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Abstract

Internet of Things (IoT) networks leverage wireless communication protocol,
which adversaries can exploit. Impersonation attacks, injection attacks, and
flooding are several examples of different attacks existing in Wi-Fi networks.
Intrusion Detection System (IDS) became one solution to distinguish those
attacks from benign traffic. Deep learning techniques have been intensively
utilized to classify the attacks. However, the main issue of utilizing deep
learning models is projecting the data, notably tabular data, into image-
based data. This study proposes a novel projection from wireless network
attacks data into grid-like data for feeding one of the Convolutional Neural
Network (CNN) models, EfficientNet. We define the particular sequence of
placing the attribute values in a matrix that would be captured as an image.
By combining the most important subset of attributes and EfficientNet, we
aim for an accurate and lightweight IDS module deployed in IoT networks.
We examine the proposed model using the Wi-Fi attacks dataset, called
AWID dataset. We achieve the best performance by a 99.91% F1 score
and 0.11% false positive rate. In addition, our proposed model achieved
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comparable results with other statistical machine learning models, which
shows that our proposed model successfully exploited the spatial information
of tabular data to maintain detection accuracy. We also successfully maintain
the false positive rate of about 0.11%. We also compared the proposed model
with other machine learning models, and it is shown that our proposed model
achieved comparable results with the other three models. We believe the
spatial information must be considered by projecting the tabular data into
grid-like data.

Keywords: Intrusion detection, impersonation attack, convolutional neural
network, anomaly detection..

1 Introduction

Nowadays, the Internet of Things (IoT) has developed very rapidly. The Inter-
net has become a primary need for everyone. People are always connected to
the Internet network through their smartphone, laptop, or personal computer.
Adults and kids, and older people are inseparable from their devices. The
recent technology development of IoT networks has led to the prosperity
of smart environments [1]. Information pooled by IoT sensors could man-
age smart city applications’ assets, revenues, and resources with increased
performance and efficiency [2].

IoT is commonly applied in particular domains such as smart grids, smart
cities, and smart homes [3]. Jalal et al. provided the one advantage of using
smart homes for helping daily human life [4]. At the same time, Asaad et
al. reviewed the benefit of leveraging smart grids in a country [5]. Despite
all the prosperity, IoT networks leave a vulnerable hole to be exploited by
adversaries, which is the use of wireless communication channels [1]. When
people are connected to the Internet network, they are vulnerable to various
malicious cyber attacks from adversaries. Different types of attacks on WiFi
include impersonation attacks, injection attacks, and flooding [6].

An impersonation attack is a form of attack in which an adversary poses
as a trusted person to trick the victim [7]. Usually, the adversary will collect
someone’s data through the Internet and use it to convince the victim that
he is the real person. An injection attack is a malicious code injected into
the network and steals all the data from victims’ databases [8]. Several
well-known injection attacks are SQL Injection, Cross-Site Scripting (XSS),
and SMTP/IMAP Command Injection. Finally, a flooding attack is when
adversaries send massive traffic into the victim’s network [9]. The main goal
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is to create network congestion to hinder legitimate traffic. Because of these
various attacks, a defensive mechanism as a countermeasure is needed. The
mechanism is called Intrusion Detection System (IDS).

IDS can be classified into two classes: signature-based and anomaly-
based IDS [10, 11]. Signature-based IDS is a classic IDS system that uses an
attack signature database as the detection tool. Anomaly-based IDS monitors
the inbound traffic to detect any malicious action. However, there is a problem
with the current IDS. Recent publications of IDS show that it is difficult
to handle complex datasets with high dimensionality [12]. Because of that
reason, we want to propose a lightweight machine learning framework using
two-dimensional projection for IDS. We train our system using the AWID2
dataset, an impersonation attack dataset that consists of four classes: normal,
impersonation, injection, and flooding.

This paper proposes a two-dimensional projection-based IDS system that
utilizes lightweight EfficientNet for the classification process. Our system
consists of three main parts: 1. Dataset Preparation, 2. Data Preprocessing
with feature selection using Random Forest, and 3. Image Classification using
EfficientNet. This paper is the first DL-based IDS that combines data-to-
images projection with EfficientNet for IDS to the best of our knowledge.
Compared to previous works, our main contributions are listed below:

1. We provide a data-to-image conversion process by using a zigzag scan
pattern from the JPEG images compression technique based on their
feature importance.

