
An Introduction to the exFAT File System
and How to Hide Data Within

Julian Heeger∗, York Yannikos and Martin Steinebach

Fraunhofer SIT, Germany
E-mail: julian.heeger@sit.fraunhofer.de; york.yannikos@sit.fraunhofer.de;
martin.steinebach@sit.fraunhofer.de
∗Corresponding Author

Received 15 December 2021; Accepted 18 January 2022;
Publication 16 March 2022

Abstract

In the recent years steganographic techniques for hiding data in file system
metadata gained focus. While commonly used file systems received tooling
and publications the exFAT file system did not get much attention – probably
because its structure provides only few suitable locations to hide data. In
this work we present an overview of exFAT’s internals and describe the
different structures used by the file system to store files. We also introduce
two approaches that allow us to embed messages into the exFAT file system
using steganographic techniques. The first approach has a lower embedding
rate, but has less specific requirements for the embedding location. The
other one, called exHide, uses error correcting to allow for an more robust
approach. Both approaches are specified, evaluated and discussed in terms of
their strengths and weaknesses.

Keywords: Data hiding, file systems, anti forensic.

Journal of Cyber Security and Mobility, Vol. 11 2, 239–264.
doi: 10.13052/jcsm2245-1439.1125
© 2022 River Publishers

240 J. Heeger et al.

1 Introduction

Steganography is a part of cryptology enabling hidden communication in
contrast to obvious by scrambled communication provided by cryptogra-
phy [12]. It is used for hiding data within a cover (like an image, a data stream
or a file system)and is often technically identical to digital watermarking.
The only widely accepted difference between the two techniques is that
watermarking embeds data relevant for a cover and stenography embeds a
message into a cover with no relation to the message [5]. We will address the
concept of robustness later in this work, and usually watermarking requires
robustness while steganography does not, but there are also concepts of frag-
ile (non-robust) watermarking. Therefore robustness is not a distinguishing
characteristic between watermarking and steganography. In this work we only
address digital steganography. There are many known methods in the history
ranging from knot patterns to microdots that work in the analogue domain.
For further reference we suggest the many books available on the subject.

Steganography is often seen as a technique to enable illegal data transfer,
especially from the perspective of steganalysis. Commonly discussed use
cases of steganography are the distribution of terrorism-related informa-
tion [7, 14], espionage, or exfiltration of data gathered using malware. Still,
steganography is dual-use technology, similar to anonymity networks like Tor
or encryption in general. Many scenarios are possible where steganography
is used legally, like deniability or circumvention of censorship [1].

Due to the increase in surveillance worldwide, plausible deniability of
information transfer is gaining more and more importance. For example at
borders, smartphones or other electronic devices may be searched [4], which
can only be countered by hiding relevant information with suitable tools.
The use of cryptography alone is not effective, since the mere existence of
encrypted data could raise additional suspicion and the screened person could
then be forced, e.g. by existing laws, to decrypt the data [9]. Therefore, rele-
vant data should better be hidden in such a way that automated screening tools
can not find or recognize them. This can be achieved with steganography:
While cryptography hides the content of the message, steganography hides
the message itself.

While many steganographic tools exist to hide data by making unperceiv-
able changes to multimedia files like images, video, or audio, there are also
other approaches that use changes in metadata or structural information to
hide information. One example is hiding data within file system metadata.
Recently, steganographic techniques to hide data in file systems like FAT32,

An Introduction to the exFAT File System and How to Hide Data Within 241

ext4, or NTFS have been proposed. However, not much work has been done
on the exFAT file system, the successor of FAT32. Although exFAT is not as
widely used as FAT32 yet, its optimizations for flash memory makes it very
attractive for use in modern smartphones and on SD cards for digital cameras.

Even if there would be no known acceptable used cases for steganography
like those mentioned above, research in this domain would still be of impor-
tance: understanding the potential strategies for steganographic embedding
lays the foundation of steganalysis. The goal of steganalysis is to develop
tools for recognizing the usage of steganography. These tools usually depend
on knowing the embedding algorithm. Based on this knowledge, they build
detectors for changes caused by the embedding process.

This journal article is an extended version of the paper exHide: Hiding
Data within the exFAT File System by [11] et al. and gives an deeper intro-
duction to the exFAT File System. Specifically the layout of files and folders
on an volume and their interaction with each other was extended.

Contribution

In this work we take a deep dive into the exFAT file system and describe the
inner workings of the file system. In a second step, we describe its use for
steganography. exFAT was released by Microsoft in 2006 as successor of the
widely used FAT32 file system with optimizations for flash memory like SD
cards or USB drives. We analyse the internal metadata structure of exFAT
and identify suitable locations to embed data. We then propose, evaluate, and
discuss two approaches to hide data within exFAT metadata.

Outline

This remainder of this work is structured as follows: In Section 2 we give a
deep explanation of the exFAT file system. We discuss related work in Sec-
tion 3 and propose two approaches for data hiding in exFAT in Section 4. In
Section 5 we evaluate and discuss our approaches and conclude in Section 6.

2 exFAT File System Specifics

exFAT is the latest version of the FAT family. The file system introduced by
Microsoft in 2006 is intended both to replace the old version FAT32 and the
associated limitations and to meet the current requirements for a file system.
FAT file systems are used if as much memory as possible is to be used for
files or if the memory is to be used for files or the devices which are to use

242 J. Heeger et al.

Table 1 Boot sector
Name Size (byte) Name Size (byte)
JumpBoot 3 VolumeSerialNumber 4
FileSystemName 8 FileSystemRevision 2
VolumeFlags 2 MustBeZero 53
PartitionOffset 8 BytesPerSectorShift 1
VolumeLength 8 SectorsPerClusterShift 1
FatOffset 4 NumberOfFats 1
FatLength 4 DriveSelect 1
ClusterHeapOffset 4 PercentInUse 1
ClusterCount 4 Reserved 7
RootDirectoryCluster 4 BootCode 390

BootSignature 2

the memory are limited in computing capacity and memory (e.g. embedded
systems). Typically exFAT is used by memory cards for digital cameras or for
memory expansion for Android phones.

