Evaluating Dynamic Tor Onion Services
for Privacy Preserving Distributed Digital
Identity Systems

Tobias Holler*, Michael Roland and René Mayrhofer

Institute of Networks and Security, Johannes Kepler University Linz, Austria
E-mail: tobias.hoeller @ins.jku.at; michael.roland@ins.jku.at;
rene.mayrhofer @ins.jku.at

*Corresponding Author

Received 14 October 2021; Accepted 26 October 2021;
Publication 16 March 2022

Abstract

Digital identity documents provide several key benefits over physical ones.
They can be created more easily, incur less costs, improve usability and can
be updated if necessary. However, the deployment of digital identity systems
does come with several challenges regarding both security and privacy of
personal information. In this paper, we highlight one challenge that digital
identity systems face if they are set up in a distributed fashion: Network
Unlinkability. We discuss why network unlinkability is so critical for a
distributed digital identity system that wants to protect the privacy of its users
and present a specific definition of unlinkability for our use-case. Based on
this definition, we propose a scheme that utilizes the Tor network to achieve
the required level of unlinkability by dynamically creating onion services and
evaluate the feasibility of our approach by measuring the deployment times
of onion services.

Keywords: Tor, onion service, privacy.

Journal of Cyber Security and Mobility, Vol. 11_2, 141-164.
doi: 10.13052/jcsm2245-1439.1122
© 2022 River Publishers



142 T Holler et al.

1 Introduction

Digital services have become an essential aspect of everyday life for many
people in the last decade. In combination with the trend to embed computing
capabilities in physical devices this has lead to an increased demand for digi-
tal identity systems. Their identities can be used in purely digital transactions
like creating accounts for services or in physical interactions like verifying a
driving license. Digital services need reliable digital identities to prevent fake
accounts, limiting access for underage users, or holding their users legally
responsible for their actions on a digital platform. Systems like the European
e-ID provide this kind of functionality.

More physical applications require a stronger coupling between a digital
identity and a physical individual. A recent example for this is the EU
Digital COVID Certificate [8], a QR-code based approach to track both
tests and vaccinations for the COVID-19 virus. These codes contain the
information required to identify a person (name and birthday) along with a
signed statement about their test result/vaccination. Since digital documents
can easily be duplicated, the same document could be presented by multi-
ple individuals that all claim to have the same name and birthday. This is
prevented by mandating that a QR code is only valid in conjunction with a
photo ID document that matches the name and birthday in the vaccination
statement. Consequently, the EU COVID certificate must be considered a
digital extension for a physical identity, as it does still depend on a physical
ID being present.

There are also systems like Aadhaar [11] or the current mobile driving
licence (mDL) standard [14] that include biometric information about the
owner allowing verifiers to link a physical individual directly to a digital
document without the need for any physical form of ID. These approaches
cover the widest range of possible applications, but at the same time they also
come with the most problems in regards to privacy.

Arguably the most important of which regards user linkability. If a single
digital identity is used across a wide range of services, those services should
not be able to link their users based on the digital identity they used to create
their accounts. Aadhaar for example faces this issue because it reuses the
same global identifier (12-digit Aadhaar number) for every service, while the
European elD avoids that problem by deriving service specific sub-identifiers.
While one approach is clearly preferable to the other, both concepts suffer a
second linkability issue at the provider side. As long as digital identities are
hosted by a central authority, this authority can track when, where, and how



Evaluating Dynamic Tor Onion Services 143

a digital identity is being used. Therefore, these systems require significant
trust from their users to be accepted and at least in the case of Aadhaar there
have been numerous reports indicating that this trust might be misplaced [9,
23,31].

The only way to mitigate this issue is to decentralize digital identities
by storing them on user controlled devices like it is done with mDL. If
verification happens locally between two devices, there is no central provider
that could track the usage of a digital ID. However, mDL and similar systems
have to include the biometrics of the identity holder so multiple verifiers can
easily find out if they have seen the same ID or not. This brings us back to
unlinkability as a key requirement for distributed digital identity systems.

The general unlinkability requirement can be split up into several more
specific sub-requirements: First, we need a way to compare biometric features
without disclosing enough information about them to make them linkable.
Thankfully, there are multiple research efforts directed towards implementing
privacy preserving biometrics, which demonstrate that unlinkability on a
biometric level is achievable [19]. Second, the cryptography used to sign
digital documents must also maintain unlinkability. Approaches based on
zero-knowledge proofs like IBM’s identity mixer [3] or the W3C’s verifiable
credentials [24] are promising solutions for this and should lead to future
digital identity systems that provide unlinkability on a biometric and a cryp-
tographic level. However, there is a third layer of unlinkability that must be
considered when designing a distributed digital identity system, which brings
us to the main issue discussed in this work:

In every decentralized identity system, specific devices have to interact
whenever a digital identity is being used. Even if the communication is safely
encrypted, information like source and destination addresses or timestamps
cannot be concealed from attackers listening in on the network. By removing
centralized digital identity providers that could track the usage of digital iden-
tities, that capability moves to network providers that can see the traffic going
back and forth in a distributed identity system. Therefore, every distributed
digital identity system that wants to protect the privacy of its users must find
a way to ensure unlinkability on a network level.

In this paper, we present a specific definition of network unlinkability
for distributed digital identity systems. Based on this definition we propose
a way to instrument the Tor network to provide the required unlinkability.
Finally, we investigate the time it takes to provision Tor onion services in
detail because this time is of crucial importance for our proposed approach
towards achieving network unlinkability.



144 T Holler et al.

2 Network Unlinkability

As stated in RFC 6973 [5] unlinkability only has meaning within a system
that defines items of interest (IOIs), the systems anonymity properties, and
entities interested in linking data (attackers). Once those have been defined,
unlinkability is achieved by making sure that attackers cannot tell if two IOIs
are related or not. Since some of our attackers might resort to statistical
analysis, we clarify here that we need attackers to be unable to tell with
reasonable certainty if two 1OIs are related or not.

