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Abstract

In this day and age, Internet has become an innate part of our exis-
tence. This virtual platform brings people together, facilitating information
exchange, sharing photos, posts, etc. As interaction happens without any
physical presence in the medium, trust is often compromised in all these
platforms operating via the Internet. Although many of these sites provide
their ingrained privacy settings, they are limited and do not cater to all
users’ needs. The proposed work highlights the privacy risk associated with
various personally identifiable information posted in online social networks
(OSN). The work is three-facet, i.e. it first identifies the type of private
information which is unwittingly revealed in social media tweets. To prevent
unauthorized users from accessing private data, an anonymous mechanism is
put forth that securely encodes the data. The information loss incurred due
to anonymization is analyzed to check how much of privacy-utility trade-off
is attained. The private data is then outsourced to a more secure server that
only authorized people can access. Finally, to provide effective retrieval at
the server-side, the traditional searchable encryption technique is modified,
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considering the typo errors observed in user searching behaviours. With all
its constituents mentioned above, the purported approach aims to give more
fine-grained control to the user to decide who can access their data and is the
correct progression towards amputating privacy violation.

Keywords: Data anonymization, social media privacy, secure searchable
encryption, personally identifiable information.

1 Introduction

The dawn of various social media channels has revolutionized the internet
landscape by making global networking reach every home. Today, connecting
to people worldwide living in different time zones is a matter of a few
seconds. Online Social Networks (OSN) has become a mass phenomenon in
the early 20th century due to their new cost-effective radical way of sharing
interests and activities. Mark Zuckerberg, the creator of Facebook, was once
quoted saying that the appeal of social networks comes from the fact that it
offers a way to “stay connected” with others.

A classic OSN offers its users a simulated environment, governed by
their policies, to share their data, make and interact with friends. Users can
also share data in their friends’ space or tag another user providing a link to
his personal virtual space in their profile. The two stakeholders in Online
Social Network privacy are; the users who share information and OSN,
which manages users’ accounts online and is responsible for providing good
continuous services. OSN functionality can be categorized in the following
fashion [1]:

• The networking functions enable users to cultivate relationships in the
virtual scenario.

• User-provided content and interactions fall under data functions. Some
of these contents include personally identifiable information such as
birthday, email, phone number, bio, marital status, etc. [2].

• Access control functions regulate and administer user-defined privacy
settings and rules.

However, with all these advantages, there are rising concerns observed
in the privacy and protection of personal data. Threat to privacy can be
categorized in the following manner [3, 4]:

• Privacy Breach: Gathering crucial information about a person such as
personally identifiable information, connections between people, etc.
and exploiting them.
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Figure 1 Effects of disclosure of sensitive information on data privacy [5].

• Passive Attack: Undetectable attacks are primarily made for research
and advertising purposes.

• Active Attacks: Exploiting friendship links of users and other potentially
harmful information to cause harm.

Some of the effects of such disclosures are listed in Figure 1.
All such activities have elevated the level of risk and have made users

vulnerable to any malicious manipulation [6, 7]. Often the existing OSN
regulatory mechanisms fail to cater to users’ requirements, and so studies
on determining trust while anonymizing sensitive data in OSN have gained
the interest of many researchers worldwide.

Anonymization of data involves the techniques of making the data incog-
nito so that private information can no longer be identified [8]. It is defined
as encrypting or removing personally identifiable information detected in the
dataset, thus concealing the people’s identity. This technique eliminates any
attempt to re-identify the personal data that has been made indiscernible to
the end user’s eyes.
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Anonymization techniques can be categorized broadly as [9]:

• Generalization: Deals with replacing the actual value with a higher-order
magnitude value.

• Randomization: Obscuring the actual values by the addition of noise.

Pseudonymization is different from anonymization as the sensitive parts
of the data here are replaced so that the private information can be re-
identified using an appropriate additional identifier.

