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Abstract

Authentication plays an essential role in preventing unauthorized access to
data and resources on the Internet of Things. Classical security mechanisms
fall short of achieving security requirements against many physical attacks
due to the resource-constraint nature of IoT devices. Physical Unclonable
Functions (PUFs) have been successfully used for lightweight security appli-
cations such as devices authentication and secret key generation. PUFs utilize
the inevitable variation of integrated circuits during the fabrication process to
produce unique responses for individual PUF, hence not reproducible even
by the manufacturer itself. However, PUFs are mathematically cloneable by
machine learning-based methods. XOR arbiter PUFs are one group of PUFs
that can withstand existing attack methods unless exceedingly long training
time and large dataset size are applied. In this paper, large-sized XOR PUFs
with 64-bit and 128-bit challenges were efficiently and effectively attacked
using a carefully engineered neural network-based method. Our fine-tuned
neural network-based adversarial models achieve 99% prediction accuracy on
noise-free datasets and as low as 96% prediction accuracy on noisy datasets,
using up to 55% smaller dataset size compared to existing works known to us.
Revealing such vulnerabilities is essential for PUF developers to re-evaluate
existing PUF designs, hence avoiding potential risks for IoT devices.
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1 Introduction

The Internet of Things (IoT) has been increasingly the growing paradigm in
many applied domains ranging from wearables to large industrial systems.
This has raised the need for security solutions to safeguard against various
attacks, especially those targeting lightweight and portable devices. The
conventional cryptographic algorithms rely on secret keys stored in non-
volatile memory, making them subjected to eavesdropping and side-channel
attacks. Thus, providing proper security for resource-constrained IoT devices
is always a challenge because traditional cryptographic approaches are
resource-demanding, given the fact that resource-constrained devices inher-
ently are of limited processing capabilities, thus making them an unsuitable
choice for IoT ecosystem.

Physical unclonable functions (PUFs) have been used for low-cost secu-
rity. PUFs intrinsically derive the secrets from the inevitable variations of
integrated circuits, materialized during the manufacturing process, to produce
unique responses for individual PUF instance, not even reproducible by
the manufacturer itself. For that reason, it is almost impossible to fabri-
cate two identical chips, even with full knowledge of the original chip’s
design [13]. Thus, physical unclonability defines that two PUF instances
should never have identical challenge-response pair (CRPs) behavior [26],
making them ideal for security purposes. PUFs have been applied as an
effective, lightweight mechanism for secure authentication [19] and secret
key generation [24].

Although physically unclonable, PUFs have been known to be math-
ematically clonable by modeling and inference-based attacks utilizing the
linear additive delay nature of arbiter PUFs. Mathematical clonability implies
the ability to develop malicious software that can counterfeit the trusted
PUFs. To improve arbiter-based PUFs robustness against various modeling
attacks, XOR arbiter PUFs, or XOR PUFs for short, were proposed by [24]
to obfuscate modeling attacks from learning the behavior of PUF circuits by
utilizing the power of XOR operation. For years, large-sized XOR PUFs have
shown high resistance to machine learning-based modeling attacks. However,
studies have successfully demonstrated the ability to break the security of
XOR PUFs. Ruhrmair et al. [21] proposed the first machine learning-based
models for XOR PUFs response predictions. Likewise, Tobisch et al. [25]
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introduced an optimized version of Ruhrmair et al. approach to attack XOR
PUFs. Although these efforts have successfully unveiled the possibility of
machine learning-based methods on attacking XOR PUFs, they have some
limitations. First, the proposed machine learning models by [21] fail to
produce response predictions for large-sized XOR PUFs, specifically beyond
6-XOR 64-bit and 5-XOR 128-bit PUFs. Second, authors in [25] had to
develop a memory-optimized parallel machine learning C language code that
took three days running (or about 44 days of sequential computing time) to
break one instance of 7-XOR 128-bit arbiter PUF. Recently, Aseeri et al.
[4] proposed an efficient neural network method modified to handle training
datasets larger than memory capacity to break XOR PUFs.