2.1 Volume Layout

The layout of an exFAT partition, shown in detail in Figure 1, can be divided
into three different regions. The first region is the Boot Region, also called the
superblock, which occupies the first 512 bytes of each exFAT partition. This
is where the basic configuration of the file system is stored, which provides
information on how to interpret the partition. The superblock is duplicated
and written directly after the original to have a backup in case of corruption of
the original. The next region is the FAT Region, which stores the file allocation
table shown in Table 2. The last region is the Data Region, which stores, in
addition to the contents of files, also the metadata of files and folders.

Figure 1 illustrates the exact boundaries of the individual regions. The
fields BytesPerSectorShift and SectorsPerClusterShift from the superblock
are used to calculate the offsets, based on the Equations (2) and (1).

Byte = Sector � 2BytesPerSectorShift (1)

Sector = Cluster � 2SectorsPerClusterShift (2)

2.2 File Allocation Table

The name FAT stands for File Allocation Table and describes the way in
which files are stored on the system. Figure 2 shows such a table. The first

An Introduction to the exFAT File System and How to Hide Data Within 243

Main Boot Region

Backup Boot Region
Boot Region

0

12

24

FATOffset+FATLength
×NumberOfFats

Cluster Heap Alignment

Cluster Heap Data Region
ClusterHeapOffset

Excess Space
ClusterHeapOffset +

ClusterCount ×
2^ipperClusterShift

FAT Alignment

First FAT FAT Region
FATOffset

FATOffset+FATLength
Second FAT

SectorsPerClusterShift

Offset (sectors) RegionSub-region

Figure 1 Volume structure.

Table 2 Example: file allocation table
Cluster Value Offset

(byte)

0 0xFFFFFFF8 +0
1 0xFFFFFFFF +4
2 ... +8
...

...
40 41 +160
41 80 +164
42 ... +168
43 ... +172

...
...

80 101 +320
81 ... +324

...
...

100 ... +400
101 0xFFFFFF +404
102 ... +408

two rows are predefined, because the first two clusters of an exFAT file system
cannot be allocated by the user. Each row in the table represents one cluster
on the partition. The offset specifies the number of bytes between the first
cluster and the current one. Each entry is 4 bytes in size and contains a
value between 2 and the number of clusters plus one. Two additional values

244 J. Heeger et al.

Field Name Offset Size
(byte) (byte)

EntryType 0 1
SecondaryCount 1 1
SetChecksum 2 2
FileAttributes 4 2
Reserved1 6 2
CreateTimestamp 8 4
LastModifiedTimestamp 12 4
LastAccessedTimestamp 16 4
Create10msIncrement 20 1
LastModified10msIncrement 21 1
CreateUtcOffset 22 1
LastModifiedUtcOffset 23 1
LastAccessedUtcOffset 24 1
Reserved2 25 7

(a) File Directory Entry

Field Name Offset Size
(byte) (byte)

EntryType 0 1
GeneralSecondaryFlags 1 1
Reserved1 2 1
NameLength 3 1
NameHash 4 2
Reserved2 6 2
ValidDataLength 8 8
Reserved3 16 4
FirstCluster 20 4
DataLength 24 8

(b) Stream Extension Directory Entry

Field Name Offset Size
(byte) (byte)

EntryType 0 1
GeneralSecondaryFlags 1 1
FileName 2 30

(c) File Name Directory Entry

Field Name Offset Size
(byte) (byte)

EntryType 0 1
CustomDefined 1 31

(d) Template for metadata structures

Field Name Size (bot)
TypeCode 5

TypeImportance 1
TypeCategory 1

InUse 1
(e) EntryType

Figure 2 Metadata entries.

are 0xFFFFFFF7, which identifies a defective cluster, and 0xFFFFFF, which
indicates the end of a file, called the end-of-file marker.

Figure 2 shows that the file in cluster 40 continues in cluster 41. Thus, the
values in the clusters can be followed further until the end of the file has been
reached in cluster 101. The information that a file starts in cluster 40 comes
from is explained in Section 2.4 about the metadata.

2.3 Root Directory

To store files in an exFAT file system, metadata about the file must be written
to the partition in addition to its content. This metadata contains information
about the file, e.g. the size or time of creation. The superblock contains a
field called RootDirectoryCluster, which specifies a cluster, in which the root
folder of a file system is located (e.g. the folder/on Linux). This cluster
contains, in addition to entries of data and folders, special entries that are

An Introduction to the exFAT File System and How to Hide Data Within 245

Table 3 Directory entry structures

(a) Allocation Bitmap Direc-
tory Entry

Field Size (byte)
EntryType 1
BitmapFlags 1
Reserved 18
FirstCluster 4
DataLength 8

(b) Volume Label Directory Entry

Field Size (byte)
EntryType 1
CharacterCount 1
VolumeLabel 22
Reserved 8

(c) Up-case Table Directory Entry

Field Size (byte)
EntryType 1
Reserved1 3
TableChecksum 4
Reserved2 12
FirstCluster 4
DataLength 8

important for exFAT, like the name of the partition, which is stored in the
Volume Label (see Table 3(b)). Each of those entries are based on the
template of Table 2(d).

To find a free cluster on the partition where content of a file can be stored,
the Allocation Bitmap (see Table 3(a)) is needed. This bitmap stores which
clusters are occupied on the partition, by setting the bit using the cluster
number as its index. A free cluster in an exFAT file system does not have
to mean that the memory is zeroed. To prevent unnecessary write operations,
the cluster is simply marked as free. This increases the life of flash memories,
which are used e.g. in memory cards or USB sticks.