2. We handle the IDS data conversion into graphical number format that
represents the attribute value of each feature.

3. Our framework explores feature selection using random forest models
with cross-validation.

4. We propose a lightweight CNN-based IDS using EfficientNet-B0 archi-
tecture to handle complex datasets [13].

5. Our proposed system identifies the spatial correlation between features
through grid-like images.

6. We provide the performance analysis by highlighting our model’s F1
score and accuracy.

The remainder of this paper is organized as follows: Section 2 provides
related work on utilizing deep learning techniques in IDS. The proposed
model and data processing are explained in Section 3. Section 4 shows the
experimental results of each module in the proposed model. While Section 5
provides the comparison of the proposed model with other machine learning
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models. Section 6 closes this paper with conclusions and outlines future
research directions.

2 Related Works

Study about IDS has been conducted continuously since several years ago.
Starting from using a list of attack databases; until leveraging the latest
machine learning method. Smys et al. proposed a hybrid convolutional neural
network model for IDS suitable for a wide range of IoT applications [14].
Khan et al. introduced an efficient and intelligent IDS to detect malicious
attacks [15]. They leverage Convolutional Autoencoder (Conv-AE) from
spark MLlib for misuse attack detection. Another work by Li et al. introduced
an AE-based IDS on random forest feature selection [16]. However, these
works face difficulty in handling the traffic of massive IDS datasets.

SwiftIDS tried to address the scalability issue by using a parallel intru-
sion detection mechanism to analyze the network traffic [17]. The system’s
performance showed an encouraging performance, but it still requires a
longer processing time. Another approach by Rahman et al. improved the
parallel IDS model by applying side-by-side feature selection, followed by
a single multilayer perceptron classification [18]. Finally, a hybrid scheme
that combines the deep Stacked Autoencoder (SAE) and machine learning
methods is introduced by Mighan et al. [19]. Those works show a relation
between a number of features, processing time, and accuracy, which are three
main variables in the IDS model.

3 Methodology

Our methodology in this study is divided into 4 main parts, namely data
preparation, data preprocessing, modeling, and evaluation. In data prepa-
ration we used several techniques to obtain train, validation, and test sets.
Tabular data was converted into image data through data preprocessing. Then
we did the modeling to classify the image data. Finally, we evaluated the
performance of the trained model. You may select up to 8 categorical data
columns for stratification. The strata will be created as the combination of
all unique values in the stratification columns. For example, if stratification
column 1 has three unique values (A, B, and C) and stratification column 2
has two unique values (1 and 2), then the six resulting strata would be A1,
A2, B1, B2, C1, and C2. Random samples are generated independently within
each stratum. Any rows for which any of the stratification values are missing
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Figure 1 Data preparation process.

will not be eligible for sampling. The number of items sampled from each
stratum is controlled by the Sample Allocation among Strata and Sample
Size options. In the example below, S1 (with values A, B, and C) is entered
as the stratification column. There are twice as many A’s as B’s and C’s. Since
the sample allocation among strata is proportional to sample size, there are
twice as many values selected from stratum A than from B and C.

3.1 Data Preparation

We used the normalized AWID2 dataset, this dataset has a Test and Train sets.
We combined these 2 parts into a dataset to avoid bias, then from this dataset
we created train, validation, and test sets. The entire data preparation process
can be seen in Figure 1 below.

Our combined dataset has 2,371,218 samples with 154 columns plus 1
target column. In this dataset there is 1 normal (0) class and 3 attack classes,
that is impersonation (1), injection (2), and flooding (3). More than 90% of
the existing samples are normal (0) class, this causes an imbalanced class
distribution.

We used an undersampling technique to tackle imbalances in our dataset
and to reduce the number of samples used in order to save resource consump-
tion. We used 40,000 samples or 1.7% of total samples with 10,000 samples
per class. From this process we got a new dataset, the Balanced Dataset.
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Figure 2 Imbalanced test set distribution.

We divided our balanced dataset into train, validation, and test sets with
a ratio of 8:1:1, we got 32,000, 4,000, and 4,000 data for train, validation
and test, sequentially. We also created an imbalance test set that has the same
distribution as our combined dataset. In this test set, 20,000 samples are used
with the distribution as shown in Figure 2. In total, we got a test set with the
size of 24,000 samples or 1% from our combined dataset.