2.1 Items of Interest

When talking about network traffic, IOIs are usually derived from network
packets. The most significant attributes from a privacy perspective are the IP
addresses (IPv4 or IPv6) of both sender and destination, the time when the
packet was sent and the amount of transferred data.

In order to properly assess the value and significance of this information,
it is important to know when it is produced, meaning when network commu-
nication takes place. For a distributed digital identity system to work, there
are a few network communication paths that have to be used. First, the user-
controlled device holding the relevant identity information (= identity agent)
must communicate with a biometric sensor, to confirm that the physically
present individual is actually the holder of the provided digital identities.
Second, the identity agent has to provide digital credentials to the entity
that needs to verify the identity (= verifier). Although sensor and verifier
are likely operated by the same entity, they have to be treated as distinct
devices if they are not running on the same device, which we believe to
be unlikely. Consider a simple example like validating passports at airports:
There would be hundreds of sensors needed to measure biometric infor-
mation, but verifying the provided digital identities could (and most likely
would) be centralized at a single instance.

2.2 Attackers

When thinking about network metadata it is tempting to assume attackers
are able to see everything. However, the assumption that potential attackers
are able to see 100% of the network all the time, makes it impossible to
conceal any metadata from them, meaning that the system must not produce
any privacy relevant metadata. As this is almost impossible to achieve, we
assume more realistic scenarios:



Evaluating Dynamic Tor Onion Services 145

At the very least attackers need to be able to monitor the network traffic of
a single device that participates in a digital identity system. Obviously, a dedi-
cated attacker could also gain access to the network traffic of multiple devices
to learn if and when those devices interact. On a larger scale organizations
like internet providers which handle network traffic for their customers could
abuse their access to build extensive behavior profiles on their customers. On
a national level, governments could force all internet providers to secretly
monitor the usage of digital identities to monitor their population. Finally,
we do already know that on an international level it is common to monitor
large quantities of network traffic by wiretapping larger internet exchange
nodes [17, 18].

When thinking about the capabilities of attackers, it is usually worth
considering the motivation of attacker as well. On an individual level, an
attacker might abuse an identity system to stalk a victim via his or her identity
agent. Alternatively, an attacker could target a verifier to learn how many
customers a service handles. This would fall under the corporate espionage
category. Organizations collecting data about their users, generally want to
use that information themselves or sell it to other interested parties. While it
could be argued that data collection by a company to improve its services
is not a bad thing, we consider extracting information about individuals
from their network patterns (without their explicit consent) malicious and
categorize it as a potential attack. Attacks on privacy happening on a national
level are usually motivated by obtaining information for law enforcement.
While enforcing laws is a reasonable goal and information about specific indi-
viduals would certainly be useful to it, not all countries have law enforcement
that respects and protects the freedom and privacy of citizens. Therefore, a
privacy-preserving digital identity system must consider law enforcement try-
ing to monitor the population as an attacker. Finally, international surveillance
is almost always conducted as part of state sponsored intelligence gathering.
If we consider local law enforcement as malicious then that must also apply
to foreign governments, which are far less likely to respect the privacy of
non-citizens.

2.3 Implications

Any attacker monitoring network traffic can easily decide if two connections
are related if they use the same source or destination IP address. Conse-
quently, a privacy preserving digital identity system must find a way to
either conceal IP addresses from attackers, which is not supported by current



146 T Holler et al.

network implementations or reduce the information value provided by the
collected IP addresses. This could be achieved by sending all messages via
randomly selected proxies. An attacker would still see IP addresses and could
still link them, but since they are selected randomly linking them provides no
relevant information to the attacker. However, even if the IP address itself
is taken care of, attackers able to monitor the traffic of more than a single
client could use statistical analysis to link packets based on the data size
and timing of the transmitted packet. While it would be possible to prevent
traffic correlation based on packet size and timing by introducing padding
and delays, doing so would lead to a system with significant latency issues
that would most likely be rejected by users. Therefore, we are forced to relax
our unlinkability requirement in this area to specify that attackers with access
to a large set of network traffic should be unable to extract IOIs belonging to
a specific individual and attackers must still be unable to tell for the majority
of IOIs if they are related or not.

Finally, it should be noted that if an attacker is able to monitor the traffic
of an individual device, there is no need for IOIs to identify one commu-
nication partner. The mere existence of traffic informs the attacker that the
monitored device is interacting, revealing sensitive metadata in the process.
Such traffic will always be linkable, making this a threat that distributed
digital identity system will have to live with.

3 An Unlinkable Distributed Network via Tor

The standard solution for concealing network IP addresses is onion rout-
ing [10]. It protects traffic by encapsulating it in multiple layers of encryption
and routing the traffic through a series of proxies, with each server stripping
off one layer of encryption. Onion routing can conceal the IP addresses of
communication partners and makes traffic correlation attacks significantly
harder [1].

For the purpose of this research we evaluated different approaches
towards onion routing to learn which would be most suited for a pri-
vacy preserving distributed digital identity system. Fundamental changes
to basic networking protocols like proposed by HORNET [4] would most
likely provide sufficient unlinkability, but we do not see such approaches
being deployed at a larger scale in the near future. Instead we investigated
approaches that implement onion routing as an overlay network on top of
the current Internet architecture, as these approaches can already be used
in practice. The two most important contenders in this field are Tor [29]



Evaluating Dynamic Tor Onion Services 147

and 12P [13]. The design of I2P is intended for building privacy preserv-
ing distributed systems on top, while the Tor project is mainly focused on
enabling users to browse the web privately. It would therefore be a reasonable
assumption that a distributed digital identity system should be built on top of
I2P, as its design clearly tries to support this kind of scenario. Ironically, this
is not the case. The Tor project has focused on a much more requested use-
case, causing it to accumulate far more users and supporters, which in turn
enabled it to develop advanced features like onion services that also allow
building distributed systems within the Tor network. Compared to I12P, Tor’s
implementation has more features, is better tested and has a much larger
network of relays to work with, making the Tor project the best candidate
for building a privacy preserving distributed digital identity system.

