
Can We Detect Malicious Behaviours
in Encrypted DNS Tunnels Using Network

Flow Entropy?

Yulduz Khodjaeva∗, Nur Zincir-Heywood
and Ibrahim Zincir

Faculty of Computer Science, Dalhousie University, Canada
Faculty of Engineering, Izmir University of Economics, Turkey
E-mail: yulduz.khodjaeva@dal.ca; zincir@cs.dal.ca; ibrahim.zincir@ieu.edu.tr
∗Corresponding Author

Received 01 April 2022; Accepted 14 May 2022;
Publication 14 August 2022

Abstract

This paper explores the concept of entropy of a flow to augment flow sta-
tistical features for encrypted DNS tunnelling detection, specifically DNS
over HTTPS traffic. To achieve this, the use of flow exporters, namely Argus,
DoHlyzer and Tranalyzer2 are studied. Statistical flow features automatically
generated by the aforementioned tools are then augmented with the flow
entropy. In this work, flow entropy is calculated using three different tech-
niques: (i) entropy over all packets of a flow, (ii) entropy over the first 96 bytes
of a flow, and (iii) entropy over the first n-packets of a flow. These features are
provided as input to ML classifiers to detect malicious behaviours over four
publicly available datasets. This model is optimized using TPOT-AutoML
system, where the Random Forest classifier provided the best performance
achieving an average F-measure of 98% over all testing datasets employed.
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tunneling attacks.
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1 Introduction

DNS is the Internet’s hierarchical, distributed database system that trans-
lates the Internet Protocol (IP) addresses to Domain names, and vice versa.
Recently, this core network functionality has been facing pressure for change.
Specifically, two aspects are of particular relevance: DNS over HTTPS
(DoH) and DNS over TLS (DoT). The objective is to secure communications
between the DNS resolver residing on the end user’s system and their chosen
recursive resolver. DoH achieves this by embedding DNS query into a Secure
HyperText Transfer Protocol (HTTPS) request/response, while DoT achieves
this over the Transport Layer Security (TLS over TCP) protocol [18, 41, 47].
DoT protocol uses new TCP port number 853, and DoH blends into HTTPS
traffic, sharing the same port. Thus, managing DoH traffic seems to get more
challenging [19]. New protocols potentially imply that significant changes
will result in web and domain name mapping services. These new versions
will change connection management layer, as well as changing the nature of
traffic and application behaviours. Moreover, with DoH, the entire Internet
‘threads’ through the ‘eye’ of HTTPS. As a consequence, traditional ways
of analyzing network and application data for cyber security, network oper-
ations and management using metadata, port or payload may no longer be
possible [36, 40, 45].

In particular, DoH has been advocated to provide user privacy and secu-
rity by encrypting the data between the DoH client and the DoH-based
DNS resolver. As a consequence, it is argued that the risk of DNS data
manipulation substantially decreases. What seemed to be a quite promising
and effective solution at the very start, later gained a lot of criticism among
the researchers, who claimed that DoH makes DNS tunnels harder to detect
and mitigate. This specifically affects the detection of malicious (attack)
behaviours that exfiltrate data through DNS tunnelling. DNS protocol, which
works with plain text for its data transmission, allows organizations to mon-
itor DNS traffic by observing DNS queries. Once the data gets encrypted,
threat analysis based on the plain text content of DNS queries becomes
an obsolete tool for network security specialists. The features extractable
from DNS queries, like domain name, record type, unique query ratio,
query volume and length would be encrypted in DoH leaving only IP
address, port number and timestamp in plaintext form [19]. The feeling of
worry builds up with an overall increase in encrypted traffic. According to
statistics provided by Google [10], 95% of web data across its platforms
undergoes HTTPS encryption. This includes advertising, Google Calendar,
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Google Drive, Gmail, Google Maps and YouTube. Additionally, operating
systems (macOS, iOS and Windows etc.) and web browsers (Google Chrome,
Microsoft Edge, Mozilla Firefox and Opera etc.) have been supporting DoH
and DoT protocols. Given that a form of encryption is applied in this newly
established protocol, attackers can leverage DoH for attacking purposes.
It is also well known that DNS and its plaintext nature remains highly
vulnerable to amplification attacks, DNS cache poisoning, botnet attacks,
phishing attacks and DNS manipulation [35]. Due to these security issues,
it is important to detect attack tunnels in DNS traffic.