The Upcase Table structure defines a list of character conversions; the
exact fields are listed in Table (see Table 3(c)). The table converts lowercase
letters to the respective uppercase letters based on their corresponding Uni-
code representations. exFAT as a file system ignores case sensitivity for file
names; thus, the Upcase Table as a lookup table increases the speed with
which a name can be searched for.

2.4 Files and Folders

As described earlier files are stored in the Data Region of an exFAT par-
tition. In this part of the file system two different types of clusters exist:

246 J. Heeger et al.

data cluster, which contain the content of files, and metadata cluster, which
contain information about the files. Therefore the cluster specified by the
RootDirectoryCluster is a metadata cluster. Each file and folder, regardless
of whether it is empty or not, occupies at least a cluster.

The metadata for a file or folder is composed of three different entries,
which are based on a generic template, shown in Figure 2(d). The first byte of
each structure starts with the EntryType field, which groups information about
the entry into different flags. Only the first 5 bits are responsible for the actual
identification of the structure. TypeImportance 2(e) describes whether this
entry is critical for exFAT, so that without it the file system cannot function.
The next field namely, TypeCategory 2(e), distinguishes between additional
information (length of the file name, size of the file) and the main information
(creation date, modification date). The last bit indicates whether the structure
and thus the file is used. If the bit is not set, the file is considered to be deleted.

exFAT as a file system is, as described in the introduction, primarily
intended to be operated on memory cards or USB sticks. Therefore, the write
accesses are to be minimized in order to relief the hardware so that it can
remain in operation longer. Hence, if a folder is deleted, only the metadata of
this folder is changed. The FAT table and the allocation bitmap are adjusted
accordingly, freeing up the memory again. The metadata of the files in the
deleted folder are not touched; since for exFAT the folder does not exist any
more, there is also no further linking to the data in this folder. Thus there may
exist files that have been deleted but still have their InUse bit set.

All metadata entries belonging to a file are grouped together in a cluster
without any interruptions, shown in Figure 3. The first entry for each file is
the File Directory Entry (see Figure 2(a)) which contains the timestamps and

File/Folder

File Directory Entry

Stream Extension
Directory Entry

File Name
Directory Entry

1..17

Figure 3 Directory Entries for a file or folder.

An Introduction to the exFAT File System and How to Hide Data Within 247

a basic checksum over all metadata entries. The FileAttributes field specifies
via the Directory flag if the element described in these entries is a file or
directory (this flag is the only distinction between a file and a directory
within exFAT). The timestamps allow for a two-second resolution with an
additionally ten-millisecond field for the last modified and create timestamp.
Each ten-millisecond field has a valid range from 0 to 199.

The Stream Extension Directory Entry 2(b) contains metadata about the
name and size of the file/folder. The fields ValidDataLength and DataLength
both describe the size of a file/directory. While the first describes how much
of the file content has been written, the latter describes the total file size in
bytes. If the complete file was written successfully, both fields are identical.
Therefore, when we talk about file size, we refer to both fields. If the structure
describes an folder, the size of the metadata written in the cluster is used as
value. The FirstCluster field points to the first cluster containing the content
of the file. If the metadata describe a folder, the referenced cluster contains
metadata of all the files and folders residing in it. Based on this field all folders
on the exFAT file system can be found, starting at the RootDirectoryCluster.

For example, if the content of a file 005 31.jpg with the path
/DCIM/2021/01/ should be found, the search starts at the root folder (Root-
DirectoryCluster), here /. Figure 4 shows this search graphically. Based on
the FirstCluster value of the root folder’s metadata, the cluster is selected to
find the metadata for the next folder, here DCIM. The metadata in the cluster
is searched in order until the end of the cluster is reached. If the searched
DCIM folder has not been found by then, the File Allocation Table is looked
up to see if the contents of the folder span multiple clusters. If this is the
case, the File Allocation table indicates which cluster must be searched next.
If the folder is found, the procedure is repeated, and folder after folder is
searched until the until the file 005 31.jpg has been found. In order to now
also obtain the contents of the file, the FirstCluster field is read; this specifies
the first cluster in which the contents of the file were stored. If the file is

File ….

File ….

Folder ...

DCIM

File ….

File ….

Folder ...

2021

File ….

File ….

Folder ...

01

File ….

005_31.jpg

Folder ...

Folder ...

Figure 4 Lookup of a file.

248 J. Heeger et al.

larger than one cluster, the File Allocation Table is queried as before to read
the complete file.

While the previously defined entries exist only once per file, the File
Name Directory Entry (see Figure 2(c)) may be present up to seventeen times.
Each of the entries contain up to 15 Unicode characters of the filename in the
FileName field. Therefore the maximum length of file and folder names in
exFAT is 255 Unicode characters.

3 Related Work

Steganography hides a message in an object, called a carrier or cover, so that
the carrier containing the message looks unchanged. Multimedia data, such
as images or videos, are well suited as carriers for messages. Most common
are Least Significant Bit methods (LSB) encoding the message into the least
significant bit of a pixel or sample.

This work addresses steganography in file systems, specifically the hiding
of messages in the metadata of the file system. In [10] Göbel and Baier show
that within the ext4 file system it is possible to embed information into the
nanosecond part of timestamps. Four of the five timestamps in the ext4 file
system provide an extra 30 bytes for a nanosecond part compared to previous
file system versions. With their proposed method the authors can embed 6.5
bytes per file.

Neuner et al. provide an overview of how timestamps in different file
systems can be used for hiding messages [13]. Among other file systems,
they examined FAT32, the predecessor of exFAT. FAT32 has only an accuracy
of 2 seconds for the creation and modification date. Also, it uses only a
day-precision for the last access date. The authors eventually use the NTFS
file system to develop and evaluate an implementation of their proposed
approach.

Eckstein and Jahnke show how messages can be hidden in a file system
that uses journaling [6]. They propose a method of manually creating incon-
sistencies by allocating storage without assigning inodes to it. This allows a
method of hiding data which is robust against sudden system crashes.