In the proposed research, the following operations are incorporated:
masking with hash values, masking with fake data and obfuscating the
attributes via differential privacy. The contributions offered by the proposed
work can be summarized as follows. A framework that employs machine
learning classifiers to detect PII or any sensitive data revealed in the tweets
is designed. A computationally efficient module is hypothesized to encipher
such crucial data ensuring semantic coherence of the sentence.

The following sections detail recent studies in the related domain in
Section 2; proposed methodology in Section 3; result analysis, discussions,
and conclusion in Sections 4, 5 and 6.

2 Related Works

2.1 Data Anonymization

A growing body of literature is available in the domain of data anonymiza-
tion. A few of the key most relevant works are listed below.

An increasing number of works has been conducted in anonymiz-
ing geospatial data of users. In one such notable study, authors, Hasan-
zadeh et al. [10] (2020) presented an anonymization technique comprising
k-anonymity and Gaussian displacement algorithm. The main limitation of
this work is a failure against background knowledge attack even if the records
are made ‘k’ indiscernible. Stricter anonymization policies must be put forth
to achieve the privacy of sensitive information such as medical data.

Lisin and Zapechnikov (2020) [11] discussed two main approaches
to privacy-preserving machine learning (cryptographic and perturbation),
together with examples of how to use some of these methods in practice.

Gaur (2020) [12] focused on the critical challenges faced by ERP com-
panies while training machine learning models on private enterprise data.
The work examines the role of anonymization and differential privacy in
protecting sensitive data. The work does not, however, consider sensitive
political and religious data. In our work, we adapted the algorithms on the
basis of the author’s observations.
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Siddula et al. (2019) [13] introduced a clustering-based anonymization
method which ensures identity, contacts and attribute privacy by implement-
ing a k-anonymity on the users sharing similar attributes. The proposed work
ensures sensitive attribute privacy through improved l-diversity. Although
innovative, the method can be however be enhanced by incorporating ways
to reduce inter-cluster distance. This can be achieved by filtering an outright
number of users in a cluster based on the right attribute combination.

A fundamental problem in a generalization-based method is replacing the
actual value by over fitted/under fitted intervals. Abdul Majeed (2019) [14]
outlined a classical approach wherein users are grouped based on their
similarity, ranking them into appropriate equivalence classes with proper
attribute range analysis. The author substituted numerical and categorical
values with their right counterpart mean and IDs. However, the important
limitation observed in this study was that it was limited to only a few
sensitive attributes. Taking into account multiple diverse characteristics and
their interrelationships can be a notable research direction in future.

Experiments to improve two-party secure computing protocol using
a hybrid technique involving association rule mining and homomorphic
encryption were put forth by authors Ouyang and Huang (2019) [15]. Unfor-
tunately, appropriate qualitative analysis is not performed on encrypted data
to analyze its utility. The lack of optimization protocols in such a computa-
tionally intensive multiparty scenario is a major flaw of their experiment.

M. Dias, A. Abad and I. Trancoso (2018) [16] focused on creating
privacy-preserving techniques in the context of a speech emotion recognition
task as a proof of concept that might be applied to other speech analytics
projects. The proposed work used homomorphic encryption and distance-
preserving hashing techniques to successfully protect sensitive data with
minimal degradation costs in terms of predictive model accuracy. Although
very effective, the proposed method is computationally demanding. Authors
recommend the implementation of intricate classifiers based on differential
privacy to further their research.

Authors Wei et al. (2018) [17] investigated the pitfalls of various data
protection methods in social media. They put forth an innovative amalga-
mation. The HHGA-RBF neural network algorithm examined the security
state in OSN, followed by SVM pre-processing the data, ABES encrypt-
ing, and finally, PSO improving the security circumstances. The highly
comprehensive method put forth by the authors proved computationally more
efficient than classic encryption techniques. The technique proved to be more
robust than traditional techniques in terms of information loss and privacy
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protection. The authors have outlined the possible future ventures, such as
incorporating graphical and chaotic encryption to further their study.

In their research, authors Macwan and Patel [18] (2018) tried to coun-
teract the Mutual friend’s attack by proposing an improvement to the k-
anonymity method. Their graph modification technique added more edges
to modify the structural information between the nodes while ensuring that
the number of vertices remained the same as the original data set. To further
their research, the authors plan to propose the solution to the neighbourhood
attack too.