Taking all these factors into account, researchers have started to explore
host-based and network-based monitoring for DoH protocol analysis [30].
To this end, some recent works have evaluated the use of Machine Learning
(ML), entropy, and network packet distribution-based approaches for ana-
lyzing tunnelling and exfiltration attacks over DNS [21, 34, 43, 49]. While
some of these works focus on using DNS-specific attributes, others use traffic
or malware-specific attributes. In this paper, we extend and optimize our
proposed concept of entropy of a network flow in order to detect attack
behaviours in DoH tunnels. Even though previous works [26, 32] have
employed entropy for summarizing network packet distributions, to the best
of our knowledge, this is the first work studying and optimizing the detection
of attack DNS tunnels using entropy in the context of network flows. To this
end, the usability of AutoML tools, namely TPOT, for optimizing the DoH
tunnelling classification is explored. TPOT is a Python-based ML tool that
was developed in 2016 with a core objective of optimizing ML pipelines
using Genetic Programming [7]. Considering thousands of pipeline configu-
rations based on the dataset provided, TPOT automates the most tedious and
time-consuming part of ML. Based on the current literature studied, using
the TPOT-AutoML toolset for malicious DNS traffic detection is the first of
its nature being reported. Thus, the novelty and the new contributions of this
work are summarized as the following:

• Exploring the use of flow entropy characteristic to augment statistical
features of network traffic flows for identifying attack DoH tunnels;

• Exploring the minimum number of packets required to calculate entropy
per traffic flow without decreasing performance or increasing complex-
ity of the identification of attack DoH tunnels;

• Exploring the optimization of the proposed approach in terms of com-
plexity and performance to detect attack DoH tunnelling behaviours
using the TPOT-AutoML tool.
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The rest of this paper is organized as follows: Section 2 summarizes the
related literature while Section 3 discusses the methodology used in this
research. Experiments performed and the results obtained are presented in
Section 4. Finally, conclusions are drawn and the future research is discussed
in Section 5.

2 Literature Review

Detection of attacks by analyzing network traffic has become one of the
most widely researched areas in the cybersecurity. Scientists have been
proposing state-of-the-art Intrusion Detection Systems (IDS) and carrying out
experiments to analyze malicious activities. In the following, we summarize
the works from the literature focusing on attack DNS (DoH) tunnelling
behaviours.

2.1 DNS Traffic Analysis

In [22], Das et al. proposed ML algorithms to detect DNS channel exploita-
tion, a possible alternative for traditional detection mechanisms like blacklists
or signature-based methods. An application of a ML-based system was
designed for internal network enterprise. They proposed an end-to-end sys-
tem to identify exfiltration and tunnelling activity based on internal packet
data. They collected network traffic of an enterprise for 39 days, containing
no attacks. For exfiltration data, they had to synthesize it artificially, with
three sets using base64, base32 and hex on random strings and one set
using base64 on credit card numbers. Once the dataset was generated and
labelled, they calculated features like normalized entropy of the concatenated
string, length of the string, the ratio of uppercase and lowercase letters in
the string and so on. In total they employed eight features into the Logistic
Regression (LR) classifier and demonstrated an F1-measure of 96% at its
peak.

In [32], Ahmed et al. aimed to detect DNS exfiltration and tunnelling
behaviour from enterprise networks by performing real-time analysis of DNS
queries. They collected DNS traffic from two enterprise networks, a medium-
sized research institute and a large university campus, injected a million
attack DNS queries. They identified three features: the entropy of a query
string, character count, and length of discrete labels in the query name
that primarily helped to distinguish attack DNS queries from benign ones.
They input these features extracted from queries into the Isolation Forest, an
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unsupervised learning algorithm. Performing fine-tuning during the training
phase, they achieved 95% accuracy for attack and 98% accuracy for benign
classes on the test datasets. Since detection of DNS exfiltration and tunnelling
was done in real-time, they also presented the average time complexity of the
proposed methodology, demonstrating that 800 µsec was enough per each
query name.