Göbel et al. address the Apple File System in [8] for which they show
methods to hide data. They develop a module for fishy – a framework to
test out common data hiding techniques on file systems – to demonstrate the
practical application of their method. The authors implement the techniques
separately from the corresponding file systems to allow an easy extension of
the fishy framework.

An Introduction to the exFAT File System and How to Hide Data Within 249

Vandermeer et al. applied reverse engineering to examine artifacts of
the exFAT file system [18]. They conducted their research before Microsoft
released the exFAT specification to the public.

The authors also have addressed other aspects of steganography in their
work previously, especially in steganalysis. To prevent confusion, that work is
about graphical images, not file system images. It includes strategies for blind
image steganalysis like [16] [15] [17] and non-blind steganalysis like [2] [3].

4 Data Hiding in exFAT

Several approaches were investigated and, based on different scenarios, two
are presented. The stego-only approach, uses the methods of steganography
and adopts to their assumptions. Therefore the solution does not need to be
robust against changes of the carrier medium and active attacks against the
carrier medium are not considered as part of the attacker model. The second
approach, referred to as exHide in the following, is a method that is more
closely associated with data hiding.

The basic principle for both approaches is, that the data must be divided
into several parts, so-called blocks. Each of these blocks is embedded into the
metadata of a file, whereby the block size depends on the respective solution.
Potential embedding locations are fields in the metadata structures, which
can be changed without creating inconsistencies in the exFAT file system.
Additional care must be taken to ensure, that the embedding of data and the
associated manipulation of metadata does not generate any anomalies, which
could be easy to detect. Since exFAT does not have complex structures or
additional functionalities such as journaling, data can only be embedded in
the metadata structures described in Section 2.

Both approaches use the same cryptographic methods, illustrated in
Figure 5, to ensure that the embedded data cannot be read without a password.
The user supplied password, is hashed with SHA-512 to map it to a fixed

Output
(72 Bytes)

ChaCha20

Nonce (8 Bytes) /
Key (32 Bytes)

Chacha20
PRNGSeed (32 Bytes)

Password-Hash
(64 Bytes)

Password PBKDF2 (SHA-512)SHA-512

Figure 5 Encryption of the input data.

250 J. Heeger et al.

length of 64 bytes. This output is then taken to initialize a password-based
key derivation function (PBKDF2-SHA512), by splitting it into two 32 byte
blocks and to be used as key and salt. Based on the generated key material
of 72 bytes a pseudorandom number generator (PRNG) and a stream cypher
(Chacha20) is initialized. A stream cipher is used, because it does not change
the length of the resulting cipher text. ChaCha20 is used as a PRNG, which
is seeded with the first 32 bytes of the generated key material. The remaining
key material is used as a 8 bytes nonce and 32 bytes key for the stream cipher.

4.1 Stego-only Approach

The stego-only approach has a low embedding rate, but it is more difficult to
detect than the second approach.

4.1.1 Locations to embed
In the stego-only approach, the two fields Create10msIncrement and Last-
Modified10msIncrement are used to embed data in both existing and deleted
data. Both provide additional time resolution in ten-millisecond multiples
for the creation and modified date and are each 1 byte (8 bits) in size. The
maximum value that the fields can assume is 199 according to the standard.
On an unchanged file system, an equal distribution of the values is assumed.

To ensure that the maximum value of 199 is not exceeded during embed-
ding, the most significant bit is not used. However, with 7 bits only values
between 0 and 127 are possible to embed, which means that values between
128 and 199 are not embedded. This would be noticeable in a statistical
analysis, because the values 0 to 127 would occur more frequently than
values between 128 and 199. To achieve an equal distribution of embedded
values, only 6 bits are used. Thus only values between 0 and 63 (26 − 1)
are embedded, in addition however one of the two most significant bits is
set randomly during embedding. For example, if the value 50 (0011 0010)
should be embedded, there are three different options to do this. Either the
most significant bit is set, so that the value 178 (1011 0010) is written into
the field, or the second most significant bit set, and instead of 50, the value
114 (01011 0010)) is written. As a last option the value is not changed,
and 50 is embedded. The least significant 6 bits are not changed and during
extracting in any of the above options 50 is read.

When embedding, an uniform distributed PRNG is used to decide, which
of the above mentioned cases is used for embedding. By doing so, an uniform
distribution of the values between 0 and 191 is achieved. This approach has

An Introduction to the exFAT File System and How to Hide Data Within 251

one problem, values between 192 and 199 are not reachable, therefore they
are not embedded. To solve this, the values 192 to 199 are further written into
the carrier medium on average as often as the values 0 to 191 were during
embedding. In doing so, an uniform distribution between 0 to 199 is achieved.

4.1.2 Selection of metadata for embedding
In a first step, a list of all metadata clusters, the metadata cluster list, is
created. This includes metadata clusters that are still used by the exFAT file
system, as well as metadata clusters that are free.

Clusters that are marked as in use can be found by starting from the
RootDirectoryCluster and traversing each subdirectory. For this, all direc-
tory entries in the RootDirectoryCluster are listed; their FirstCluster fields
indicate the new clusters in which further metadata of files and directory can
be found. Accordingly, these clusters are searched again for directory entries.
Based on these new directories, the search is repeated until no new directory
entries can be found.

For metadata clusters that are no longer used by exFAT, every free cluster
has to be searched. To decide, if a cluster contains metadata, it can be
exploited that each metadata structure has a size of 32 bytes. Additionally,
as shown in Table 2(c), each metadata structure has an EntryType as it
first field, and thus its first byte. Therefore, the first byte of each 32-byte
block of a cluster can be used to decide whether it may or may not be a
metadata structure. Based on these information in a potential metadata cluster
every 32nd byte is read and is checked whether it can be an EntryType.
Each metadata entry has two different EntryType values, the original value
and the value without the InUse bit set. For example 0xC0 and 0x40 are
valid EntryType values for the Stream Extension Directory Entry. If the read
bytes are valid according to the above procedure, the cluster is added to the
metadata cluster list as a metadata cluster.