In this paper, we improve our previous work on attacking XOR PUFs pre-
sented in [4] to show the effectiveness of using the ordinary neural network to
attack large-sized XOR PUFs in high prediction accuracy and shorter training
time using smaller datasets size compared with existing works known to us.
Besides, this paper extends our initial idea of introducing a feasible, easy-to-
use, and powerful approach to attack large XOR PUFs to uncover the ability
to break the security of XOR PUFs in the existence of environmental and
noisy conditions that impact the reliability of PUF responses. We achieved
these improvements after careful hyperparameter choices and particular neu-
ral network architecture design. The study presented in this paper reveals
a serious security vulnerability, especially in large-sized XOR PUF. One key
consideration in studying the ability to attack any system is to be able to iden-
tify where the vulnerabilities are. Thus, disclosing the ability to attack XOR
PUFs is important to PUF designers and developers to be vigilant over these
existing vulnerabilities, and hence developing and improving PUF designs to
eliminate any potential risks. The paper is organized as follows. Section 2
gives a general overview of PUF technology, including the mathematical
model of the PUF’s challenge-response relationship that our attack is based
upon. Section 3 explains the modeling attack, including the algorithm and
approach we used to break the XOR PUFs. Our proposed models are eval-
uated practically alongside the results and discussion in Section 4. Finally,
concluding remarks are given in Section 5.

2 Physical Unclonable Functions (PUFs)

PUFs are based on the fact that even though the manufacturing process is the
same among different ICs, each IC is slightly different due to unavoidable
manufacturing variability [13]. The idea of utilizing inherent randomness
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Figure 1 PUF generic diagram.

from silicon processing was proposed the first time by [18]. Physical unclon-
able functions leverage such physical variations to derive unique secrets
from the chips instead of the standard way of storing the secret keys in
digital memory. Since the introduction of PUFs, there have been plenty of
PUF variations, including arbiter PUF, ring oscillator PUF, and SRAM PUF,
intent to improve the underlying structure and enhance its robustness against
side-channel inference attacks. As seen in Figure 1, a generic PUF diagram
apply challenge-response protocol to output secrets, i.e., responses, based on
physical variations of a circuit. It is an input-output mapping in the form
Γ : {0, 1}n → {0, 1}m where the input (challenge) is n-bit binary vector and
the output (response) is m-bit binary vector. A PUF circuit can receive 2n

different possible n-bit challenge vectors, each of which produces a m-bit
output. As a result, silicon PUFs can generate unique challenge-response
pairs (CRPs) for different integrated circuit instances [6].

PUFs are increasingly used for authentication and cryptographic key
generation [13]. Classical cryptographic techniques, which mostly rely on
the use of secret keys, involves two main limitations. First, secret keys that
are traditionally stored in digital nonvolatile memories are vulnerable to
different types of attacks such as side-channel [28] and invasive physical
attacks [22]. Second, due to resource constraints, power consumption, and
manufacturing costs, electronic devices may not be suitable to use secret key-
based cryptographic algorithms in specific commercial scenarios [13, 20].
On the other hand, PUFs introduces a feasible solution to achieve security
requirements, especially for resource-constrained devices like sensors that do
not support computationally-expensive processing capabilities.

Radio-Frequency Identification technology (RFID) is the prominent
application that leverages the power of PUFs for low-cost authentication
to safeguard against counterfeiting attacks. That is, PUF-powered RFID
tags can produce unique secrets derived from the physical randomness of
a silicon chip. Because it is difficult to fabricate an identical cloned tag,
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PUF-powered RFID tags are mostly the best solution for anti-counterfeiting,
especially in the industrial world.

2.1 XOR Arbiter PUF

Arbiter PUF is delay-based silicon implementation of PUFs introduced by
[11] in 2002. It is based on measuring the time delay difference between two
symmetric paths. The signals race against each other simultaneously through
a sequence of n stages, each of which consists of two multiplexers (MUXes)
[13, 20]. At each stage, the signal transition and the delay difference between
the two paths depending on the input challenge bits, which control how
each MUX behaves, i.e., either straight or crossing, as shown in Figure 2.
The delays introduced by the multiplexers vary with the input challenge bits
where an arbiter, commonly implemented as a latch, at the end determines
the possible final output either 0 or 1. That is, if the top path arrives first, then
the arbiter outputs 1 or 0 otherwise.

Arbiter PUFs had known security issues because the delays were linearly
added to produce the resultant response bit [13]. To overcome this issue,
another variation of arbiter PUFs, named XOR arbiter PUFs, is constructed
from multiple arbiter PUFs, as shown in Figure 3. A k-XOR arbiter PUF
instance incorporates k arbiter components, i.e., arbiters, each of size n
placed in parallel, where all of the k components take the same n-bit
challenge C as an input (C = c1 . . . cn). The responses of all individual
arbiter PUFs are XORed together to produce the final response r for the
corresponding input challenge C. Therefore, the response of the n-stage
k-XOR arbiter PUF shown in Figure 3 can be expressed as:

r =
⊕

i=1...k
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Figure 2 Arbiter PUF of n-bit length (named stages). An input challenge bit is either 1 or 0
to indicate if the signal should transit straight or crossed, respectively.
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Figure 3 k-XOR Arbiter PUF. The input n-bit challengeC is fed to every arbiter. The output
of all arbiters is XORed to produce the final response r.

where ri is the internal output of the ith component arbiter PUF, and ⊕
indicates to XOR operation.