In [21], Campbell et al. used Self-Organizing Feature Maps (SOMs) to
identify DNS tunnelling and exfiltration activities. They also used an unsuper-
vised learning approach using network traffic packets. They represented DNS
packets as query strings and extracted features, which were then used to train
SOMs to cluster DNS tunnelling, exfiltration and normal behaviours. Three
publicly available datasets were used for representing benign behaviour,
while publicly available tools like DNScat2, DET, DNSTunnel and DNSteal
were used to generate tunnelling and exfiltration attacks. They employed
eight features from query strings for identifying exfiltration attacks, and
ten features for identifying tunnelling attacks. They were able to separate
malcious behaviours from normal behaviours with an F-measure of 99% on
test datasets.

In [38] Lambion et al. deployed Random Forest (RF) and Convolutional
Neural Network (CNN) supervised learning algorithms to detect DNS tun-
nelling in real-time. They created a dataset consisting of real-time DNS data,
collected from subscribers including Internet Service Providers, schools and
businesses. For each instance in a dataset, 5-tuple information was gathered:
〈query name, query type, IP address, query time and date〉. A label for each
instance was provided as well: “non-tunnelling traffic”, “normal resolved”,
and “DNS tunnel”. Since only a limited amount of data can be tunnelled
within each query name, data exfiltration was done over multiple queries
combined. Hence, they grouped queries with the same metadata. CNN classi-
fier was trained together with majority voting to label a group of DNS queries,
while RF classifier was trained to classify entire groups of DNS queries. 11
features were used for classification. Their results showed 96% accuracy for
RF and 99% accuracy for CNN classifiers.

Over the last decades, security experts have been questioning the security
of the DNS protocol. As a solution, DNS over TLS and DNS over HTTPS
protocols have been proposed. DoT is an Internet Engineering Task Force
(IETF) standard using TLS encryption and authentication between a DNS
client and a DNS server. Functioning at the operating system level, it commu-
nicates over TCP port 853. Whereas, DoH leverages HTTPS for encryption
and authentication between a DNS client and server. DoH shares TCP port
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443 with HTTPS traffic, and unlike DoT, it is implemented at the application
layer, creating room for browser traffic to bypass enterprise DNS control.

Montazeri et al. presented a two-layered approach to detect and character-
ize DoH traffic using time-series classifiers [43]. In the first layer, traffic was
classified into DoH and Non-DoH, while in the second layer characterization
of DoH into benign and attack took place. They extracted 28 statistical
features of DoH flows, using a tool called DoHMeter [4]. Statistical features
included parameters such as the number and rate of flow bytes sent / received,
packet length, packet time, etc. They employed six ML classifiers at both
layers and achieved an F-measure of 99% with Random Forest (RF) and
Decision Tree (DT) classifiers. They generated benign and attack DoH as
well as Non-DoH traffic within their network premises, identifying every
flow of encrypted network traffic by using tuple 〈source IP, destination
IP, source port, destination port, protocol〉. The dataset was made publicly
available at [2].

Following this, Singh et al. applied several ML classifiers to detect attack
activity in DoH and traditional DNS traffic [49]. They studied DoH security
risks since DoH bypassed local security measures such as Firewalls and IDSs.
They also used DoHMeter to extract statistical features from the publicly
available DoH dataset [2] and employed five ML classifiers. It should be
noted here that they applied the same 28 features as in [43]. So, their results
also showed that RF achieved an F-measure of 99% on their datasets.

Moreover, Behnke et al. [15] compared the performance of ten ML
classifiers using ten-fold cross-validation on DoHBrwDataset [2]. They also
used DoHMeter [4] to extract statistical and time-series features and applied
Chi-Square and Pearson Correlation Coefficient (PCC) tests to address the
overfitting problem. As a result, instead of 28 features, 21 were used for
a classification task. The results showed almost 0% misclassification error
for Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting
Machine (XGBM), RF, and DT classifiers. They also considered training
and prediction time, where LGBM was the fastest model, with training time
around 87 seconds for Layer-1.

Lastly, Raghav et al. discussed detection of DoH tunnelling by using a
set of ML algorithms in [46]. They deployed a packet sniffer on their local
PC to capture the packets of every connection layer transfer sent and received
by the PC. Once the dataset was collected, they deployed Scapy to group
packets into flows. They extracted 34 features for each flow (it is interesting
to note that features extracted by Scapy-based script were similar to features
extracted by DoHlyzer tool in [3, 43]). To reduce the training time of the
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classification model, They applied Gini index [9] to identify the most suitable
features. Then, they used LR, KNN, SVM, and RF classifiers, where RF
achieved 99% accuracy.