3.2 Data Preprocessing

The method we used is data-to-images projection by writing feature values on
an image using a program. Each data instance is turned into a single image.
The writing of this feature value follows a pattern where each value fills 1
grid. The number of grids in one image is the square of positive integers
so that we get n × n grids. Due to the nature of the method, we didn’t use
all features in the data. Therefore, the first step in our method is to perform
feature selection.

In feature selection, we sorted the features based on their importance
in influencing the classification. From this ranking we took the top-k fea-
tures, where k is the number of features to be used. Ranking was obtained
through the average value of feature importance from 5 random forest models.
We trained 5 random forest models using 5-cross-validation from our train
set. This whole process can be seen in Figure 3.

The pattern we used in our method mimics the zigzag scan pattern in
JPEG compression technique [13], as shown in Figure 4. The rank 1 feature
is on the grid in the upper left corner, then the next feature follows a zigzag
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Figure 3 Data preprocessing process.

 
Figure 4 Pattern example for k = 25 (left) and features placement based on their ranking
(right).

 
Figure 5 Numeric samples from Hersyler Simplex font.

pattern so that the position of each feature based on its rank will look like
Figure 4. The lowest rank feature is in the lower-right corner.

The image we produced has a resolution of 224 × 224 with RGB channels
for the entire k values. We wrote the feature value using the Hersley Simplex
font with white color on an image with a black background. A sample of
the Hersley font can be seen in Figure 5. To maintain consistency, we wrote
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each feature value in 3 decimal formats. The whole process of data-to-image
projection was done using Python and OpenCV.

3.3 Image Classification

In this method, we used the Convolutional Neural Network model to classify
the images we generated. We used the EfficientNet-B0 architecture [22], a
light-weighted CNN model, which performed well on the ImageNet dataset
while maintaining model efficiency. The nature of this architecture is suitable
for application in low-end devices, which are preferred for use in wireless
networks.

For our generated image that has 224 × 224 resolution with RGB channel,
EfficientNet-B0 offered 4,054,695 total parameters or 16 MB file size in H5
format. This number is the smallest compared to other architectures in the
EfficientNet family. We used the Tensorflow Framework running on an RTX
2070 laptop with 32 GB memory for our modeling purpose.

We trained our model for 10 epochs using a Stochastic Gradient Descent
(SGD) as optimization algorithm with a learning rate = 0.05 and a batch size
of 32. We rescaled the pixel value so that it is in the range 0 to 1. There were
3 models that were trained on each k value, so there were 33 models that we
trained. We did this to get more robust data from each image classification on
value k. As a reminder, we trained each model on 32,000 images and 4,000
images as validation set.

4 Evaluation

4.1 Evaluation Metrics

For model evaluation, we used accuracy and F1. The accuracy score is
good to see how well our model guesses the class, but it fails to provide good
insight for the imbalanced dataset. So, for our imbalanced dataset, we used
F1 score for our primary metrics. It combines precision and recall scores,
making F1 scores provide better insight into how well our model predicts in
imbalanced datasets. In our dataset there are 4 classes that make the task we
did is multiclass classification. Precision, recall, and F1 score were originally
matrices for binary classification, so we used weighted scores on precision,
recall, and F1 scores for our multiclass classification.

From a different perspective, our classification can be seen as a binary
classification. In this classification, the positive class (P) indicates the attack
class (impersonation, injection, and flooding) and the negative class (N)
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Figure 6 Confusion matrix for multiclass to binary classification.

indicates the normal class. This means True Positive (TP) will indicate
the number of attack classes that have been detected correctly, False Neg-
ative (FN) indicates the number of attack classes that were not detected,
False Positive (FP) indicates the number of normal classes detected as attack
classes (False Alarm), and True Negative (TN) indicates the normal class that
has been recognized correctly. Conversion from multiclass confusion matrix
to binary confusion matrix can be seen in Figure 6.

4.2 Feature Selection

As we mentioned before, we used feature ranking to decide the feature
that we were putting for image projection. The complete list of our feature
ranking can be seen in Table 1. The total of all feature importance scores is 1.
The maximum importance score is 0.0708 belonging to feature 141. About
43% of features have an importance score close to zero. A score close to zero
means some features may be just noises.