2.2 Modeling Arbiter PUF

The most efficient method to mathematically represent arbiter PUFs is using
additive delays model of the signals at all stages of the PUF circuit. Given that
each stage consists of two multiplexers, the elapsed times of the two signals
arriving at the arbiter from the time the signal starts entering the first stage
of the PUF are the summations of the delays incurred at each stage of the
PUF. The final delay difference ∆ between the upper and lower paths in n-bit
arbiter PUF is the scalar multiplication between the feature vector ~Φ and the
transposed delay vector ~W as follows:

∆ = ~Φ ~W
T (1)

where ~Φ and ~W are both in n+ 1 dimension. Hence, the delay difference ∆
can be expressed as:

∆ = φ1w1 + φ2w2 + · · ·+ φnwn + wn+1

The feature vector ~Φ is derived from the challenge vector C as follows.

Φ(C) =
{
φc1 , φc2 , . . . , φcn , 1

}
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where,

φck =
n∏

i=k

2ci − 1, for k = 1, . . . , n (2)

The parameter ~W is a vector encoding arbiter PUF delays. Let’s denote δci
and δsi the delays incurred from the crossed signal path and straight signal
path at stage i, respectively (refer to Figure 2). Then:

wi =


δc1 − δs1, i = 1

δci − δsi + δci−1 + δsi−1, i = 2, ..., n

δcn + δsn, i = n+ 1

Since the arbiter’s response is 1 if ∆ ≤ 0 or is 0 if ∆ > 0, the response r can
be expressed as:

r = sgn(∆) = sgn
(~Φ ~W

T ) (3)

where sgn(·) is the sign function. The equations above are thoroughly derived
and elaborated in [4, 21].

The XOR operation increases nonlinearity in the relationship between the
response r and the transformed challenges Φ. Therefore, Equation (2) plays
an essential role in making modeling PUFs via machine learning method
feasible. It is nothing but a linear transformation of the feature vector ~Φ to
transform the highly nonlinear relationship between response r and challenge
vectorC into a linear function of inside the sign function in equation 3. While
every additional arbiter PUF increases nonlinearity and the dimensionality
of the parameter space to be machine-learned by attackers [21], leading to
higher resistance against machine learning attacks [17], it also increases the
chip area and cost needed for silicon implementation, hence making it critical
to decide the size of XOR in a PUF design.

3 Attacking Model of XOR PUFs

3.1 Mathematical Clonability

The modeling attack of PUFs and their variations are generally a non-
invasive attack, meaning that if we can predict the responses of a given PUF
instance in high probability, assuming a set of CRPs is drawn from the target
PUF by eavesdropping or any other means, we can then break its security.
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One effective yet difficult solution is the direct physical access to the target
PUF to apply side-channel inference and reconfiguration of the circuits on
the chip, which is not always feasible in a real scenario [10]. It has become
conventionally known that attacking PUFs can be achieved by mathematical
clonability through machine learning-based modeling methods. There have
been several studies investigating the possibility of mathematical clonability
of XOR PUFs [5, 20, 21, 25]. Those studies share almost one thought in
common, XOR PUFs with large numbers of component arbiter PUFs (at least
6 PUFs) are among the PUFs family that holds high resistance against
machine learning-based attacks. This is because the nonlinearity introduced
by XOR operation, as well as the requirement of substantially large dataset
size, to train machine learning models to increase the effort needed to break
the XOR PUF instance.

The mathematical clonability of XOR PUFs is similar to arbiter PUFs
in which it can be achieved by constructing a machine learning model that
predicts the response of a given challenge in high accuracy and confidence.
If the model prediction accuracy is high enough, it is then used for future
CRP prediction. Artificial Neural Networks (ANNs) are one of the machine
learning methods that have been successfully applied for supervised learning
to solve complex nonlinear problems. In our previous work [4], we investi-
gated the effectiveness of the neural network in attacking large XOR PUFs
by proposing a modified neural network method to handle training datasets
possibly larger than memory capacity. Since existing machine learning-based
attack studies require developers to write a complex memory-optimized
parallel machine learning code to be executed by parallel computing servers,
the breakability of PUFs without consuming much effort to optimize the
attacking code would be a more severe risk that deserves investigation. In this
paper, we propose two adversarial models that achieve breaking XOR PUFs.
That is, noise-free and noisy attack models.