2.2 Using Entropy for DNS Traffic Analysis

In previous works, cybersecurity specialists have studied the use of entropy
features to detect malicious behaviours in DNS and other network traffic.
In [42], Mejri et al. used packet entropy to identify Denial Of Service (DOS)
attacks on Vehicular Adhoc Networks (VANETs). Packets, circulating within
the network, were categorized into four types: DATA, ACK, RTS and CTS.
Then, entropy values of DATA and ACK packets are calculated. Comparing
entropy value results of different scenarios, they showed that higher entropy
of packets corresponded to normal VANET behaviours.

In [21], Campbell et al. also used packet entropy features to detect
different behaviours in the traffic. They extracted eight features from DNS
queries, including normalized entropy of concatenated string to detect DNS
exfiltration. A similar method was undertaken for DNS tunnelling detection,
where entropy was among the ten features derived from DNS queries.

On the other hand, Aung et al. studied the entropy value of NAN
characters present in Uniform Resource Locator (URL) strings for phish-
ing detection [13]. Augmenting entropy value with previously proposed 10
features, i.e. IP address, age of the domain, port number, etc, they used a
RF classifier. Despite significant improvements in accuracy when applying
entropy, they also reported high False Positive Rates in all experiments.

In [51], Zhou et al. worked with entropy-related features to detect spam
emails using gcForest learning algorithm. They used three features for spam
detection: entropy of subject size of sent mails, the entropy of content size of
sent mails and the ratio of received mails to the sent mails. They collected a
mail dataset at a border network of a province in China for 34-days. Once the
dataset was collected, they ran three classifiers on their data: ALAC, SVM
and gcForest. Results showed spam detection rates over 90% for all three
classifiers at the source network.

2.3 Optimization Using TPOT-AutoML

In [44], Olson et al. implemented an open-source tool, namely TPOT, using
Python library and presented the tool’s efficiency by testing it on a series
of simulated and real-world benchmark datasets. The main reason behind
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developing TPOT was to make ML a more accessible, scalable and flexible
toolbox for the research community. To demonstrate TPOT’s efficiency, they
chose classification datasets from the well-known UC-Irvine Machine Learn-
ing Repository [24]. They evaluated all data using TPOT and showed that the
larger the dataset the better the optimization of the classifiers works using
TPOT. Ferreira et al. carried out experiments based on three scenarios: Gen-
eral ML (GML), Deep Learning (DL) and XGBoost [27]. They performed
a 10-fold cross-validation comparing eight open-source AutoML tools on
12 popular OpenML datasets. They used different performance metrics for
regression, binary and multi-class classification tasks. Mean Absolute Error
was used for regression, Area Under Curve (AUC) for binary classification
and Macro F1 score for multi-class classification. In total, authors per-
formed 12 (datasets) × 6 (tools) × 10 (folds) = 720 AutoML executions,
demonstrating the high performance of TPOT optimization in classification
problems.

Banadaki et al. used Auto AI for malicious DoH traffic classification [14].
They deployed DoHBrw dataset [2], extracted 34 features by using the
DoHlyzer tool [3] and input them into Auto AI to analyze different pipeline
configurations the tool provided. However, unlike TPOT, Auto AI considers
six ML classifiers, namely Extra Trees, DT, GB, LGBM, XGB, and RF
classifiers. Their results showed that LGBM and XGBoost could differentiate
DoH from non-DoH traffic with a high accuracy.

In summary, previous works show that there is a need for a systematic
and comprehensive study of analyzing the entropy of traffic flows, their
statistical features for optimizing the detection of DNS (DoH) tunnelling and
exfiltration behaviours.