3.1 Tor

Tor is an onion routing technology that anonymizes network traffic by tun-
neling it through several nodes. A connection established via the Tor network
is referred to as a circuit and usually consists of three nodes. The guard node
(also called entry node), a middle node, and an exit node. Multiple layers of
encryption enforce that only the guard node knows the origin of the traffic
and only the exit node knows the destination [7].

The overwhelming amount of Tor traffic is used to connect to public
websites. Access to Tor onion services makes up only ~1.5% of the total
traffic going through the Tor network [30].

Tor keeps track of all nodes currently existing within the Tor network in
the consensus. The consensus is created by a group of highly trusted relays,
called the directory authorities, and updated hourly. Important for onion
services is the fact that every 24 hours a new shared random value is generated
and published by the directory authorities. Unless otherwise specified, time
periods mentioned in this paper refer to the 24 hours a shared random value is
valid and when values are derived from time periods, they are derived using
the shared random value of the time period.

Onion services were initially created as an example for systems built on
top of the Tor network [6] and enabled users to provide services without
disclosing their IP addresses or even having a public IP address. It found
reasonable acceptance within the Tor community and several projects (for
example SecureDrop [25] and Cwtch [20]) were built on top of it. Over time,
several critical issues with the previous version (V2) of the onion service
protocol were identified, like the use of 1024-bit RSA and SHA1 which



148 T Holler et al.

are no longer considered secure. Those ultimately lead to the publication of
version 3 (V3) of the onion service protocol. Unless otherwise specified all
following descriptions refer to V3 onion services.

Onion services enable the operation of globally accessible anonymous
services. While the details of the onion service specifications [26,27] are quite
complicated, the basic concept is relatively easy: Servers select introduction
nodes, which can be used to contact them. They publish these introduction
nodes within the Tor network, so other clients can find them. Clients can
then request a connection with the onion service at a rendezvous point
of their choice via an introduction point. Establishing the connection via
such a rendezvous point provides anonymity to both the client and the
server.

3.1.1 Creation of onion services
Every onion service is identified by a master keypair.

* The private master key grants full control over an onion service. This
key is only used to derive blinded signing keys. Onion services use a
new blinded signing key for each 24 hour time period. The fact that
these keys can be precomputed allows offline storage of the master key,
as it is only occacionally needed to precompute another batch of blinded
signing keys.

* The public master key is encoded within the address of the onion service.
Along with an optional secret, which can be used to protect an onion
service with a password, it forms the onion service credential that clients
need to know in order to connect to an onion service.

In order to create a new onion service, the host has to first pick three
introduction points. Any nodes within the Tor network can be picked for this
purpose, by default they are chosen at random. To hide the network location
of the onion service, the host establishes connections to all introduction nodes
via Tor circuits and keeps them open as long as the service persists.

In the next step, a hidden service descriptor is created to inform clients
about the introduction points of a service. Every descriptor is identified by a
blinded public key, which is derived from the hidden service credential and
the shared random value of the current time period. Most of the descriptor
is encrypted, only information needed to store and distribute the descriptor,
like version and lifetime is transferred in plaintext. All other fields, like the
list of introduction points, are encrypted with another key derived from the
hidden service credential and the current time period. If client authentication



Evaluating Dynamic Tor Onion Services 149

is enabled, a second layer of encryption is introduced to ensure that only
selected clients can read the descriptor.

Once the descriptor has been correctly generated, it must be published
so clients can access it. This is done via a distributed hash table (DHT)
split across a subset of Tor nodes referred to as the hidden service directory
(HSDir). The location of the descriptor within the DHT is determined by
hashing the blinded public key, along with the current time period and
the replica number. Replicas are used to distribute descriptors randomly
across the HSDir. Additionally, a spread is defined to upload a descriptor
not only to the single node determined by the location, but also to the
closest nodes within the hash table. So, if one node fails the descriptor
remains reachable. By default, onion services use two replicas and spread the
descriptor over four nodes, resulting in 8 descriptor uploads for every onion
service.

3.1.2 Access to onion services

To connect to an onion service, a client must first know the onion address,
which contains the public part of the master keypair. With that information
(and an optional secret) the hidden service credential can be derived. That
enables the client to calculate the identifier of the service descriptor it is
looking for, by blinding the credential with the current shared random value.
Hashing the blinded key along with the time period and replica number tells
the client the location of the descriptor within the HSDir. By default clients
randomly contact one of the three HSDir nodes closest to the calculated
location.

Any request to the HSDir must be made via Tor to ensure that clients
remain anonymous to the operators of the Tor relays hosting the hidden
service directory. Once clients receive the desired descriptor, they can decrypt
it by deriving the decryption key using the credential and the current time
period.

The client then picks a random node within the Tor network as a ren-
dezvous point and establishes a circuit to this node. Afterwards it connects
to one of the introduction points stated in the descriptor and asks the onion
service to meet at the chosen rendezvous point. The introduction point can
forward the request through the still open circuit maintained by the host
responsible for the onion service. Upon receiving the request, the onion
service creates a circuit to the rendezvous point and has its circuit connected
directly to the circuit of the client. At this point a circuit across six relays
connects the client to the onion service.