In their analysis, the author’s Yuan et al. [19] (2013) claimed that most
of the existing graph modification techniques distort the graph properties
by insertion/deletion of edges. To address this issue, the authors proposed
a method to introduce noise nodes to provide anonymity. There is still a
possibility of achieving a better trade-off between the number of introduced
noise nodes and the amount of anonymization reached.

2.2 Differential Privacy

More work on the potential of differential privacy as a critical component
in user identity protection has been carried out lately. However, its scope in
obfuscating sensitive node attributes is vastly left unexplored.

Huang et al. (2020) [20] traced the advances of application of differential
privacy for preserving privacy in their work. They proposed a combination of
differential privacy with randomness and clustering to balance data availabil-
ity and the right level of protection. The complexity of the approach, however,
poses a considerable challenge in its applicability in large networks.

N. Wu et al. [21] (2019) applied machine learning to private data owned
by multiple distributed owners. The authors achieved an excellent optimiza-
tion in their technique and focused our attention on the difference observed
in the fitness of a model when trained with differentially private queries. The
authors recommend further studies in the same domain targeting adversarial
learning scenarios.

For the apt application of Differential Privacy Library, Holohan et al.
(2019) in [22] aided us in correctly understanding the foundations of dif-
ferential privacy and its various application scenarios. This work’s main
contribution is to provide a unified code base that can be used for future works
in the domain.

Experiments conducted by Triastcyn and Faltings (2019) [23] put forth a
cutting-edge method that was able to train faster, not susceptible to outliers
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and achieved good privacy with very little noise addition. Their proposed
Bayesian approach was, however, proven effective only for finite datasets.

Xu et al. [24] (2019) implemented fairness aware fusion of differential
privacy and logistic regression to achieve similarity amongst protected and
unprotected groups. To some extent, our approach was inspired by this
combination. The proposed method was able to acquire good data utility.
However, based on the sensitivity of the attribute, different noise coefficients
can be added to achieve varying levels of privacy.

2.3 Secure Searchable Encryption

Chen et al. (2020) [25] incorporated the search mechanism with a memorable
user password. Although this method was proven computationally efficient
concerning key management, it increased the design overhead while creating
a distributed architecture to prevent dictionary attacks.

Ahsan et al. (2018) [26] introduced a vigilant scheme against keyword
guessing attacks. In their method, ciphertexts of the search keywords are sent
along with encrypted emails to the server. On receiving the cipher keywords,
the receiver decrypts them and responds with the REST keywords. The
server then stores the REST keywords validated against the trapdoor of the
keyword sent by the receiver to grant access to the relevant emails. Thus,
their method ensures authentication without actually revealing the keyword.
Further, the authors aim to incorporate multiple keywords with fuzzy search
and introduce a ranking mechanism with a priority feature to sort the search
results relevantly.

3 Methodology

A framework to extract and anonymize crucial information while effectively
reducing the computational overhead observed in base symmetric searchable
encryption due to human errors is put forth in the following sections, as
illustrated in Figure 2.

3.1 Data Generation

3.1.1 Extraction of sensitive religious and political data
The proposed work uses ‘Tweepy API’ [27] to extract the latest tweets to gen-
erate a religious and political data-sensitive corpus. Tweets are scraped from
the site to construct the needed database using relevant hashtags pertaining to
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Figure 2 Overall methodology.

religion and politics. Two thousand five hundred tweets are extracted for both
politics and religion. This database is labelled as sensitive data.

3.1.2 Generation of private data
Since it is tough to get hold of any openly available private database, the
proposed work uses faker [28] to generate fake sensitive texts. A compre-
hensive database with text data is developed having personal and confidential
information like Name, Address, Social Security Number, Email, Credit Card
Number, Phone Number, Date of Birth and Home Address [29]. A database of
9000 rows is generated containing personal, private data. This data is labelled
as private data.