We plotted a graph of cumulative feature importance score, see Figure 7.
We got a cumulative score of 1 using only 88 features, this confirms that the
remaining 66 features are probably just noises. Based on this ranking, we get
the top-k feature to be used on image projection. We used the value of k = 25
as the baseline and we decreased and increased the value. In total we used 11
values of k, which was 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, and 144.

4.3 Image Projection Result

A sample of the images for each value of k that we used can be seen in
Figure 8. It is important to mention that because we used the same resolution
for each value of k, there were drawbacks in the feature writing. First, the
writing of the feature value becomes smaller every time the value of k
increases. Second, the writing of feature values deformed every time the value



610 H. Tekleselassie

Table 1 Feature rank
Rank Feature Rank Feature Rank Feature Rank Feature Rank Feature Rank Feature

1 141 31 106 61 71 91 30 121 134 151 57
2 67 32 118 62 99 92 31 122 152 152 58
3 66 33 97 63 95 93 32 123 130 153 59
4 8 34 89 64 90 94 33 124 82 154 0
5 63 35 137 65 101 95 34 125 83
6 7 36 144 66 102 96 35 126 84
7 74 37 119 67 96 97 27 127 85
8 153 38 145 68 91 98 26 128 86
9 78 39 107 69 110 99 150 129 87
10 65 40 117 70 105 100 23 130 104
11 46 41 121 71 47 101 22 131 112
12 75 42 138 72 124 102 148 132 113
13 77 43 80 73 122 103 147 133 114
14 72 44 93 74 51 104 146 134 115
15 109 45 103 75 42 105 9 135 116
16 139 46 92 76 15 106 10 136 73
17 3 47 126 77 88 107 11 137 135
18 37 48 127 78 61 108 36 138 136
19 49 49 125 79 17 109 16 139 52
20 6 50 129 80 28 110 149 140 40
21 81 51 140 81 123 111 151 141 41
22 50 52 128 82 131 112 18 142 43
23 4 53 142 83 25 113 2 143 44
24 5 54 111 84 14 114 1 144 45
25 76 55 143 85 19 115 20 145 48
26 79 56 120 86 13 116 21 146 53
27 60 57 100 87 133 117 12 147 62
28 69 58 98 88 132 118 64 148 54
29 70 59 108 89 29 119 38 149 55
30 68 60 94 90 24 120 39 150 56

Figure 7 Cumulative feature importance score.
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Figure 8 Image projection samples for each value of k.

Figure 9 Writing in a grid for each value of k (left) and number of pixels per grid (right).

of k increases, as shown in Figure 9. This was happened because the number
of pixels on each grid decreases as the value of k increases. The writing of
the features value started to be hard to read at k = 49, at k = 144 the writing
is only shaped like a straight line.

4.4 Test Result

Our experiment consists of the training of 3 models based on given top-
k features ranking. We did 2 tests on our models, first was on a balanced
dataset and second was on an imbalanced dataset. We compared our models
using predefined metrics and we took the average score for each value of k
(3 models for each value of k). The result of our test can be seen in Table 2.

We highlight the highest value in each column in the table. The model
that uses 49 features looks better on the balanced dataset, while the model
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Table 2 Test result
Balanced Imbalanced

k F1 Score Accuracy F1 Score Accuracy
4 96.73% ± 0.18% 96.75% ± 0.18% 92.70% ± 0.29% 89.40% ± 0.46%
9 98.18% ± 0.01% 98.18% ± 0.01% 99.52% ± 0.00% 99.53% ± 0.00%
16 98.60% ± 0.48% 98.60% ± 0.48% 98.17% ± 2.19% 97.48% ± 3.17%
25 99.91% ± 0.01% 99.91% ± 0.01% 99.89% ± 0.01% 99.89% ± 0.01%
36 99.92% ± 0.00% 99.93% ± 0.00% 99.91% ± 0.02% 99.91% ± 0.02%
49 99.94% ± 0.01% 99.94% ± 0.01% 99.88% ± 0.03% 99.88% ± 0.03%
64 99.94% ± 0.01% 99.94% ± 0.01% 99.89% ± 0.02% 99.89% ± 0.02%
81 99.93% ± 0.01% 99.93% ± 0.01% 99.90% ± 0.03% 99.90% ± 0.03%
100 99.93% ± 0.01% 99.93% ± 0.01% 99.89% ± 0.02% 99.89% ± 0.02%
121 99.84% ± 0.01% 99.84% ± 0.01% 99.58% ± 0.07% 99.57% ± 0.07%
144 99.53% ± 0.04% 99.53% ± 0.04% 98.96% ± 0.19% 98.90% ± 0.21%

that uses 36 features looks better on the imbalanced dataset. F1 value and
accuracy start to decrease at k = 100. We argue that the range of k values that
produce the best performance is from 25 to 100.