150 T Holler et al.

3.2 Privacy issue with onion services

Onion services are essential for a privacy preserving distributed system on
top of the Tor network, because they are the only way to conceal destination
addresses. Without them, devices within the system would have no way
to accept incoming connections making it impossible to form a distributed
network. However, if we assume that devices are accepting incoming con-
nections via Tor onion services, the question arises if the onion addresses
become a new IOI that can be linked. At first glance this seems not to be
the case because onion addresses are never visible to attackers monitoring
the network. Unfortunately, a distributed network on top of Tor has to
assume that devices share their onion address with all other devices making
it effectively public knowledge. That means that attackers would most likely
be able to learn the onion addresses used by specific identity agents, which is
problematic due to an inherent issue of Tor onion services:

Every connection to an onion service requires fetching the current
descriptor from the hidden service directory. So the relays forming the hidden
service directory can now keep track of when and how often an identity agent
is contacted. Instead of monitoring their victims network traffic, attackers
just have to expand resources to become part of the hidden service directory
and they can monitor a random share of onion services every day. Previous
research [2, 12, 21] has demonstrated that this issue can be exploited to
obtain significant information about onion services. From the Tor project
perspective this issue is acceptable, as it does not compromise the anonymity
of the communication partners, which is their primary focus. However, for
an identity system that expects attackers are able to link onion addresses to
identities, information about when and how often an onion service has been
used must be protected.

3.3 Dynamic onion services

One way to avoid onion services from being linked is by creating onion
services dynamically and only using each onion service for a single purpose.
This is possible because onion services can be created without any manual
configuration. Every Tor client connected to the Internet can deploy a fresh
onion service within seconds. Deleting an onion service is even faster, since it
instantly stops working when the circuits to the introduction points are closed.

That makes it possible to dynamically create onion services that are only
used for short periods of time before being discarded. The hidden service
directory only leaks information about specific onion addresses known to



Evaluating Dynamic Tor Onion Services 151

the attacker while information about two different onion addresses remain
unlinkable. While dynamic onion addresses solve one linkability issue, they
introduce a new one: How can we share those short-lived onion addresses
with future communication partners? If they are published, they become
easily linkable for attackers, so this is not an option.

Ideally, there is a secure channel to exchange an initial onion address and
afterwards onion addresses can be rotated by including a new onion address
in every message. If that is not possible, a device could run a static onion
service that can be queried to request an initial onion address that can be
rotated dynamically in the future. This comes with other issues like how to
handle DOS attacks that request an unlimited amount of onion addresses,
but would enable the distribution of onion addresses. Note that while the
initial distribution would be linkable (i.e. an attacker could find out when and
how often addresses are handed out) all future communication would remain
unlinkable.

Another question to ask, is if the Tor network would be able to handle
the additional load introduced by instrumenting onion services in this way. A
positive property of onion services is that they do not require any exit relays,
as their traffic stays within the Tor network. So the part of the Tor network
that is most susceptible to overload can be ignored for our considerations. The
hidden service directory would be hit with a significantly larger amount of
upload requests, but since it is distributed across lots of nodes the additional
load is unlikely to become an issue. What would significantly change is
the amount of onion services existing in parallel, since most players in
a distributed system communicate with more than one party. That in turn
increases the amount of introduction points needed and with it the number of
active circuits. While that definitely puts additional strain on the Tor network,
that load should scale without issues as long as a successful digital identity
system relying on Tor encourages the deployment of additional Tor relays,
this should not be an issue.

Performance problems are more likely to arise when operators try to
deploy onion services dynamically. While Tor does not limit the amount of
onion services a client can deploy, the current implementation refuses to re-
use Tor relays that are already used in an active circuit. At some point all
available relays in the Tor network are used for circuits to introduction points
leaving Tor unable to either connect to a rendezvous point or create additional
onion services. During our testing we confirmed that a Tor client can maintain
more than 100 onion services in parallel without issues. However, when
having to create a new onion service regularly, the creation time of onion



152 T Holler et al.

services turns out to be a problem. Before a client request can be answered, a
new onion services has to be deployed so it can be included in the response.
This effectively increases the latency of a digital identity system that is
already slowed down by sending messages via a six-hop circuit even more
because it has to wait for the new onion service to be deployed.

4 Deployment Time Analysis

To find out if it is feasible for a client to create new onion services dynami-
cally, we need to quantify the negative performance introduced by it. To do
this we measure the time between instructing a host to generate an onion
service and clients being able to access it. Only if this time is sufficiently low,
it may be acceptable to generate onion services on-demand, which is required
to build a digital identity system relying on this feature.

Our measurement setup is inspired by previous work of Loesing et al. [16]
and Lenhard et al. [15], but instead of measuring the time it takes to access
an onion service, we measure the time it takes to create one.

4.1 Measurement Setup

We use the Tor Stem! library to generate onion services. Timing information
is extracted from the log file created by Tor and event listeners attached via
the Stem library. This allows measuring the time of the following events:

* Start connecting to introduction point,

* circuit to introduction point established,
* introduction point ready,

* service descriptor created,

* start upload to HSDir, and

* finish upload to HSDir.

No good solution was found to measure the time it takes Tor to select
introduction nodes when creating a new onion service. It seems reasonable
to assume that this time is insignificant for the overall latency, but it could
be speculated that one host running many onion services could experience
deteriorating performance as Tor does not reuse introduction points?.

Uhttps://stem.torproject.org/
’The official documentation still has an open TODO on picking nodes. However, a review
of the Tor implementation revealed that this is the case.


https://stem.torproject.org/

Evaluating Dynamic Tor Onion Services 153

All our tests were conducted with version 0.4.3.5 of Tor and ran on a
virtual machine running Debian 10, which was monitored to ensure that
no local limitations regarding CPU, bandwidth, latency or memory would
impact our measurements. The Internet connection (1GBit/s, low latency)
was constantly monitored to be working within “normal” parameters, in order
to assure that we do not accidentally measure latency effects or outages
introduced primarily through our own Internet link.

To ensure that measurements do not influence each other, a new Tor
process is completely bootstrapped within a fresh Docker container for every
onion service. Our test system runs one test at a time to avoid different onion
services impacting each other. To mitigate the effects of possible issues with
our Internet connection or the Tor network, tests are conducted in a loop.
Every iteration of the loop tests every configuration once. This loop ran more
than 1500 times over a period of 10 days to obtain a sufficiently large sample
size.