3.1.3 Data fusion
The above generated two databases are combined with 1500 data entries that
contain text data, which are neither private nor sensitive. These entries are
labelled as None. Finally, we have a database with text data with three types
of data (as shown in Figure 3). The dataset includes text data embedded
with sensitive religious/political data, text data with personally identifiable
information, and text data devoid of any sensitive or confidential information.

3.1.4 Sentiment association
The proposed work uses Valence Aware Dictionary for Sentiment Reasoning,
or Vader [30] for associating a positive or negative sentiment to the text
database created. Sentiments give the actual impression of the person on a
particular topic.
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Figure 3 Data set generation.

 
Figure 4 Pipeline to identify and extract sensitive contents.

3.2 Identify and Extract Sensitive and Private Contents

3.2.1 Identification of data type
This segment emulates the process that an organization can use to identify
which data in the database are private or sensitive to be processed accordingly
before being outsourced. The proposed work exercises machine learning
models to classify the data based on training them using the text dataset of
the target variable’s data type, as shown in Figure 4.

3.2.2 Pre-processing
Before implementing the classification algorithms, pre-processing is carried
out on the prepared dataset. Any HTML tags, English stop words or non-
alphabetic characters that may be in the dataset are removed. For uniformity,
all of the text is also converted to lowercase. Finally, the proposed work
applies the Term Frequency-Inverse document frequency (TF-IDF) vectorizer
followed by lemmatization to the data. The vectorizer lets us obtain a set
of features, whereas lemmatization helps decrease the number of redundant
features in the set.
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3.2.3 Methodology and implementation of classification of data
type

The dataset is divided into training and test sets. We implement five classifica-
tion models - Random Forest, Support Vector Classifier, Logistic Regression,
Decision Tree and XGB Classifier to classify the data as either private
information, sensitive information, or neither.

3.2.4 Extraction of private/sensitive data
A module is developed which, when presented with a text categorized as
Sensitive/Private text [31], can identify the exact private and personal infor-
mation embedded in the text. The module uses regex functions and named
entity recognition techniques to extract the relevant categories of confidential
data. This extracted information will be essential for the future modules of
the methodology for masking this information for the data mining tasks.

3.3 Anonymization/Pseudonymization Techniques

3.3.1 Differential privacy
An algorithm is differentially private [22]; if the person’s PII contribut-
ing to the output cannot be inferred. Differential privacy is proven to
be efficient against background knowledge attacks. This has proven most
effective against probing researchers by facilitating them to unearth the
patterns in OSN users’ behaviour while obscuring the information about each
individual’s records.

An algorithm A is ε-differentially private if and only if:

Pr[A(D) = x] ≤ e∧(ε) ∗ Pr[A(D′) = x] (1)

Extrapolating this concept, our model (as shown in Figure 5) aims to
take the private data that individuals may unknowingly put on their social
media feeds, anonymize it and replace it with certain randomized fake data
(by adding noise) while maintaining coherence, and then send it back, thereby
preserving any private information about the individual that could potentially
be misused.

The proposed work uses the Diffprivlib [22] library by IBM to provide
an easy and efficient medium to explore the impact of differential privacy
on machine learning accuracy while performing classification. The effect
of differential privacy is studied on the Logistic Regression model after the
textual data is cleaned, lemmatized, and vectorized, making it fit for training.
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Figure 5 Differential privacy pipeline.

3.3.2 Anonymization using fake data
The proposed work anonymises sensitive textual information by masking it
with fake system-generated texts to protect the user’s confidential information
from external threats. The proposed work uses artificial data generation for
hiding the original private data to protect them. Faker API [28] generates
the simulated data corresponding to the PII while maintaining the sentence’s
logical coherence.

3.3.3 Pseudonymization using hashing
A cryptographic hash function is a mathematical process that returns a fixed-
size bit string from an arbitrary data block. This technique can be used for
various security-related tasks, including file comparison, blockchain verifi-
cation and hiding sensitive data. The proposed work uses SHA256 as the
cryptographic hashing function to mask the identified private data in the text,
thus making reverse engineering or detection impossible. Since the hash value
is unique for each text-only authorized users with correct keys can decipher
the text.