From this result, we see a decrease in performance in the imbalanced
dataset compared to the balanced dataset. Although we cannot mention the
significance of the decrease in performance, we assumed that this decrease
was due to the larger number of samples in the imbalanced dataset. This may
happen because we only use 1% of the dataset which may not be able to
capture all the information in the imbalanced dataset. I usually use 5-fold
cross validation. This means that 20% of the data is used for testing, this is
usually pretty accurate. However, if your dataset size increases dramatically,
like if you have over 100,000 instances, it can be seen that a 10-fold cross
validation would lead in folds of 10,000 instances.

4.5 False Alarm Rate and False Negative Rate

We plotted False Alarm Rate (FAR) and False Negative Rate (FNR) for each
value of k, see Figure 10. We obtained these values by calculating the mean
of the combined test results from the balanced and imbalanced dataset in a
binary perspective, as we previously mentioned. The highest values of FAR
and FNR were 11.50% at k = 4 and 2.43% at k = 9, sequentially. Config-
urations at k < 25 have poor values, either FAR, FNR, or both. Meanwhile
the FAR value starts to increase at k > 100. These results strengthen our
statement that the range of k values that produce the best performance is
from 25 to 100.
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Figure 10 FAR and FNR.

Figure 11 F1 score vs cumulative feature importance score (left) and F1 score vs pixels per
grid (right).

4.6 Effects of Feature Importance and Writing Deformation

The nature of our method requires the selection of some features that are
not very important. We therefore delve deeper into the effect of feature
importance and writing deformation on our method. We used average F1
score from balanced and imbalanced dataset, cumulative features importance
score, and pixels per grid, see Figure 11. The F1 score shows a high value and
starts to stabilize when the cumulative feature importance score is 0.89 or at
k = 25. We argue that this is the threshold value of k needed in our method
to get the best performance.

Furthermore, we note that at k = 9, the performance is already the best
when cumulative feature importance score is only at 0.45. We assume that
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this may be an anomaly, where the features selected are enough to provide
sufficient information. Whoever after we analyzed FAR and FNR at k = 9,
we found that the false negative rate for k = 9 is relatively high while the
false alarm rate is low. This indicate that at k = 9, our trained models have
poor performance despite their high F1 score.

We also noticed that at k = 121, the performance slowly deteriorated.
We argue that this might be because the additional features we add have a
noise effect that affects performance, causing overfit. In addition, we believe
that this is also due to the effect of the writing deformation on the image
projection. Reducing pixels per grid, as can be seen in Figure 9, makes the
text on the image unreadable.

We previously mentioned that writing begins to be unreadable by humans
at k = 49, this does not seem to apply to the model we were trained. The
model starts struggling to classify at k = 121. We conclude that when we add
more features at this point, it creates its own noise by deforming the writing
instead of enriching the information. Furthermore, we argue that k = 100 is an
upper limit in adding features. The suggested method uses the convolutional
neural network (CNN) approach to learn the deep frequency features by using
a plain rectangular filter with a modified pooling strategy that have more
discriminative power for the SER. The proposed CNN model was trained
on the extracted frequency features from the speech data and was then tested
to predict the emotions.

5 Comparison with State-Of-The-Art Methods

We compared our method with several statistical models that we trained on
tabular data. We used the exact same train set and test set (balanced and
unbalanced). We trained Random Forest, SVM (RBF kernel), and XGBoost 3
times with the same k values as our CNN model. Random Forest was chosen
because we used it as our feature ranking algorithm. Meanwhile, SVM and
XGBoost were selected to provide a better understanding of the performance
of our CNN model. The results can be seen in Table 3, we highlighted the
best k values and the best model that has the best performance.