3.2 Noise-Free Attacking Model

The essence of our attack stems from the efficient utilization of the multilay-
ered perceptron algorithm (MLP). MLP is a class of artificial neural networks
applied as a generic function approximation for supervised learning tasks.
It is a sequential learning procedure that carries out the perceptron theorem
in which it guarantees convergence, i.e., find the separating hyperplane in a
finite number of iterations given data with linearly separable classes. As illus-
trated in Figure 4, MLP comprises a set of directly connected layers, each
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Figure 4 The generic architecture of multilayered Perceptron.

of which has a set of neurons. Theoretically, given a dataset (X,Y ), where
X = {x1, x2, . . . , xn} is a set of training samples, and Y = {y1, y2, . . . , yn}
is the set of labels, the learning process in MLP is nothing but finding
(approximating) the weights between the input and output layers. That is, the
learning process proceeds from the input layer towards the output layer where
the output of each neuron in one layer is the result of an activation function
whose input is the linear combination of all outputs of neurons at the earlier
layer, with the first layer being the linear combination of all scalar entries of
the vector X . The weight vector for that layer denotes the coefficients of the
linear combination at one layer. When the final outputs are not close enough
to the target labels, the weights are tuned in such a way that minimizes the
difference between the model output and the target labels.

During the process of MLP, the values of W shown in the Equation (1)
are iteratively tuned by training the delay model (3) using an adequately large
set of challenge-response pairs (CRPs). After training the model, the correct
response for any challenge C can be predicted using the trained model.
Therefore, the attacking method of XOR PUFs is to identify the hyperplane,
by well approximation of W, that separates the high-dimensional space of
transforming challenges Φ, shown in the Equation (1), into two subspaces
where r = 0 is in one subspace and r = 1 is in the other one. Additionally,
we found out that using three hidden layers (excluding the input layer and the
output layer) is sufficiently and efficiently enough to break XOR PUF.

Figure 5 demonstrates the high-level process of performing a machine
learning-based attack on XOR PUFs. It consists of two self-explanatory
phases: preprocessing phase and modeling phase. In the preprocessing phase,
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Figure 5 High-level processing view to break XOR PUFs.

the input CRPs, i.e., challenge-response pairs, are collected from an XOR
PUF instance of particular xor size and stages, followed by a linear transfor-
mation applied on the input, as shown in Equation (2) in the previous section.
In the modeling phase, the model in Equation (3) is trained and evaluated
using an artificial neural network. After the training has completed, the final
model is tested against newly random CRPs to determine how good the model
is to predict responses for any CRP set.

The procedure of attacking XOR PUF is straightforward and is illustrated
in Algorithm 1 for clarity. In line (2), the CRP sets are prepared, including
the linear transformation of Φ shown in Equation (2), and divided into three
separate subsets. In line (3), the method construct mlp model() includes our
optimization of the neural network model parameters such as the architecture
of the MLP and the optimization algorithm to minimize the objective func-
tion. We shall explain more about it in the next section. Finally, we store the
final delay model W to be used for offline predictions when needed.

Algorithm 1 XOR PUF Attack
Variables Description:

• X is the challenge-response dataset.
• t is training time.
• γ is evaluation metrics (acc, precision, recall, F1).
• W is final delay model.

1: procedure XOR PUF ATTACK(X)
2: tr set, val set, ts set← preprocess dataset(X)
3: model← construct mlp model()
4: t← train model(model, tr set, val set)
5: γ,W← test model(model, ts set)
6: return W, γ, t
7: end procedure
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3.3 Noisy Attacking Model

An essential property of PUFs is that the responses of a PUF instance need
to be distinct between different PUFs instances but the same under various
environmental conditions for the same PUF instance. Hence, a challenge is
said to be unstable (or noisy) if repeated evaluations of the corresponding
challenge in the same PUF instance result in different responses. In reality,
the MUX-based PUF is not 100% stable. The stability of PUF responses is
affected by deteriorating over time due to various sources of uncontrollable
random noise such as aging, environmental variations, and power voltage [3].
In the case of delay measurements, electromagnetic interference and the sup-
ply voltage fluctuation profoundly affect the delay and can result in deceptive
responses [27].