The selection in which metadata the next block of data is embedded,
is selected via the PRNG. After its initialisation with a seed, described in
Section 4, the then generated random numbers are deterministic. The PRNG
selects a cluster from the metadata cluster list and tracks the number of times
this cluster was selected.

With the selected cluster and the number of times this cluster was already
selected, a metadata entry can be selected. Figure 6(a) illustrates a selection
using the arrows a − d. If a metadata cluster is selected for the first time
(Figure 6(a) arrow a), it is embedded into the first possible metadata. If a
cluster is selected a second time by the PRNG (Figure 6(a) arrows c and d)

252 J. Heeger et al.

PRNG

Seed (32 Bytes)

33 34 80 96 120 150 177 193

a

b c d

a-d Cluster selection
Metadata cluster (free)

List of cluster numbers33 34 80

Metadata cluster (in use)

(a) Stego-only

PRNG

Seed (32 Bytes)

33 34 35 36 37 38 39 40

a

b
c d

Data cluster

Metadata cluster (in use)
Metadata cluster (free)

a-d Cluster selection
33 34 35 List of cluster numbers

(b) exHide

Figure 6 Specifying the metadata entries to use.

it will be embedded in the second possible metadata entry. If there are not
enough metadata entries in a cluster, it will be skipped and the PRNG selects
a new cluster. Since the file system does not changed after the embedding,
this cluster is also skipped when extracting the message.

4.1.3 Embedding
Alice wants to send a secret message to Bob. Both must have set a password
in advance, which Alice can use for embedding. Alice takes a usb stick or
memory card that contains an exFAT file system and embeds her message.
The embedding works as follows.

The input data is encrypted using Salsa20 and each is split into 12-bit
blocks. The first block is special, as it contains the size of the data to be
embedded in bytes. The metadata cluster list is initialized so that, together
with random number generator, the 12-bit blocks can be embedded. Based

An Introduction to the exFAT File System and How to Hide Data Within 253

on Section 4.1.2 metadata entries are selected and checked if the metadata is
corresponding to a file. If this is the case, the two fields Create10msIncrement
and LastModified10msIncrement are overwritten with the data from the 12-
bit block. In doing so, the block is divided into two 6-bit blocks and those
are embedded as described in Section 4.1.1. If the amount of data to be
embedded is not a multiple of 12 bits, the Create10msIncrement field is
written to first. Since the two fields have been modified, the SetChecksum
field of the File Directory Entry must be recalculated and updated. This
process is repeated until all 12-bit blocks are embedded. After all data has
been written, it is calculated how often the values between 192 and 199 must
be written additionally. This data is then embedded using the same procedure
as described previously. To do this, the current state of the random number
generator is used and not reinitialized, so no embeddings are overwritten.
Alice can now pass the exFAT file system to Bob.

4.1.4 Extracting
Bob receives an exFAT file system from Alice, with an embedded message.
To extract Alice’s message, Bob needs to initialise the PRNG, metadata clus-
ter list and the encryption function, as described in Section 4. Again, metadata
entries are selected as described in Section 4.1.2 and the message parts are
read from the two Create10msIncrement and LastModified10msIncrement
fields until the size, read from the first block, is reached. In the end, the
message can be decrypted using the password.

4.2 exHide Approach

The second approach offers a higher embedding rate than the stego-only
method, but it also has more specific requirements for the exFAT file sys-
tem and is easier to detect, although measures were taken for making the
embedding as difficult to detect as possible. For this method, embedding data
is written only in metadata entries of deleted files, since exFAT allows few
possibilities for metadata manipulation.

4.2.1 Locations to embed
Since exHide can only be used to embed in metadata of deleted files, the
carrier medium must also contain deleted files. This enables a wider range of
modifications to the metadata, as there is now a disconnect between the file
content and the information stored in the metadata. Section 2 described, that
metadata of deleted files are still on the file system, therefore the clusters,

254 J. Heeger et al.

in which the content of these files were located could be overwritten, hence
the disconnect between file content and metadata. This approach tries to be
as plausible as possible with all modifications done to the metadata for a
more difficult detection. To achieve as little change as possible, embedding is
done in the bytes of a field that have the least influence on the fields value.
Assuming a big-endian byte representation, these are the last bytes of a value.
Based on this byte order, Byte1 is considered the least significant 8 bits and
Byte2 is defined as the 8 bits before that.

The Create10msIncrement field from the stego-only approach is used.
Since only 6 bits can be embedded in the field, 2 more bits are needed
to be able to embed a byte. To achieve this, one bit is embedded in each
of the double-second part of the timestamp fields CreateTimestamp and
LastModifiedTimestamp 2(a). Additional to the stego-only field, the First-
Cluster and the file size fields ValidDataLength and DataLength are used,
but because both of them need to be identical, they only count as one
additional field. For a low detection and to achieve plausible values in the
modified fields only Byte1 and Byte2 are used to embed data. Therefore
an additional amount of 4 bytes can be embedded per metadata. For the
FirstCluster field this has the additional benefit, that the field points to cluster
numbers, which are higher than the amount of existing clusters on the file
system. Similar as the file size fields describe the file size in bytes, embedding
large numbers in these fields, could create files, which are larger than the
carrier medium. To make the steganalysis harder, exHide requires that all
files need to be larger than 65 KiB and the first 65537 (216 + 1) clusters
must be occupied before an embedding can take place. With this restrictions
in place, it can be assumed that Byte1 and Byte2, in both fields, are uniform
distributed.