The Docker container specification with our measurement implementa-
tion is available at https://github.com/mobilesec/onion-service-time-measur
ement to enable other researchers to reproduce our measurements.

4.2 Measured Configurations

As already mentioned, onion services are still in development and can,
therefore, currently be deployed in different configurations. To find out if
the method of deployment has an impact on the provisioning time of onion
services, four different types were measured:

1. V2: A V2 onion service with default parameters: Old, no longer recom-
mended version, which was mainly included to enable comparisons with
previous research.

2. V3: A persistent V3 onion service with default parameters.

3. Ephemeral: A V3 onion service with default parameters which can only
be created via the control protocol and will only exist as long as the
control connection to the Tor instance is maintained.

4. Vanguard: A V3 onion service with the Vanguard [22] extension to
harden it against different deanonymization attacks.

4.3 Results

Figure 1 provides a good summary of the results of our analysis. The changes
implemented by V3 of the onion service protocol have significantly improved


https://github.com/mobilesec/onion-service-time-measurement
https://github.com/mobilesec/onion-service-time-measurement

154 T Holler et al.

I+I I%I Iﬂ
| TI11

T
V2

Provision time in s

T T
Ephemeral Vanguard

Figure 1 Overview of provisioning times.

deployment times from about half a minute to less than 10 seconds. There
are no significant differences between normal and ephemeral onion services,
which is no surprise considering that the only difference between those is
the persistence of cryptographic keys on disk. The Vanguard extension also
shows no significant changes in provisioning time, which is unexpected
because modifying Tor’s behavior via the control protocol should actually
cause a performance overhead, but is apparently not relevant for our measured
scenario.

4.3.1 Provisioning stages
A potentially interesting explanation for the significant differences in pro-
visioning times between V2 and V3 is provided by Figure 2. It splits the
provisioning into three stages:

1. The time it takes the host to establish the introduction points for the
onion service,

2. the time it takes to generate a descriptor for uploading after introduction
nodes have been established, and

3. the time it takes to actually upload the descriptor.

The first fact to note here is that V2 onion services appear to take much longer
to generate their service descriptors. Since there was no obvious reason for
such a significant performance difference, we investigated the source code
and found that the current implementation of Tor V2 onion services waits
30 seconds before uploading a descriptor. There is no explanation in the
specification [26] as to why this delay is necessary and the source code only



Evaluating Dynamic Tor Onion Services 155

EEm Establish Intro Nodes
+ Building Descriptors

30 A B Uploading Descriptors

35 A

25

204

15 A

Duration in seconds

10 A

; o

o T y y T
V2 V3 Ephemeral Vanguard

Figure 2 Composition of provisioning times.

comments that the delay is introduced to ensure that the descriptor is stable.
Since V2 onion services are going to be disabled in October 2021 [28], we
did not spend additional time on analyzing this issue.

Figure 2 also reveals other less obvious, but interesting, aspects. For
example, it confirms a suspicion that is hard to verify on the logarithmic scale
of Figure 1, namely the fact that for V2 onion services, upload times have not
only less impact on the total provisioning time, but are also lower in absolute
numbers. The exact reasons for this behavior is analyzed in Section 4.3.2.

Another interesting observation is the fact that establishing introduction
nodes is insignificant to the provisioning time of an onion service across
all configurations. This observation is however not fully correct because as
already mentioned all our measurements were conducted with fully boot-
strapped Tor instances. During the bootstrapping process, several circuits
(in our experiments we encountered between 2 and 15 circuits during boot-
strapping) are prepared, so they can be used for later connections. In our
setup, these circuits are always used to connect to introduction points, so our
measured time for the creation of introduction points does not include the
circuit creation time. Since Tor already collects detailed metrics on circuit
creation time [30], there was no reason to analyze them ourselves.

What is worth noting, is that the Vanguard plugin almost doubles the
introduction node building time, without impacting the overall provisioning
time. At first glance, this seems to imply that Vanguard is actually decreasing
the descriptor creation time, which is unlikely considering the fact that
Vanguard makes no changes to service descriptors. Instead, the difference is



156 T. Holler et al.

caused by the fact that the generation and derivation of all keys required for
creating a service descriptor take a constant amount of time and can already
start before the introduction points have been selected. We verified this by
deploying onion services with 10 introduction points. Naturally, they needed
more time to establish their introduction points, but they still finished creating
their descriptors at the same time as services with only three introduction
points. This shows that the time needed to establish introduction points is
currently irrelevant for the provisioning time of an onion service.

Our final observation is that the descriptor upload is the most significant
factor for total provisioning time in current onion service configurations, so
we look at them in more detail.

4.3.2 Descriptor upload times

Our results for descriptor upload times have to be put in context to be
understood further: Every onion service uploads its descriptor to several
nodes on the hidden service directory. The number can be configured by
each service, but the defaults are three nodes for V2 descriptors and four
nodes for V3. Both are uploaded in two replicas, so in total there are 6 and
8 uploads. Additionally, the V3 onion service specification requires them to
always be valid in two time periods, the previous one and the current one. So
when creating a new V3 service from scratch (as done by our test setup) 16
descriptors are uploaded initially.

When Tor clients try to access an onion service, they use their current time
period. The previous one is only uploaded to avoid synchronization issues
with clients that are still in the previous time period. Tor clients randomly pick
one out of only three nodes from one of the two replicas. The fourth upload
in V3 is only there to handle situations where a HSDir node goes offline.
This means that a single upload could be sufficient to allow an incoming
connection. Unless there are any issues with synchronization or failing nodes,
six uploads already enable full connectivity. Our measurement setup was not
designed to take this into account. Instead, we assume that a descriptor has
been successfully published when half of all uploads (3 for V2 and 8 for V3)
have been completed. The upload time in Figure 2 shows how long it took on
average to complete half of all uploads. This decision removes the impact of
very slow uploads and tries to find a middle ground between trying to find the
earliest time when connections are possible and the time when connections
are almost certain to succeed without retries.