3.4 Searchable Symmetric Encryption

Encryption or hashing often converts the data into a random format which
makes the search function infeasible. Usually, such texts must be decrypted
overall to aid the search function making it computationally expensive.
Searchable encryption enables searching in the ‘ciphertext format’ with
minimum data leakage.

The masking of the private data is topped off with an architecture of
Searchable Symmetric Encryption (SSE), allowing a party to outsource the
data to another party in a confidential manner while still maintaining the
ability for the party to search for an entry selectively. The data is encrypted
locally by the client party and is exported to the service provider (SP), with
the SP having no information about the encryption key.
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Each of the crucial data pertaining to each user is stored in encrypted files
and associated with a set of keywords. To fetch the data file, the authorized
user needs to type the keyword. The server then returns the set of files
bracketed under the inputted keyword. However, an added advantage of this
approach [32] is that in the case of typos in the search query, the server
employs predefined semantic metrics and returns the closest results. The
augmented work uses edit distance to quantify keywords similarity to provide
a secure and privacy-preserving solution.

Edit distance preliminary: The no. of the operations (substitution, deletion or
insertion of a character) needed to transform one word into another is called
edit distance.

Mathematically, the whole process can be represented in the following
fashion:

For n encrypted files in server F-W = (Fa–w1,. . . Fz–wN) where F is the
file name linked to specific keyword w with a pre-determined edit distance d,
if the search input is (wi, k) the server analyses in the following manner:

if wi e F-W then
the server returns the IDS of all Fi associated with wi

else
the server returns the IDS of all Fz wherein ed(wi, wz) ≤ k

3.5 Post Masking Analysis

Figure 6 illustrates the post masking scenario.

Figure 6 Evaluation post anonymization.
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4 Result Analysis and Discussion

The proposed methodology is tested on the created dataset consisting of
private and sensitive data and associated sentiment to check its efficacy and
consistency. After pre-processing and vectorizing the textual contents, the
results obtained from the classification algorithms are recorded to compare
model performances and the applicability of the proposed methodology.
XGBoost, Logistic Regression, Random Forest, Decision Tree and Support
Vector Classifier are used for training the models. The models are trained
on three versions of the database. The models are initially trained to iden-
tify unprotected text data. The models are then trained on the hashed and
pseudonymized versions of the text database. Any differences in the model
performances are studied to discuss the robustness of the method proposed.

4.1 Observations and Illustrations

1. Data Type identification pre and post masking – First, the supervised
models are trained to predict the type of private data the particular textual
sentence entails. The high accuracies obtained by the models indicate the
high efficacy of the data-type identifier and their reliability while trying to
predict the type of private information depicted in the text. Models are then
trained on the secure database with hashed and pseudonymized data. The
results obtained (Figure 7, Tables 1 and 2) show that despite hiding the private
information, the model accuracies can be maintained if the logical coherence
of the textual data can be maintained.

2. Differential Privacy – The effect of differential privacy on the Logistic
Regression model performance is studied in the proposed work. Differential
privacy is first performed on the Logistic Regression model using an epsilon
value of 1.0, indicating a high degree of noise introduced to the private
data. Further experiments are performed for a range of epsilon values to
study the effect of epsilon on the model accuracies and security offered. The
model score (accuracy) depreciates considerably when differential privacy is
incorporated with a low epsilon value. As the epsilon is increased, the model
scores start to increase as the noise introduced decreases. Thus, indicating the
need of reaching the right and required compromise in the accuracy-privacy
trade-off while training the models, as shown in Figures 8 and 9.

3. Modified Secure Searchable Encryption (SSE): Below a sample output for
SSE is illustrated.
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Figure 7 Performance Metrics of Classifiers on Insecure, Fake and Hashed data.
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Table 1 Performance evaluation – Cohen kappa
Random Support Decision Logistic

XGBoost Forest Vector Classifier Tree Regression
Masked with Hash 0.76 0.85 0.778 0.79 0.784
Masked with Fake data 0.487 0.851 0.782 0.8041 0.481

Table 2 Performance evaluation – Mathews correlation coefficient
Random Support Decision Logistic

XGBoost Forest Vector Classifier Tree Regression
Masked with Hash 0.781 0.860 0.765 0.791 0.795
Masked with Fake data 0.553 0.8561 0.7794 0.8041 0.547

 
Figure 8 Effects of Epsilon value on accuracy.

