutral approach depending on various thresholds
Threshold

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall [%] 28.4 30.4 36.1 47.2 57.5 66.3 80 84 90
Precision [%] 100 100 100 100 100 100 100 100 99.6
ACT [ms] 38.9 39.2 38.2 38.9 39.2 38.3 40.1 38.3 40
AVT [ms] 17.7 18 17.9 18.1 17.8 18.1 18 17.9 18.2

trade-off controlled by the threshold between recall and precision was not
satisfying. The recall with a precision of 100% at a threshold of 0.4 was
60.7%. Increasing the threshold and therefore the recall leads to a precision
of 52% at a threshold of 0.6 and a recall of 78.2%. Computation time is
only slightly affected by the strategy. ACT (average creation time) shows
the average time for creating the hash, AVT (average verification time) the
average time for the database lookup.

The X-neutral approach performs much better. As one can see in Table 3,
a precision of 100% at the same time as a recall of 84% can be achieved with
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threshold 0.8. Only beyond this threshold, the precision starts to drop. Timing
differences are minimal again.

Therefore we see the threshold 0.4 for 0-neutral and the threshold 0.8 for
X-neutral as the optimal thresholds for the respective strategies.

For the combination approach, in addition to threshold another parameter
‘limit’ is necessary. This parameter limits the maximum number of bits to
be flipped by checking for an image how many weak bits have already been
detected. If this number exceeds the specified upper limit, the remaining bits
determined by the threshold parameter are ignored. Depending on the image,
more or less critical bits can be identified. For example, in the creation under
the same threshold value, an image can have only 9 critical bits while another
image has 14 critical bits. This makes a huge difference in the number of
resulting combinations and size of the hash database.

Images that have a large number of critical bits due to the set threshold
could cause expansive calculations and database entries. Countering this by
a low threshold could cause other images to have only few combinations and
therefore have a low robustness. To compensate these differences, a limit of
critical bits is used. This prevents too many combinations without the need of
a small threshold.

We start with a limit of 14. For each limit, the threshold is selected that
provides the best possible results. The limit is increased to 17. It would be
possible to choose a higher limit. However, a time limit of 17 proved to be
just within the practicable range, without using too many resources. A total
of 20 runs are performed with regard to recall, precision and efficiency. The
number of passes results from the two parameters threshold and limit. For
each upper limit between [14,17], the values of threshold between [0.005;
0.025] are executed in steps of size 0.005. Larger thresholds are not used
because the maximum number of critical bits has been used for almost all
upper limits. Thresholds smaller than 0.005 do not further reduce the number
of critical bits and thus always led to the same result. Table 4 shows the
recall for these combinations. The optimal parameter set is a limit of 17 and
a threshold of 0.01. By this, we achieve a recall of 85.8% and a precision of
100%. A single hash set at limit 17 has a maximum size of 217 × 32 bytes or
4 MB.

5.4.1 JPEG
JPEG compression is the most common change an image will run through.
Due to the lossy nature of JPEG, even with identical quality factors two
generations of one image will differ with respect to its binary representation.
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Table 4 Recall of the combination strategy for 14 to 17 bits to be flipped
Limit

Threshold 14 15 16 17
0.005 60 60 60 60
0.01 80 82.6 83.3 85.8
0.015 75.8 72.2 77.4 79.3
0.02 74.2 76.8 78.2 79.5
0.025 69.5 70.3 72.8 74.6

Therefore robustness to JPEG compression is on of the basic requirements
for any robust hash strategy. In Figure 17 we show the recall of our strategies
to JPEG quality factors between 10 and 90. As one can see, the block hash
is perfectly robust towards JPEG. At a quality factor of 50, the combination
strategy achieves a recall of over 90%. At the common quality factor 70, the
recall of 0-neutral and X-neutral strategies is close to 80% with X-neutral
performing better than 0-neutral in all cases.

5.4.2 Scaling
Another common processing step is the scaling of images. At moderate
rates, image information is unchanged while the image file is modified
significantly due to interpolation. At Figure 18 we see the recall of our
strategies with respect to different scale factors. The basic block hash is again
perfectly robust. The other strategies perform better with upscaling than with
downscaling. Again, the combination strategy performs best with 70% at a
downscaling of 50% and almost 90% with scaling of 90% size and above.
X-neutral again performs better than 0-neutral.

Figure 17 Recall of strategies for different JPEG quality factors.
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Figure 18 Recall of strategies for different scale factors.

67,8
78,3

87,5
100

0

10

20

30

40

50

60

70

80

90

100

0-neutral X-neutral Combinations Blockhash

recall

Figure 19 Recall comparison of the hashing strategies after horizontal mirroring.

5.4.3 Horizontal mirroring
A quasi-lossless attack on images known to fool cryptographic hashes is
horizontal mirroring. The therefore have a closer look at the recall of our
approach with respect to his attack in Figure 19. We see that the basic
hash method by Steinebach et al. has recall of 100%, while there is a loss
of recall when applying our strategies. Here the optimal thresholds were
applied.
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Figure 20 Processing time comparison of the hashing strategies.

5.4.4 Processing time
One aspect of interest besides the required memory size is the processing time
for the creation of the hashes with by different strategies. Figure 20 shows the
average processing time. As expected, the combination strategy requires by
far the most processing time with almost 111.000 milliseconds. The other
strategies are similar in their behavior. Block hash is the fastest, which is
easily explainable as it is the base for X-neutral and 0-neutral, which cause a
small overhead due to processing of the hash. The test system was a 3.2 GHz
Intel Core i5-4570 with 8GB RAM.

6 Conclusion and Further Work

In this work we show that a hybrid approach combining characteristics of
both robust and cryptographic hashes is possible and has its advantages. It is
significantly more robust than a cryptographic hash which would not tolerate
any of our evaluated changes and would end up with a recall of 0%. On the
other hand it is less robust than a standard robust hash. In our evaluation, our
strategies were up to 50% less robust than the basic block hash. The average
recall achieved ranged between 67.8% for the 0-neutral strategy and 87.5%
for the combination strategy. The latter was the most robust, but also most
expensive strategy due to time and memory usage. The X-neutral strategy
provides the best trade-off; it is almost as fast as the standard block hash and
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requires no additional memory as only one cryptographic hash is calculated
from the modified robust hash. It provides an average recall of 78.3% with a
precision of 100%.

In other words: When accepting a loss of 20% of recall compared to a
standard block hash, we can use a hybrid strategy combining the robustness of
a block hash with the one-way nature of SHA-2 to re-identify images without
any information leakage. This increases the overall privacy during forensic
investigations as no information on the subject of the images can be derived
from the hashes.

6.1 Further Work

This work can be seen as a first step into evaluating the behavior of robust
hashes when used for cryptographic hashing. A deeper analysis of which bits
are most likely to flip beyond a simple calculation of their distance from the
median could be promising. For example, the neighborhood of the blocks the
bits are calculated from could be of interest. A bit within a flat area may be
more stable than one in a highly textured environment.

The block hash is not the only known robust hash function. It is one where
previous research regarding the varying stability of its bits has been executed.
Research with respect to other robust hash functions could help to find robust
hash function with fewer bits likely to flip. Also other approaches for robust
hashing not based on a binary representation could show characteristics
suitable for a hybrid strategy.
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