4.2.2 Selection of metadata for embedding
When embedding in the exFAT file system, a distinction has to be made
between the three cluster types: data cluster, used metadata cluster, and free
metadata cluster. Free metadata clusters contain metadata of a deleted folder,
while used metadata clusters can contain deleted and used files. In a free
metadata cluster it is possible, to embed data in both metadata entries with
the InUse bit set and in those without. While in a used metadata cluster data
can only be embedded in metadata entries without the InUse bit set. The
metadata cluster list contains all clusters of the file system to ensure, that
the length of the list is identical during embedding and extracting. This is
important, because if files are written after embedding, the cluster types can

An Introduction to the exFAT File System and How to Hide Data Within 255

DataLength
(16 Bit = 2 Bytes)

Create10msIncrement
(6 Bit)

FirstCluster
(16 Bit = 2 Bytes)

CreateTimestamp (1 Bit)
LastModi edTimestamp (1 Bit)

Figure 7 exHide: Embedding block.

change and a different cluster is selected during extracting. Figure 6(b) shows
a similar procedure, as described in 4.1.2, with the addition of data clusters.
If a data cluster is selected it is skipped and a new cluster is selected. The
other cluster types are treated the same as in the stego-only approach.

4.2.3 Embedding
The same scenario as for the stego-only approach unfolds. Alice wants to
send a message to Bob encrypted with a password they exchanged some
time before. Based on this password, the random number generator and the
encryption function are initialized. Alice’s message is encoded using an error
correction method, in this case Reed-Solomon. This allows for robustness
against loss of embedding blocks, when the data is extracted. The encoded
message is encrypted with Salsa20 and split into 5-byte blocks, displayed in
Figure 7.

The first block contains the length of the data and since the length does
not need to be a multiple of 5, an order must be specified in which fields
are embedded first. The first byte is embedded in Create10msIncrement
together with CreateTimestamp and LastModifiedTimestamp, then 2 bytes
into DataLength and finally 2 bytes into FirstCluster. The block is written to
the file system as described in Section 4.2.2. After the message is embedded,
the same method as in the stego-only approach is used to correct the uniform
distribution of the Create10msIncrement field.

4.2.4 Extracting
Bob receives an exFAT file system from Alice, with an embedded message.
To extract the message Bob needs to initialise the PRNG, metadata cluster list
and the encryption function, as described in Section 4. He begins extracting
message parts, as described in Section 4.2.2, until the size, read from the
first block, is reached. After all data has been extracted, it is decrypted.
The message is then decoded with Reed-Solomon to correct errors during
extraction.

256 J. Heeger et al.

5 Evaluation

To evaluate both of our approaches we created exFAT file systems with
several existing and deleted files and directories. Using the corresponding file
system metadata of the files, we applied the stego-only approach and exHide
and compared both regarding embedding rate and detectability.

For our stego-only approach the files on the exFAT file system do not have
to meet any special requirements, so random files could be written to the file
system. In contrast to this, exHide requires a minimum number of files on the
file system that are larger than 65 KiB (for embedding in the file size metadata
fields) and a minimum total number of used clusters (for embedding in the
FirstCluster field). This ensures that embedding data with exHide does not
produce metadata entries that are not plausible. Based on these limitations,
Figure 8(a) shows a listing of file system sizes and the corresponding number
of files that would be available for embedding. Figure 8(b) shows the number
of files needed for embedding different message sizes. To reach the maxi-
mum number of files with file system metadata suitable for embedding, we
considered a file size of exactly one cluster for the stego-only approach and
a file size of exactly 65 KiB for exHide. Additionally, we considered the file
name to occupy only one File Name Directory Entry, i.e. to be shorter than
15 characters. In total, we considered a maximum storage space of 96 bytes
per file metadata for both approaches. However, in a more realistic scenario
the number of files typically existing on a file system is lower.

file system size cluster count cluster size files (stego-only) files (exHide)
1GiB 4KiB 262.144 256.047 16.359

16GiB 4KiB 4.194.304 4.096.762 261.754
32GiB 128KiB 262.144 261.952 261.952
64GiB 128KiB 524.288 523.904 523.904

128GiB 128KiB 1.048.576 1.047.808 1.047.808
256GiB 128KiB 2.097.152 2.095.616 2.095.616
512GiB 128KiB 4.194.304 4.191.233 4.191.233

(a) Embedding rate with stego-only and exHide

Input size files (stego-only) files (exHide)
1KiB 682 204

100KiB 68.266 20.480
500KiB 341.333 102.400

1MiB 699.050 209.715
5MiB 3.495.253 1.048.576

10MiB 6.990.506 2.097.152
50MiB 34.952.533 10.485.760

(b) Files needed per embedding data for stego-only
and exHide

Figure 8 Embed rate and files needed for both approaches.

An Introduction to the exFAT File System and How to Hide Data Within 257

In the following we show graphs depicting the values of different meta-
data fields of files within an exFAT file system. The corresponding files on the
file system were selected randomly from a large pool of test files and written
to the file system. The metadata fields were then measured before and after
embedding.

Based on this information, exFAT file systems could be created to evaluate
the solution approaches. For this purpose, exFAT file systems filled with
random dat of 32 GiB were created. Here, this data was larger than 65 KiB in
order to also be used by the DHide solution approach. 80,0000 random files
were written to the file system from a larger pool of files, a portion of which
was randomly deleted. This was done in compliance with the limit of files that
must remain on the file system. Thus, the exFAT file systems created in this
way could be used to evaluate both full stego and DHide. For each solution
approach 25 file systems were created and evaluated.

Once the file system was prepared, embedding could be performed.
A fixed amount of time was spent initializing the encryption system; the
embedding itself varied with the amount of embedding. The difference
in embedding and reading the DHide solution approach was minimal, as
the same operations were performed in reverse order for both actions. For
example, time it takes to encrypt before embedding was the same as that of
decrypting after readout. In the full stego solution approach, when embedding
and reading out 10 KiB, reading out was faster. However, the difference was
only half a second, which could have been due, for example, to checking for
the end marker each time a block was read.

When embedding a 100 KiB file, the embedding was much slower than
the readout. This could have been due to the nature of the embedding,
since a file had to be converted to a bit stream. This could have had poor
performance when read out. Appending bits to the bit stream seemed to
be more performant. All other operations were executed for both actions,
embedding and readout, were executed.