Enter your query: Nepam
A set of fuzzy keywords:
[’*Nepam’, ’*epam’, ’N*pam’, ’Ne*am’, ’Nep*m’, ’Nepa*’, ’Nepam*’]
Searching for results...
Server returned these encrypted file identifiers:
[b’gAAAAABg8Ra wycYudzStA9gk28r7Q4MBOsPjxL2GFRXDiGU c7281P
rqRWvfq4f5aT2OB3Ty kOP78fRhOVggWZoLKzKzcT5w==’,
b’gAAAAABg8RbAmMbAO53mNqLa27IUJLKx8SItUd998dnZYahzAOOGRi
MLWAqQqWwS5rtLDpSpZ3uiPvdnFymGXh68cKVnaAlgPA==’,
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Figure 9 Model accuracy scores with and without differential privacy.

b’gAAAAABg8RbAB40Dw5 1CDXqg5b tVZYvXkr6KW93J7VSoN2sxb0wxb
OVoO4zdkorZo4MZ-vVwKQD3cMUxS7Yq3eOM0wNsdytA==’]
Decrypted file identifiers:
[b’Nepal,0’, b’Nepal,986’, b’Nepal,1044’]
Time required to search 0.00608372688293457

In the above segment the search query “Nepal” was mistyped as
“Nepam”. The algorithm first computes edit distance with the closest key-
word in the list (Nepal) and returns the file identifiers associated with the
keyword. Encryption and Decryption is done with Fernat’s theorem.

4. Assessing the information loss
Most anonymization and pseudonymization techniques involve suppressing
or reducing the level of details provided by the input information. A sig-
nificant challenge for the security team and statistician is striking a suitable
trade-off between the levels of details lost and secured data. The final aim is
to reduce the disclosure risk and minimize the loss at the same time.

To calculate and assess the information loss for textual data anonymiza-
tion, the proposed work uses mean square error, mean absolute and cosine
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Table 3 Information loss values for textual data masked with fake texts
MSE MAE CS
22.359 4.232 0.714

Table 4 Information Loss Values for Textual Data masked with hashed data
MSE MAE CS
9.466 2.6271 0.772

similarity. The metrics mentioned (Tables 3 and 4) are preferred for calculat-
ing the overall information loss for continuous data.

Mean Squared Error (MSE)

1

n

n∑
i=1

(Yi −Xi)
2 (2)

Mean Absolute Error (MAE)

1

n

n∑
i=1

|Yi −Xi| (3)

Cosine Similarity (CS) ∑n
i=1Aix Bi

(
∑n

i=1A
2
i )x(

∑n
i=1B

2
i )

(4)

Where,

• n = number of data points
• Y = Vector representation of Masked/Hashed Text
• X = Vector representation of original text
• A/B are documents which are compared

The proposed model achieves low MSE and MAE scores for the
anonymization task using Fake data. The scores indicate similarity with
the actual textual data and a low loss of details during the anonymization
task. A high cosine similarity score is achieved, indicating a high similarity
between the actual and anonymized texts.

The proposed model achieves lower MSE and MAE scores for the
pseudonymization task using the hash of the sensitive data. The scores
indicate similarity with the actual textual data and a low loss of details during
the anonymization task. An even higher cosine similarity score is achieved,
indicating a high similarity between the actual and anonymized texts.
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4.2 Discussion

The results obtained indicate the efficiency of the proposed methodology for
textual classification tasks on private and sensitive data.