The ultimate goal of machine learning-based attack methods on XOR
PUFs is to be able to predict PUF responses given randomly unseen chal-
lenges. This implies constructing accurate and skillful models during the
modeling phase (training phase). The precision and quality of the constructed
model depend on the parameter choices, and more importantly, the amount
of noise exists in the training samples, i.e., challenge-response pairs. Con-
structing a noise-resilient machine learning-based model involves rigorous
manual optimizations and careful parameter choices. To enable fair and
consistent comparison in the PUF-related literature, we introduce random
noise variations to the training sets to emulate the real practice of attacking
XOR PUFs on deployed PUF devices when noisy conditions exist. The
random noise variations introduced in our experiment can be conventionally
modeled as random variables drawn from Gaussian distribution, as suggested
by [1, 9, 23, 29]. To do so, we add a random Gaussian noise Gnoise =
gaussian (µ, σ) to the final delay difference ∆ shown in Equation (1).
Gaussian noise is nothing but a statistical noise having a probability density
function equal to that of the normal distribution, i.e., the values that the noise
can have is drawn from the normal distribution. Thus, the Equation (1) can
be reformulated to accommodate the noise as the following:

∆ = ~Φ ~W
T

+Gnoise (4)

then, the final response r will simply be classified as:

r =

1, if ∆ ≤ 0

0, if ∆ > 0
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4 Experiment and Discussion

The impact of our proposed adversarial attack against XOR PUFs is evaluated
by developing XOR PUF simulation written purely in Python language and
launched on a computation node having 32 processors and 16GB of memory.
However, the code runs only on a single CPU processor. This simulation
serves as an attacking environment in which it consists of two main tasks: (1)
data generation and (2) machine learning-based modeling attack employing
the multilayer perceptron algorithm (MLP). The challenge-response (CRPs)
data generator is capable of generating data for any XOR PUF given the
desired size of XOR and the length of PUF (PUF stages). The CRPs data
are randomly collected from the range (0, 2n), where n is the length of PUF.
The arbiter PUF delays are drawn using a Gaussian distribution with zero
mean and one unit standard deviation. For the machine learning task, we
use Keras [7], an open-source library specified for a neural network that
runs on top of TensorFlow. We argue that showing the success of attacking
XOR PUF by conducting such a well-specified simulation has nearly a
comparable impact and severity similar to possessing challenge-response
datasets obtained from an FPGA implementation. This is because the mul-
tilayer perceptron (MLP) has been recognized as a universal approximator to
successfully solve complex, non-linear, and real-world problems, especially
when the MLP parameters are appropriately selected.

The objective of the multilayered perceptron algorithm is to reduce the
loss functions that measure the inconsistency between the predicted value
and the actual label. Generally speaking, the learning task via supervised
learning methods works by training the constructed model using different
types of optimizers such as Stochastic Gradient Descent (SGD) [14], Adap-
tive Moment Estimation (ADAM) [15], and Adagrad optimizer [8]. In our
experiment, we have found out that ADAM optimizer, with the learning rate
η = 1 × 10−2 works well in terms of the training time and the validation
accuracy. The learning rate is one crucial parameter that regulates how
much change can be applied to the model in response to the estimated error
when the model weights are updated. Furthermore, the constructed neural
network architecture consists of a varying number of hidden layers (excluding
the input layer and output layer) with the different numbers of neurons
(illustrated in the upcoming tables). The activation function applied by the
hidden layers is the Parametric Rectified Linear Unit (pReLU), which is just
a generalization of the Rectified Linear Unit (ReLU) that adaptively learns
the parameters of the rectified activation units [12].
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To assess the performance of the trained models as a binary classifier,
we consider the following metrics: Accuracy, Precision/Recall, F-score, and
Training Time. The machine learning community traditionally uses these
metrics. While accuracy is a good indicator of model performance, especially
for balanced data, the other metrics like F1-score and Precision/Recall pro-
vide a deeper analysis of the model behavior. More useful interpretation of
these metrics is given by [2, 16]. For the sake of completeness, we explain
these metrics below using a similar interpretation from this paper [2]. Let C
be a set of challenge vectors. Let f(c) be the output of the predictive model
given the challenge c ∈ C, and yc is the ground truth label (i.e., the actual
label). Let TP, TN, FP, FN denote to True Positive, True Negative, False
Positive, and False Negative, respectively. Then:

TP (f, y) = |{f(c) = 1 ∩ yc = 1|c ∈ C}|
TN(f, y) = |{f(c) = 0 ∩ yc = 0|c ∈ C}|
FP (f, y) = |{f(c) = 1 ∩ yc = 0|c ∈ C}|
FN(f, y) = |{f(c) = 0 ∩ yc = 1|c ∈ C}|

Acc(f, y) =
TP (f, y) + TN(f, y)

|C|
=
|{yc = f(c)|c ∈ C}|

|C|

Pre(f, y) =
TP (f, y)

TP (f, y) + FP (f, y)

Rec(f, y) =
TP (f, y)

TP (f, y) + FN(f, y)

F1(f, y) = 2× Pre(f, y) ·Rec(f, y)

Pre(f, y) +Rec(f, y)

(5)

For each k-XOR PUF, we run the experiment 5 times and report the
average result for each metric. For the machine learning process, the input
dataset, denoted by X by Algorithm 1, is preprocessed by the method
(preprocess dataset) and distributed into three sets: 70% of the data are used
for training, 10% is used for evaluation, and the remaining 20% is reserved
for testing. We emphasize that the testing data are unseen during the training
process to help us evaluate the generalization of our prediction model on new
data. In addition, we compare the results of our constructed attack models, in
which we show the size of training data and training time are reduced, against
two previous research efforts related to our work: (i) the first proposed model
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on breaking the security of XOR PUF introduced by Ruhrmair et al. [21], and
(ii) our previous work in [4].

Table 1 (see next page) illustrates the results of noise-free attack mod-
els on XOR PUFs for two stage lengths 64-bit and 128-bit shown in the
Tables 1(a) and 1(b), respectively. The first column ⊕ indicates to the XOR
size, which is nothing but the number of parallel stages, i.e., arbiter PUFs,
that their responses are being XORed (see the Figure 3 for illustration). In the
column “Model”, we compare three models (A, B, C), each of which is meant
to denote specific work. Model A is the model results introduced by Ruhrmair
et al. [21] as the first machine learning-based attempt to break XOR PUF.
Model B indicates the work by Aseeri et al. [4], and it achieved better results
than model A via the neural network approach. Model C indicates the results
of the proposed models in this paper, emphasized in bold, where we show the
improved results over the models A and B in terms of the number and the
size of training data as well as the training time. The column “Training Set”
lists the minimum the number of training datasets (and their sizes) needed to
attain successful training of the models. The column “Memory Usage” lists
the amount of memory utilized by the training process of our model using the
Linux command htop. Note that the empty cells, filled by (N/A), imply no
answers provided for the corresponding metric by the models A and B. Due
to space limit, we direct the reader to the Appendix (Subsection A.1) to see
the MLP hyperparameters choices to achieve the results in Table 1.

From Table 1, it can be realized that while all three models attain almost
similar prediction accuracies in attacking XOR PUFs, our proposed model C
is able to attain a solid predictive power using smaller sets of training data
compared to model B. Specifically, for 64-bit stage, the model C uses in
average 40% smaller training data size than the model B and, for 128-bit
stage, in average 55% smaller training data size than the model B. Keep in
mind that comparing between the models B and C while excluding the model
A is rational here because the models B and C use the same machine learning
method, the neural network, while the model A uses different machine learn-
ing method, the logistic regression. Furthermore, model C achieves faster
training time compared to the other two models A and B, which shows how
good our precise selections of the multilayered perceptron parameters can
positively affect the performance as it makes the gradient descent find the
optimal weights very quickly. Moreover, we demonstrate the training loss
curves from our attack model C in Figures 6 and 7 for different XOR sizes.
In these plots, the vertical axis represents the loss values, and the horizontal
axis represents the number of epochs the model conducted. As seen, our
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Table 1 Results of noise-free attack models on XOR PUFs for two PUF stages lengths:
(a) 64-bit and (b) 128-bit. The first column ⊕ indicates to the XOR size while the second one
M indicates to the model type for comparison

Training Set Evaluation Metrics Training Memory
⊕ M # CRPs (Size) Accuracy F1 Score Time Usage