5.1 10msIncrement Fields

Figure 9 shows the file system before and after 100 KiB of data has
been embedded into them using the stego-only approach. It was notice-
able that the distribution of both the LastModified10msIncrement and Cre-
ate10msIncrement field is only approximately a uniform distribution and
small values occur more frequently than larger ones (0–7, 190–199). This
would suggest that the additional embedding of the values from 192 to 199

258 J. Heeger et al.

0 50 10
0

15
0

20
0

Values

0.0

0.1

0.2

0.3

0.4

0.5

Pe
rc

en
ta

ge
 sh

ar
e

(a) LastModified10msIncrement (before
embedding)

0 50 10
0

15
0

20
0

Values

0.0

0.1

0.2

0.3

0.4

0.5

Pe
rc

en
ta

ge
 sh

ar
e

(b) LastModified10msIncrement (after em-
bedding)

Figure 9 Byte value distribution for LastModified10msIncrement.

0

25
5

Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pe
rc

en
ta

ge
 sh

ar
e

(a) Byte1 value distribution of the file size
field (before embedding)

0

25
5

Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pe
rc

en
ta

ge
 sh

ar
e

(b) Byte1 value distribution of the file size
field (after embedding)

Figure 10 File size fields.

was not sufficient. However, since the values 190 to 199 already occurred
less frequently in the unmodified distribution, the embedding of the uniform
distributed input data could also have resulted in a greater expression of the
deviations from a uniform distribution.

5.2 FirstCluster and File Size

Figure 10 shows the distribution of Byte1 from the file size field before
and after embedding. It displays a similar distribution like the LastModi-
fied10msIncrement fields. Smaller values between 0 and 7 possessed a higher
frequency than the other values. The distribution of file sizes are dependent
on the files on the file system. Since these were synthetically generated, it
cannot be ruled out, that they were not uniform distributed. Since Byte1 and
Byte2 follow the distribution of the unchanged values, this makes it difficult
to detect the embedding.

An Introduction to the exFAT File System and How to Hide Data Within 259

0

25
5

Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Pe

rc
en

ta
ge

 sh
ar

e

(a) Byte2 value distribution of the First-
Cluster field (before embedding)

0

25
5

Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pe
rc

en
ta

ge
 sh

ar
e

(b) Byte2 value distribution of the First-
Cluster field (after embedding)

Figure 11 FirstCluster.

For the FirstCluster, an uniform distribution was assumed in the
approach. While this assumption holds for Byte1, Byte2 was split into two
groups with different probabilities, as shown in Figure 11(a). The values from
0 to 99 occurred more often than the rest, which could be due to the fact
that a structure was created in the FirstCluster, by synthetically creating the
test file systems and their files. Since Byte2 is not uniformly distributed, the
embedding completely changed the distribution, as seen in Figure 11(b) and
is therefore easily detectable.

5.3 Double Seconds

The two double-second parts of the CreateTimestamp and LastModified-
Timestamp fields were used as an extension to compensate for the missing
2 bits from the Create10msIncrement field. Here only the least significant bit
of the two timestamps were written in each case. Due to the only minimal
changes of these values and the randomness of the time stamps, an uniform
distribution could be assumed. Since the encrypted input data is uniform
distributed, the distribution of the least significant bit was not changed.

Discussion

Compared to the stego-only approach, the exHide approach uses metadata
from deleted files to allow embedding in more metadata fields. This was
the only way to achieve a higher embedding rate using only metadata to
hide information. The LastModified10msIncrement field is not used in the
exHide approach because Windows does not use this field when writing files
to the file system. Since exHide provides a reasonable embedding rate even
without these 6 bits, the additional embedding capacity was neglected in favor
of Windows support. Therefore, if Windows support is not important, an

260 J. Heeger et al.

additional 6 bits can be used for embedding, offering various possibilities to
change the method. The most straightforward approach would be to increase
the embedding capacity per file metadata location to 46 bits.

To reduce detectability, we could stop using Byte2 of FirstCluster for
embedding, thereby reducing the embedding rate. Further research is needed
to find the cause of the byte value distribution of Byte2 shown in Figure 11(a).
In order to recreate the distribution after embedding with our method, one
possible approach could be the use of a mapping table to map input bytes to
different output bytes and then selecting output bytes using specific weights.

6 Conclusion

In this work we gave an deep dive into the exFAT file system by displaying the
processes needed to store files and folders on the file system. Additionally the
layout of an exFAT partition was described and how an File Allocation Table
operates. Based on our exFAT analysis, we proposed two approaches to hide
data within the file system, without using anything other than the metadata
entries of files.

The first approach allows for an low embedding rate of 12 bits per
metadata of a file, but allows embedding in both deleted and used files. In
contrast the second approach, called exHide, allows for an embedding rate of
5 bytes (40bits) per metadata of a deleted file. While the first approach utilizes
steganographic methods, exHide uses techniques from the field of data hiding
and therefore supports error correction to provide robustness against partial
deletion of embedded data. exHide has stricter requirements, because an
exFAT partition needs deleted metadata of files to embed data into. For the
steganographic approach we did not implement error correction because we
did not consider a modification of the file system after embedding.

exHide has some downsides, because steganalysis showed, that the First-
Cluster field is not equally distributed, therefore embedding location can
be detected by analysing the byte value distribution for metadata fields.
Solutions to the problem were discussed, such as reducing the embedding
rate by omitting the FirstCluster field.

Acknowledgment

This work has been funded by the German Federal Ministry of Education
and Research (BMBF) in the Fraunhofer Cybersecurity Training Lab (LLCS)

An Introduction to the exFAT File System and How to Hide Data Within 261

and by the German Federal Ministry of Education and Research and the
Hessian Ministry of Higher Education, Research, Science and the Arts within
their joint support of the National Research Center for Applied Cybersecurity
ATHENE.