Figure 3 shows the duration of individual descriptor uploads. The major-
ity of upload requests finish in less than 5 seconds and almost all uploads



Evaluating Dynamic Tor Onion Services

16000 4

14000

12000 4

10000 4

8000

Number of uploads

6000

4000 4

2000 4

")

V]
Ephemeral

B Vanguard

da

T
0 20 40 60

T
80

Upload time in seconds

T
100 120

Figure 3 Time it took individual uploads to complete.

5000 A

Number of uploads
(%% 5
(=] [=]
(= (=]
S S
1 L

N

=]

=]

o
L

1000 4

[T

. V3
Ephemeral

B vanguard

0- =
Y] 2 4

6

Duration of upload (with established circuit) in seconds

Figure 4 Time to upload descriptor via established circuit.

157

complete after 20 seconds. A noteworthy result of our measurement is an
unexpectedly high number of upload requests that take between 100 and
105 seconds, which occurs for all measured configurations, but happens less
often for onion services with the Vanguards extension. To further analyze
this behavior we conducted a second smaller experiment by running the loop
only 500 times and additionally tracking the time when upload circuits were
completed. This allows us to split the upload time into the time it took to
create a circuit and the time it took to actually upload the descriptor.

Figure 4 shows that plain uploads hardly ever exceed five seconds
and even the slowest single upload we measured only took 12 seconds to



158 T Holler et al.

"%}
7000 4 . V3
Ephemeral

6000 4 B Vanguard
)
S 5000 4
o
a
=
5 4000 4
o
o
=}
E 3000
=
=

2000 +

1000 +

ol M. ‘ : : 4 :
0 20 40 60 80 100 120

Upload circuit build time in seconds

Figure 5 Time to create upload circuit.

complete. The unexplained 100 second delay is only present in the circuit
creation time. This makes sense because this delay only happens when Tor
fails to open a circuit to a hidden service directory. In this case a 100
second timeout occurs before another attempt is made. This also explains
why Vanguards has a positive effect on this issue. It selects a subset of
candidate nodes for the second and third hop of a circuit and tries to reduce
the risk of picking a malicious node. Apparently, this also reduces the risk
of picking nodes, that cause circuit creation attempts to fail, increasing the
overall performance and reliability.

Another interesting result in this context is the fact that some circuits
fail again after this 100 second timeout. In this case Tor does not wait and
try for a third time, but instead abandons the upload attempt entirely. This
does not result in any error displayed to the user, because the onion service
concept is redundant and a single failed upload has no significant impact on
the availability of an onion service. During our experiments we experienced
an upload failure rate of about 1% for upload requests without Vanguard and
a failure rate of about 0.8% for uploads with Vanguard.

Figure 4 confirms that V2 descriptors are published faster than V3, which
is most likely caused by the much larger descriptor size in V3. Figure 6
provides a zoom-in on circuit build times below 8 seconds to facilitate
comparison with Figure 4 and shows that the circuit creation time has
more impact on how long it takes to publish a descriptor than the actual
upload. An interesting observation is that our results seem to indicate that
V2 upload circuits are created faster than V3 upload circuits. This effect
is again caused by the fact that our Tor binaries were fully bootstrapped



Evaluating Dynamic Tor Onion Services 159

2500 A . 2
| IAVE]
Ephemeral

BN Vanguard

2000 A

1500

1000 1

Number of uploads

500

0 2 4 6 8
Upload circuit build time in seconds

Figure 6 Zoom-in on uploads circuit build times below 8 seconds.

before any measurements were conducted, which allows Tor to cannibalize
general circuits for uploads if there are any available. Since cannibalization
is much faster than creating a circuit from scratch, this means that some
upload circuits can be created faster than the rest. The lower number of
uploads in the V2 onion service specification increased the relative impact
of these cannibalized circuits, creating the impression that V2 upload circuits
are created faster. Unfortunately, we could not properly quantify the impact
of this issue, so we cannot say if there are any other factors contributing to
the increased circuit creation time in V3.

5 Conclusion

In this article we discussed how network unlinkability can be defined for
a privacy preserving distributed digital identity system. Evaluating several
projects that try to provide anonymity on a network level led us to identify
that the Tor project is the most suited platform to build upon. We suggested
a concept that achieves the required network unlinkability by dynamically
creating and removing onion services, making it impossible for an attacker to
link them together.

Furthermore, we present one essential building block for instrumenting
onion services dynamically, an in-depth investigation into the deployment
times of onion services. At the moment the process of creating a new onion
service takes about 5 seconds. This is clearly too much to dynamically create
onion services on the fly. Since the majority of time is spent creating circuits



160 T. Holler et al.

and timing is irrelevant for static onion services, it is unlikely that this number
will improve in the near future.

However, there are two potential strategies to make dynamic onion ser-
vices viable in practical applications. If the need for new onion addresses is
predictable, clients could set them up in advance so they can hand them out
when necessary. As long as onion services can be generated fast enough to
always have some available, this effectively removes the latency impact of
having to create onion services. Alternatively, clients could try to exchange
service descriptors directly, instead of exchanging onion addresses. This
would be interesting because the majority of onion service deployment time
is spent on uploading descriptors to the hidden service directory. Removing
this step would cut the onion service creation time down to about 1 second
and also improve the time it takes the client to connect, because it does not
need to fetch the service descriptor from the hidden service directory.

While it is still unclear at this point in time, which kind of digital identity
systems will turn out to be the most successful, addressing the issue of
network unlinkability is definitely one of the challenges that supporters of
distributed digital identity systems must address. Our contribution highlights
this challenge and provides some ideas how system designers might be able
to overcome this issue.