(a) When PUF stage length is 64-bit
4 A 12× 103 99% N/A 3.32 min N/A

B 0.4× 106 (0.2 GB) 98.42% N/A 19.2 sec N/A

C 200× 103 (12.8 MB) 99.11% 99.02% 29.21 sec 52 MB

5 A 80× 103 99% N/A 2.08 hrs N/A

B 0.8× 106 (0.4 GB) 98.55% N/A 58 sec N/A

C 500× 103 (32.5 MB) 99.09% 99.09% 1.41 min 130 MB

6 A 200× 103 99% N/A 31.01 hrs N/A

B 2× 106 (1 GB) 99.15% N/A 7.4 min N/A

C 900× 103 (58.5 MB) 99.01% 99.01% 4.54 min 234 MB

7 A N/A N/A N/A N/A N/A

B 5× 106 (2.5 GB) 99.21% N/A 11.8 min N/A

C 4× 106 (260 MB) 99.07% 99.07% 9.26 min 1.04 GB
(b) When PUF stage length is 128-bit

4 A 24× 103 99% N/A 2.52 hrs N/A

B 0.8× 106 (0.8 GB) 98.46% N/A 1.32 min N/A

C 400× 103 (51.6 MB) 99.04% 99.04% 1.2 min 206.4 MB

5 A 500× 103 99% N/A 16.36 hrs N/A

B 3× 106 (3 GB) 98.55% N/A 5 min N/A

C 2.5× 106 (322 MB) 99.06% 99.06% 4.39 min 1.3 GB

6 A N/A N/A N/A N/A N/A

B 20× 106 (20 GB) 99.03% N/A 19 min N/A

C 4.5× 106 (580.5 MB) 99.06% 99.06% 13.37 min 2.3 GB

7 A N/A N/A N/A N/A N/A

B 40× 106 (40 GB) 99.00% N/A 1.5 hrs N/A

C 10× 106 (1.29 GB) 99.11% 99.11% 25.8 min 5.16 GB
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Figure 6 Training loss curves of the noise-free attack models applied on different XOR PUF
sizes when stage length is 64 bit. For each XOR size, the curve is averaged over 5 runs.

Figure 7 Training loss curves of the noise-free attack models applied on different XOR PUF
sizes when stage length is 128 bit. For each XOR size, the curve is averaged over 5 runs.

models reach the lowest possible prediction errors, manifesting the ability
to predict the correct responses of any given challenge set. Note that although
we carried out experiments up to 7-XOR PUFs only, we anticipate that
it is unlikely that this many PUFs will be applied in practice due to the
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Table 2 Results of the proposed noisy attack models applied on 7-XOR 64 bit PUFs using
different noise values. The structure of MLP consists of three hidden layers each of which has
128 neurons. The batch size is set to be 100× 103

Noise Value Training Set Evaluation Metrics Training Memory
Gnoise # CRPs (Size) Accuracy F1 Score Time Usage
0.1 6× 106 (390 MB) 98.31% 98.31% 6.68 min 1.56 GB
0.2 7× 106 (455 MB) 98.22% 98.22% 8.66 min 1.82 GB
0.3 7× 106 (455 MB) 97.35% 97.34% 7.59 min 1.80 GB
0.4 8× 106 (520 MB) 97.25% 97.25% 9.28 min 2.09 GB
0.5 8× 106 (520 MB) 96.83% 98.83% 16.26 min 2.08 GB

Table 3 Results of the proposed noisy attack models applied on XOR Arbiter PUFs when
noise value Gnoise = 0.5. The first column L indicates to the stage length while the second
column ⊕ indicates to the XOR size.

Training Set Evaluation Metrics Training Memory
L ⊕ # CRPs (Size) Accuracy F1 Score Time Usage
64 bits 4 300× 103 (19.5 MB) 97.78% 97.81% 14.61 sec 78 MB

5 600× 103 (39 MB) 97.35% 97.33% 39.34 sec 156 MB

6 1× 106 (65 MB) 97.05% 97.05% 4.13 min 260 MB

7 8× 106 (520 MB) 96.83% 98.83% 16.26 min 2.08 GB

128 bits 4 500× 103 (64.5 MB) 97.96% 97.94% 18 sec 258 MB

5 3× 106 (387 MB) 97.41% 97.42% 3.83 min 1.54 GB

6 6× 106 (774 MB) 97.78% 97.78% 12.34 min 3.09 GB

expected response unreliability as well as the overhead and cost associated
with manufacturing the large size of XOR PUFs.