References

[1] Charles Arthur. China and the internet: Tricks to beat the online censor.
www.theguardian.com/world/2010/mar/25/china-internet-how-to-beat
-censorship?intcmp=239, 2010. Accessed: 2019-05-25.

[2] Niklas Bunzel, Martin Steinebach, and Huajian Liu. Non-blind ste-
ganalysis. In Proceedings of the 15th International Conference on
Availability, Reliability and Security, pages 1–7, 2020.

[3] Niklas Bunzel, Martin Steinebach, and Huajian Liu. Cover-aware ste-
ganalysis. Journal of Cyber Security and Mobility, pages 1–26, 2021.

[4] Sophia Cope. Law enforcement uses border search exception as fourth
amendment loophole, 2016.

[5] Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton
Kalker. Digital watermarking and steganography. Morgan kaufmann,
2007.

[6] Knut Eckstein and Marko Jahnke. Data hiding in journaling file systems.
In Digital Forensic Research Workshop (DFRWS), 01 2005.

[7] Sean Gallagher. Steganography: how al-qaeda hid secret documents in
a porn video. https://arstechnica.com/information-technology/2012/05
/steganography-how-al-qaeda-hid-secret-documents-in-a-porn-video.
Accessed: 2021-05-24.

[8] Thomas Göbel, Jan Türr, and Harald Baier. Revisiting data hiding tech-
niques for apple file system. In Proceedings of the 14th International
Conference on Availability, Reliability and Security, ARES ’19, New
York, NY, USA, 2019. Association for Computing Machinery.

[9] Loren Grush. A us-born nasa scientist was detained at the border until
he unlocked his phone, 2017.

[10] Thomas Göbel and Harald Baier. Anti-forensics in ext4: on secrecy
and usability of timestamp-based data hiding. Digital Investigation,
24:S111–S120, 2018.

[11] Julian Heeger, York Yannikos, and Martin Steinebach. Exhide: Hiding
data within the exfat file system. In The 16th International Conference
on Availability, Reliability and Security, ARES 2021, New York, NY,
USA, 2021. Association for Computing Machinery.

www.theguardian.com/world/2010/mar/25/china-internet-how-to-beat-censorship?intcmp=239
www.theguardian.com/world/2010/mar/25/china-internet-how-to-beat-censorship?intcmp=239
https://arstechnica.com/information-technology/2012/05/steganography-how-al-qaeda-hid-secret-documents-in-a-porn-video
https://arstechnica.com/information-technology/2012/05/steganography-how-al-qaeda-hid-secret-documents-in-a-porn-video

262 J. Heeger et al.

[12] David Kahn. The history of steganography. In International workshop
on information hiding, pages 1–5. Springer, 1996.

[13] Sebastian Neuner, Artemios G. Voyiatzis, Martin Schmiedecker, Stefan
Brunthaler, Stefan Katzenbeisser, and Edgar R. Weippl. Time is on
my side: Steganography in filesystem metadata. Digital Investigation,
18:S76–S86, 2016.

[14] Lily Hay Newman. Mysterious ’MuslimCrypt’ App Helps Jihadists
Send Covert Messages. https://www.wired.com/story/muslimcrypt-
steganography/. Accessed: 2021-05-24.

[15] Martin Steinebach, Andre Ester, and Huajian Liu. Channel steganalysis.
In Proceedings of the 13th International Conference on Availability,
Reliability and Security, pages 1–8, 2018.

[16] Martin Steinebach, Andre Ester, Huajian Liu, and Sascha Zmuzinksi.
Double embedding steganalysis: Steganalysis with low false positive
rate. In Proceedings of the 2nd International Workshop on Multimedia
Privacy and Security, pages 38–47, 2018.

[17] Martin Steinebach, Huajian Liu, and Andre Ester. The need for ste-
ganalysis in image distribution channels. Journal of Cyber Security and
Mobility, pages 365–392, 2019.

[18] Yves Vandermeer, Nhien-An Le-Khac, Joe Carthy, and Tahar
Kechadi. Forensic analysis of the exfat artefacts. arXiv preprint
arXiv:1804.08653, 04 2018.

Biographies

Julian Heeger became a researcher in cybersecurity at the Media Security
and IT Forensics department of Fraunhofer SIT, after he completed his
master’s degree in IT security at the Technical University of Darmstadt.

York Yannikos is a Research Associate at the Fraunhofer Institute for Secure
Information Technology, Darmstadt, Germany. His research interests include
digital forensic tool testing, darknet marketplaces, and open source intelli-
gence.

https://www.wired.com/story/muslimcrypt-steganography/
https://www.wired.com/story/muslimcrypt-steganography/

An Introduction to the exFAT File System and How to Hide Data Within 263

Martin Steinebach. Prof. Dr. Martin Steinebach is the manager of the Media
Security and IT Forensics division at Fraunhofer SIT. From 2003 to 2007 he
was the manager of the Media Security in IT division at Fraunhofer IPSI.
He studied computer science at the Technical University of Darmstadt and
finished his diploma thesis on copyright protection for digital audio in 1999.
In 2003 he received his PhD at the Technical University of Darmstadt for this
work on digital audio watermarking. In 2016 he became honorary professor
at the TU Darmstadt. He gives lectures on Multimedia Security as well as
Civil Security. He is Principle Investigator at ATHENE and represents IT
Forensics and AI Security. Before he was Principle Investigator at CASED
with the topics Multimedia Security and IT Forensics.

	Introduction
	exFAT File System Specifics
	Volume Layout
	File Allocation Table
	Root Directory
	Files and Folders

	Related Work
	Data Hiding in exFAT
	Stego-only Approach
	Locations to embed
	Selection of metadata for embedding
	Embedding
	Extracting

	exHide Approach
	Locations to embed
	Selection of metadata for embedding
	Embedding
	Extracting

	Evaluation
	10msIncrement Fields
	FirstCluster and File Size
	Double Seconds

	Conclusion