Acknowledgments

This work has been carried out within the scope of Digidow, the Chris-
tian Doppler Laboratory for Private Digital Authentication in the Physical
World. We gratefully acknowledge financial support by the Austrian Federal
Ministry for Digital and Economic Affairs, the National Foundation for
Research, Technology and Development and the Christian Doppler Research
Association, 3 Banken IT GmbH, Kepler Universititsklinikum GmbH, NXP
Semiconductors Austria GmbH & Co KG, and Osterreichische Staatsdruck-
erei GmbH and has partially been supported by the LIT Secure and Correct
Systems Lab funded by the State of Upper Austria..

References

[1] James Ball, Bruce Schneier, and Glenn Greenwald. Nsa and gchq target
tor network that protects anonymity of web users. https://www.thegua
rdian.com/world/2013/oct/04/nsa-gchq-attack-tor-network-encryption,
2013.


https://www.theguardian.com/world/2013/oct/04/nsa-gchq-attack-tor-network-encryption
https://www.theguardian.com/world/2013/oct/04/nsa-gchq-attack-tor-network-encryption

Evaluating Dynamic Tor Onion Services 161

[2] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. Trawling
for Tor Hidden Services: Detection, Measurement, Deanonymization. In
Proceedings of the 2013 IEEE Symposium on Security and Privacy, SP
’13, page 80-94, USA, 2013. IEEE Computer Society.

[3] Jan Camenisch and Els Van Herreweghen. Design and Implementation
of the Idemix Anonymous Credential System. In Proceedings of the 9th
ACM Conference on Computer and Communications Security, CCS ’02,
page 21-30, New York, NY, USA, 2002. Association for Computing
Machinery.

[4] Chen Chen, Daniele E. Asoni, David Barrera, George Danezis, and
Adrain Perrig. Hornet: High-speed onion routing at the network layer.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS 15, page 1441-1454, New York, NY,
USA, 2015. Association for Computing Machinery.

[5] A. Cooper, H. Tschofenig, B. Aboba, J. Peterson, J. Morris, M. Hansen,
and R. Smith. Privacy Considerations for Internet Protocols. RFC 6973,
2013.

[6] Roger Dingledine. Next Generation Tor Onion Services. DEF CON 25,
2017.

[7] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The
second-generation onion router. In Proceedings of the 13th USENIX
Security Symposium. USENIX Association, 2004.

[8] European Comission. eHealth and COVID-19. https://ec.europa.eu/hea
Ith/ehealth/covid-19_en, 2021.

[9] Mengle Gautam. Major Aadhaar data leak plugged: French security
researcher. https://www.thehindu.com/sci-tech/technology/major-a
adhaar-data-leak-plugged-french-security-researcher/article26584981.
ece, 2019.

[10] David Goldschlag, Michael Reed, and Paul Syverson. Onion routing.
Communications of the ACM, 42(2):39-41, 1999.

[11] Government of India. Unique Identification Authority of India. https:
/luidai.gov.in/, 2009.

[12] Tobias Holler, Michael Roland, and René Mayrhofer. On the state of V3
onion services. In Proceedings of the ACM SIGCOMM 2021 Workshop
on Free and Open Communications on the Internet (FOCI °21), pages
50-56. ACM, August 2021.

[13] I2P. The Invisible Internet Project. https://geti2p.net/, 2021.


https://ec.europa.eu/health/ehealth/covid-19_en
https://ec.europa.eu/health/ehealth/covid-19_en
https://www.thehindu.com/sci-tech/technology/major-aadhaar-data-leak-plugged-french-security-researcher/article26584981.ece
https://www.thehindu.com/sci-tech/technology/major-aadhaar-data-leak-plugged-french-security-researcher/article26584981.ece
https://www.thehindu.com/sci-tech/technology/major-aadhaar-data-leak-plugged-french-security-researcher/article26584981.ece
https://uidai.gov.in/
https://uidai.gov.in/
https://geti2p.net/

162 T Holler et al.

[14] International Organization for Standardization. Personal identifica-
tion — ISO-compliant driving licence — Part 5: Mobile driving licence
(mDL) application. Standard ISO/IEC TR 29110-1:2016, Geneva, CH,
2016.

[15] Jorg Lenhard, Karsten Loesing, and Guido Wirtz. Performance Mea-
surements of Tor Hidden Services in Low-Bandwidth Access Networks.
In Applied Cryptography and Network Security, pages 324-341, Berlin
Heidelberg, 2009. Springer.

[16] Karsten Loesing, Werner Sandmann, Christian Wilms, and Guido Wirtz.
Performance Measurements and Statistics of Tor Hidden Services. In
2008 International Symposium on Applications and the Internet, pages
1-7, Turku, Finland, 2008. IEEE.

[17] Even MacAskill, Julian Borger, Nick Hopkins, Nick Davies, and James
Ball. GCHQ taps fibre-optic cables for secret access to world’s commu-
nications. https://www.theguardian.com/uk/2013/jun/21/gchq-cables-s
ecret-world-communications-nsa, 2013.

[18] Andre Meister. How the German Foreign Intelligence Agency BND
tapped the Internet Exchange Point DE-CIX in Frankfurt, since 2009.
https://netzpolitik.org/2015/how-the-german-foreign-intelligence-age
ncy-bnd-tapped-the-internet-exchange-point-de-cix-in-frankfurt-since
-2009/, 2015.

[19] Iynkaran Natgunanathan, Abid Mehmood, Yong Xiang, Gleb Beliakov,
and John Yearwood. Protection of privacy in biometric data. /IEEE
Access, 4:880-892, 2016.

[20] Open Privacy Research Society. cwtch. https://cwtch.im/.

[21] Gareth Owen and Nick Savage. Empirical analysis of Tor Hidden
Services. IET Information Security, 10(3):113-118, 2016.

[22] Mike Perry. The Vanguards Onion Service Addon. https://github.com
/mikeperry-tor/vanguards.