Tables 2 and 3 illustrate the results of attack models using noisy data.
The Table 2 presents the results of noisy attack models applied on 7-XOR
64-bit PUFs using different noise values Gnoise ranging from 0.1 to 0.5, as
suggested by [1, 29]. In general, modeling noisy data has always been a chal-
lenge because it may lead to poor generalization. As noticed in both tables, it
is still considerably impressive to achieve as low as 96% prediction accuracy
in relatively faster training time. This implies that our careful choices of
multilayered perceptron parameters alongside the problem-tailored design of
MLP play a significant role in achieving these successful results. Besides, we
plot the training loss curves of our noisy attack models presented in Table 2
in Figure 8. As shown in this plot, the prediction errors decrease, enabling
the resulted model to be able to predict the responses of any given noisy
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Figure 8 Training loss curves of the proposed noisy attack models applied on 7-XOR 64-bit
PUFs using different noise values. For each noise value, the curve is averaged over the total
of 5 runs.

Figure 9 Training loss curves when the noise value is Gnoise = 0.5 for PUF stage length
64 bit. For each XOR size, the curve is averaged over 5 runs.

challenge input. Similarly, Table 3 shows the results of noisy attack models
applied on different XOR PUFs sizes when noise value is Gnoise = 0.5. The
training loss curves of this table are plotted in Figures 9 and 10. As shown,
the model can achieve at least 96% prediction accuracies given noisy data.
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Figure 10 Training loss curves when the noise value is Gnoise =0.5 for PUF stage length
128 bit. For each XOR size, the curve is averaged over 5 runs.

Due to space limit, we direct the reader to the Appendix (Subsection A.2) to
see the MLP hyperparameters choices to achieve the results in Table 3.

5 Conclusion

In this paper, we efficiently and effectively showed the possibility of breaking
the security of large-sized XOR PUFs in high prediction accuracy and shorter
training time using smaller datasets size compared with other existing works
known to us. Our attack process employs the multilayered perceptron method
to construct predictive models whose architecture is well constructed, and the
parameters were rigorously crafted to achieve successful response prediction
of any given XOR PUF. Additionally, our proposed method is noise-resilient,
making the attack more severe. Revealing the ability to attack XOR PUFs is
important to PUF designers and developers to be aware of existing vulnera-
bilities, and therefore improving the PUF designs to resist against potential
risks.
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Appendix

A.1 MLP Hyperparamters Choices: Noise-Free Attack Models

Table A.1 shows the hyperparameter choices used by the MLP to construct
noise-free attack models on XOR Arbiter PUFs for two PUF stage lengths:
64 bit and 128 bit. The column “Hidden Layers” illustrates the size of the
MLP’s hidden layers, excluding the input and the output, and the number of
neurons at each layer. For instance, (16, 16) means two hidden layers, each
of which includes 16 neurons. The other columns are self-explanatory.

A.2 MLP Hyperparamters Choices: The Proposed Noisy Attack
Models

Table A.2 shows the hyperparameter choices used by the MLP to construct
the proposed noisy attack models applied on XOR PUFs when noise value
Gnoise = 0.5 for two PUF stage lengths: 64 bit and 128 bit. Again, the
column “Hidden Layers” illustrates the size of the MLP’s hidden layers,
excluding the input and the output, and the number of neurons at each layer.
For instance, (16, 16) means two hidden layers, each of which includes 16
neurons. The other columns are self-explanatory.

Table A.1 Hyperparameter choices for noise-free attack models on XOR Arbiter PUFs for
two PUF stage lengths: 64 bit and 128 bit. Refer to Table 1 for the results

XOR Batch Hidden Layers Activation Learning
Stage Size Optimizer Size (×103) (# Neurons) Function Rate
64 bit 4 ADAM [15] 10 (16, 16) pReLU [12] 1× 10−2

5 10 (32, 32)

6 10 (64, 64)

7 50 (128, 128, 128)

128 bit 4 ADAM [15] 10 (16, 16) pReLU [12] 1× 10−2

5 30 (128, 128, 128)

6 10 (128, 128, 128)

7 100 (128, 128, 128)
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Table A.2 Hyperparameter choices for the proposed noisy attack models applied on XOR
PUFs when noise value Gnoise = 0.5 for two PUF stage lengths: 64 bit and 128 bit. Refer to
Table 3 for the results

XOR Batch Hidden Layers Activation Learning
Stage Size Optimizer Size (×103) (# Neurons) Function Rate
64 bit 4 ADAM [15] 10 (16, 16) pReLU [12] 1× 10−2

5 10 (32, 32)

6 10 (64, 64, 64)

7 100 (128, 128, 128)

128 bit 4 ADAM [15] 10 (16, 16) pReLU [12] 1× 10−2

5 10 (128, 128, 128)

6 10 (128, 128, 128)
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