The degree to which change in the datasets offered by differential privacy
is controlled by the ε parameter, which establishes a limit on the change
in the likelihood of any given outcome. It measures the privacy loss owing
to differential changes in data. Accuracy is the measure of closeness of
substituted output with the actual output. The lower epsilon value guarantees
complete privacy (more noise) but fails to give the correspondingly high
model performance scores. The elevated noise introduced to protect and hide
the private information fails to ensure any good semantic coherence between
individual components of the data in the textual corpus, reducing data utility
in the process. The algorithm allows us to set a privacy budget and spend it
as required and necessary through various stages of text processing.

The anonymization techniques adapted perform much better on the data.
These privacy-preserving data mining methods aim to modify the original
data so that the private contents of a user or a group remains screened post-
mining. The performance scores obtained using the classification algorithms
indicated a comparable performance with the models trained without any
masking or interference. The technique used in the proposed work ensures
that the data’s private information is masked with the appropriate security
token to ensure that the logical coherence and overall sentiment of the textual
sentence are retained. The retained logical coherence in the sentence is why
the model performs just as well as the model trained on an unprotected
database. The algorithm strategically only hides the specific components
of the textual data, which, if left exposed, could lead to unavoidable data
breaches.

The proposed work preferred to employ replacement and pseudo-
anonymization techniques over aggregated anonymization methods like
K-Anonymity and L-Diversity due to their relative simplicity and ease of
implementation in a textual context. The existing numerical generalization
and categorical ID-based approach are very effective to standard databases.
These approaches prove ineffective in a distributed architecture like OSN,
wherein concrete values are often not present straightforwardly. Most of the
work in the proposed domain involves the protection of user friends and
their location. Textual information via tweets and profile attributes has an
abundance of sensitive information which can even reveal identities. Our
work deals with anonymizing the private content before data publishing.
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Cryptographic mechanisms, although most effective, increase the complexity
due to overhead in key generation and management. Existing randomization
and perturbation methods involve the addition, deletion or swapping of nodes
and edges, which compromises the data utility and its integrity if applied to
sensitive attribute protection. A severe drawback observed in these earlier
methods is the loss in data quality post anonymization. The proposed study,
unlike its earlier counterparts, focuses on multiple categories of sensitive
attributes. Traditional methods have usually applied differential privacy for
either node or edge protection only. Our approach, however, uses the same to
conceal sensitive information. The proposed work achieves a high logical
similarity for the anonymized data compared to the actual text. The high
cosine similarity and lower values of mean squared error and mean absolute
error indicate that work successfully captures the details of the text post mask-
ing. The work maintains high classification model scores while parallelly
reducing the risk while communicating and data and retaining the overall
detail of the data.

At the server end, the proposed modified searchable encryption has
proven merit in scalability and compatibility with our model while providing
suitable utility and integrity. It shows a clear improvement over traditional
keyword-based searchable encryption methods by being more tolerant of
minor typos without compromising privacy.

5 Conclusion and Future Works

The proposed approach facilitates a more controlled means for data dissemi-
nation in a public OSN. Predicting trust in OSN is a daunting task due to the
lack of physical connectivity and complete factual information. A selective
inconspicuousness method is proposed. It first identifies the personally iden-
tifiable information from tweets and user bio, anonymizes it and transfers the
crucial data via the cloud, from where authorized users can retrieve them via
proposed searchable encryption.

Some of the open research problems which can be a possible scope for
future work research are listed in the subsequent paragraph. Steps to reduce
algorithmic complexity, computation overhead and enforce seamless key
exchange in selective encryption can be an appropriate undertaking for the
future. The current study is only limited to sensitive data protection in social
media. Anonymizing sensitive links and group memberships was beyond
the scope of our work. Devising a way to cater to the capriciousness of
these media giants effectively can be a good scope for future work in this
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domain. Noise addition in differential privacy can be made more efficient by
considering parameters like the level of privacy needed.

Further investigations are suggested in anonymizing interrelated hetero-
geneous data like age and occupation. Research can be done to incorporate
computationally efficient access based deanonymization to promote studies
in pseudonymization. Search results of the proposed searchable encryption
technique can be made more robust by incorporating semantic analysis and
natural language processing, and suitable ranking mechanisms.
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