[23] Khaira Rachna. Rs 500, 10 minutes, and you have access to billion Aad-
haar details. https://www.tribuneindia.com/news/archive/nation/rs-500-
10-minutes-and-you-have-access-to-billion-aadhaar-details-523361,
2018.

[24] Manu Sporny, Dave Longley, and David Chadwick. Verifiable Cre-
dentials Data Model 1.0. https://www.w3.org/TR/vc-data-model/,
2019.

[25] Aaron Swartz. Securedrop. https://github.com/freedomofpress/securedr

op.


https://www.theguardian.com/uk/2013/jun/21/gchq-cables-secret-world-communications-nsa
https://www.theguardian.com/uk/2013/jun/21/gchq-cables-secret-world-communications-nsa
https://netzpolitik.org/2015/how-the-german-foreign-intelligence-agency-bnd-tapped-the-internet-exchange-point-de-cix-in-frankfurt-since-2009/
https://netzpolitik.org/2015/how-the-german-foreign-intelligence-agency-bnd-tapped-the-internet-exchange-point-de-cix-in-frankfurt-since-2009/
https://netzpolitik.org/2015/how-the-german-foreign-intelligence-agency-bnd-tapped-the-internet-exchange-point-de-cix-in-frankfurt-since-2009/
https://cwtch.im/
https://github.com/mikeperry-tor/vanguards
https://github.com/mikeperry-tor/vanguards
https://www.tribuneindia.com/news/archive/nation/rs-500-10-minutes-and-you-have-access-to-billion-aadhaar-details-523361
https://www.tribuneindia.com/news/archive/nation/rs-500-10-minutes-and-you-have-access-to-billion-aadhaar-details-523361
https://www.w3.org/TR/vc-data-model/
https://github.com/freedomofpress/securedrop
https://github.com/freedomofpress/securedrop

Evaluating Dynamic Tor Onion Services 163

[26] The Tor Project. Tor Rendezvous Specification. https://github.com/tor
project/torspec/blob/master/rend-spec-v2.txt.

[27] The Tor Project. Tor Rendezvous Specification — Version 3. https://gith
ub.com/torproject/torspec/blob/master/rend-spec-v3.txt.

[28] The Tor Project. Onion Service version 2 deprecation timeline. https:
//blog.torproject.org/v2-deprecation-timeline, 2020.

[29] The Tor Project. The Tor Project. https://www.torproject.org/, 2021.

[30] The Tor Project. Tor Metrics. https://metrics.torproject.org, 2021.

[31] Srinath Vudali. Aadhaar details of 7.82 crore from Telangana and
Andhra found in possession of IT Grids (India) Pvt Ltd. https://time
sofindia.indiatimes.com/city/hyderabad/aadhaar-details-of-7-82-crore-
from-telangana-and-andhra-found-in-possession-of-it-grids-india-pvt-
Itd/articleshow/68865938.cms, 2019.

Biographies

Tobias Holler is currently a university assistant and PhD candidate at
the Institute of Network and Security at Johannes Kepler University Linz.
He obtained his Master’s degree at Johannes Kepler University Linz.
His research interests are onion routing (specifically Tor) and digital identity
systems.


https://github.com/torproject/torspec/blob/master/rend-spec-v2.txt
https://github.com/torproject/torspec/blob/master/rend-spec-v2.txt
https://github.com/torproject/torspec/blob/master/rend-spec-v3.txt
https://github.com/torproject/torspec/blob/master/rend-spec-v3.txt
https://blog.torproject.org/v2-deprecation-timeline
https://blog.torproject.org/v2-deprecation-timeline
https://www.torproject.org/
https://metrics.torproject.org
https://timesofindia.indiatimes.com/city/hyderabad/aadhaar-details-of-7-82-crore-from-telangana-and-andhra-found-in-possession-of-it-grids-india-pvt-ltd/articleshow/68865938.cms
https://timesofindia.indiatimes.com/city/hyderabad/aadhaar-details-of-7-82-crore-from-telangana-and-andhra-found-in-possession-of-it-grids-india-pvt-ltd/articleshow/68865938.cms
https://timesofindia.indiatimes.com/city/hyderabad/aadhaar-details-of-7-82-crore-from-telangana-and-andhra-found-in-possession-of-it-grids-india-pvt-ltd/articleshow/68865938.cms
https://timesofindia.indiatimes.com/city/hyderabad/aadhaar-details-of-7-82-crore-from-telangana-and-andhra-found-in-possession-of-it-grids-india-pvt-ltd/articleshow/68865938.cms

164 T Holler et al.

Michael Roland is a post-doc researcher at the Institute of Networks and
Security at Johannes Kepler University (JKU) Linz, Austria. He is also a
lecturer at the University of Applied Sciences Upper Austria in Hagenberg.
His main research interests are digital identities, NFC, smart cards, and
wireless technologies with focus on security and privacy. He holds a B.Sc.
and a M.Sc. degree in Embedded Systems Design (University of Applied
Sciences Upper Austria, 2007 and 2009) and a Ph.D. (Dr. techn.) degree in
Computer Science (Johannes Kepler University Linz, Austria, 2013).

René Mayrhofer is currently heading the Android Platform Security team at
Google and tries to make recent advances in usable, mobile security research
available to the Billions of Android users. He is on leave from the Institute of
Networks and Security at Johannes Kepler University Linz (JKU), Austria,
where he continues to supervise PhD and Master students. His research
interests include computer security, mobile devices, network communication,
and machine learning, which he currently brings together in his research on
securing mobile devices.



	Introduction
	Network Unlinkability
	Items of Interest
	Attackers
	Implications

	An Unlinkable Distributed Network via Tor
	Tor
	Creation of onion services
	Access to onion services

	Privacy issue with onion services
	Dynamic onion services

	Deployment Time Analysis
	Measurement Setup
	Measured Configurations
	Results
	Provisioning stages
	Descriptor upload times


	Conclusion