The combination with the best performance is XGBoost at k val-
ues = 81,100, 121, and 144. Whoever Random Forest has the best per-
formance on the most k values (4, 9, 16, 25, 36, and 49). If we take the
average of F1 score and accuracy across k, the rankings are (1) Random
Forest, (2) XGBoost, (3) our CNN model, and (4) SVM. The performance
difference between our model with Random Forest and XGBoost is very
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Table 3 Comparison with statistical models
Random Forest SVM (RBF) XGB CNN

Rank F1 score Accuracy F1 score Accuracy F1 score Accuracy F1 score Accuracy
4 92.78% 91.25% 70.45% 63.52% 92.78% 91.24% 92.27% 90.62%
9 99.49% 99.50% 71.19% 64.40% 99.45% 99.45% 99.29% 99.30%
16 99.68% 99.68% 85.02% 81.35% 99.64% 99.64% 97.97% 97.66%
25 99.93% 99.93% 85.73% 81.92% 99.92% 99.92% 99.89% 99.89%
36 99.95% 99.95% 96.59% 96.31% 99.94% 99.94% 99.91% 99.91%
49 99.95% 99.95% 96.88% 96.65% 99.95% 99.95% 99.89% 99.89%
64 99.95% 99.95% 97.19% 97.00% 99.95% 99.95% 99.89% 99.89%
81 99.95% 99.95% 96.60% 96.35% 99.95% 99.95% 99.91% 99.91%
100 99.94% 99.94% 95.77% 95.37% 99.95% 99.95% 99.90% 99.90%
121 99.94% 99.94% 95.72% 95.31% 99.95% 99.95% 99.61% 99.61%
144 99.95% 99.95% 95.70% 95.28% 99.95% 99.95% 99.02% 99.00%

small, between 0.35% and 0.40%. From these results alone, we argue that
our model is comparable to the statistical model.

However, there is a large gap in the time required to train between our
CNN model and statistical model. The time required to train the statistical
model was less than 10 minutes, while the time required to train our CNN
model was approximately an hour. Despite its success in classifying tabular
data sets using image projection, implementing CNN has a major drawback
in the time it takes to train the model.

Problem SPH B&B TS

No. CT∗
l R̄x t̄cpux (CV )2x CT∗

l R̄x t̄cpux (CV )2x CT∗
l R̄x t̄cpux (CV )2x

1 117 117 16.7 0 121 121 25.7 0 117 119.446 4920 0.00162

2 143.17 143.17 15.3 0 143.17 143.17 25.9 0 143.17 145.12 11,100 0.0002

3 121.58 121.58 13.9 0 121.58 121.58 23.9 0 122.57 124.093 13,847 0.00016

4 103.28 103.28 15.5 0 103.28 103.28 26.1 0 103.28 106.583 23,350 0.00184

5 92.95 92.95 15.2 0 105.9 105.9 23.9 0 92.95 101.29 37,544 0.00738

6 94.13 94.13 15.5 0 94.13 94.13 34.2 0 94.13 99.97 38,026 0.00847

7 92.95 92.95 15.3 0 92.95 92.95 60.9 0 92.95 101.77 39,962 0.01106

8 94.96 94.96 15.4 0 94.96 94.96 99.7 0 94.96 103.48 41,119 0.00962

9 84.25 84.5 31.4 0 84.25 84.5 153.5 0 84.79 104.26 44,592 0.01629

6 Conclusion

This study proposed a novel projection method of tabular data into image-
based data that can be fed to convolutional neural networks classifiers.
We built the IDS module leveraging the EfficienNet to reduce the computa-
tion load to suit IoT networks. We project the tabular data of wireless attacks
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into images by exploiting the zigzag sequences of attributes placed in a
matrix. Each attribute value represents the matrix values in the dataset. Using
the essential attributes using Feature Ranking and EfficientNet classifier, we
achieved the best performance with 99.91% of F1 score. We also successfully
maintain the false positive rate of about 0.11%. We also compared the
proposed model with other machine learning models, and it is shown that our
proposed model achieved comparable results with the other three models.
We believe the spatial information must be considered by projecting the
tabular data into grid-like data.

In the future, the methods to put the attribute sequence in the grid might
be affected the image data for classification. In addition, a more lightweight
model should be considered when implementing IDS for IoT networks.
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