3 Methodology

In this paper, we extend our previous research on detecting tunnelling and
exfiltration behaviours in DoH traffic via optimization of the network traffic
flow inspection-based approach, where the statistical flow features are aug-
mented with the entropy of the network flow [34]. This augmented feature set
is then used with ML classifiers to detect the malicious DNS tunnels. Figure
1 shows the overall methodology we followed. In this work, three publicly
available datasets are run through Flow Exporters, generating statistical fea-
tures for each flow. These are then augmented with the entropy of a flow. For
the entropy calculations, four different approaches are benchmarked during
the experiments: the first approach does not deploy any entropy feature, the
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second approach calculates an entropy value per flow by using all packets
of the given flow, the third approach calculates an entropy value per flow
by using the first 96 bytes of the payload and the last approach calculates
the entropy value using only the first n-number of packets of a flow (where
n equals 4 to 6). The final set of statistical and entropy features are then
used to train ML models to differentiate benign flows from malicious ones.
ML models trained in this work are: C4.5 Decision Tree, Random Forest,
Logistic Regression (LR), Support Vector Machine (SVM) and Naive Bayes
(NB). After an ML model is trained, five different testing datasets are used
to evaluate its performance, complexity and computational cost. Once the
final statistical features are chosen along with the entropy of a flow, the
proposed approach is optimized using the TPOT-AutoML system. Then, the
aforementioned five testing datasets are employed to evaluate and analyze the
performance, complexity and computational cost of the optimized detector
approach. The reduced number of features required for training ensures
considerably less computational cost on finding the best possible pipeline
by the TPOT-AutoML system.

3.1 Datasets

Due to the novelty of the DoH protocol, finding publicly available datasets is
a challenging task. Montazeri et al. released the “CIRA-CIC-DoHBrw-2020”
dataset [2], where they generated Benign-DoH, Attack-DoH and non-DoH
traffic using five different browsers and four servers. They used Google
Chrome, Mozilla Firefox browsers along with dns2tcp, DNSCat2 and Iodine
tools to access the top 10k Alexa websites. As for servers: AdGuard, Cloud-
flare, GoogleDNS and Quad9 were employed to respond to DoH requests.
In their dataset, DoH traffic is divided into benign and attack where attack
activities are represented in a tunnelled form. Tools used for attack traffic
generation sent TCP traffic encapsulated in DNS queries. DNS queries were
sent using TLS-encrypted HTTPS requests to one of the four DoH servers.
Hereafter, this dataset is referred to as DoHBrw.

Another publicly available dataset used in this work is “GT Malware
Passive DNS Data Daily Feed” [5, 50]. The dataset collection was initiated
by Georgia Tech Information Security Center in 2015, with data capture still
continuing. It was generated by running suspect Windows executable files in
a sterile and isolated environment, with limited access to the Internet. For
our paper, DNS Data for the year 2020 is employed. Hereafter, this dataset is
referred to as ImpactGT.
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Figure 1 Research Methodology for selecting the best feature set.
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Figure 2 Overview of the system used for optimizing the proposed approach.

Table 1 A summary of the datasets used
Datasets DoHBrw ImpactGT CICIDS
Number of flows 33000 12000 12000

Additionally, another publicly available dataset, namely “CICIDS
2017” [31, 48] is also employed in this paper. CICIDS, Intrusion Detection
Evaluation Dataset was released by the University of New Brunswick in
2017 and contains benign and attack pcap files. This dataset includes the
activities of 25 users using HyperText Transfer Protocol (HTTP), HTTPS,
File Transfer Protocol (FTP), Secure Shell (SSH) and email protocols for
benign traffic over five days. We employed only the benign traffic from this
dataset. Henceforward, it is referred to as CICIDS.

Table 1 shows the number of flows used from each dataset in this research.
As it can be seen from the table, the largest number of flows were taken
from the DoHBrw dataset, corresponding to benign and attack behaviour.
ImpactGT dataset employed in this work includes only attack traffic. On the
other hand, CICIDS traffic employed in this work include only benign traffic.
The datasets used in our evaluations are all balanced (equal number of attack
and benign flows) for training purposes.
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3.2 Network Flow Extraction Tools

As discussed earlier, in this work, we explore the application of network
traffic flow-based features augmented with the calculated flow entropy. This
enables the analysis of encrypted DoH traffic for attack behaviours since
no deep packet packet inspection is necessary. The proposed flow-based
approach considers flow properties in general – duration, number of bytes
sent and received (among others) – making near real-time analysis of network
activity possible for network security specialists. To this end, we explore the
usage of the following three network traffic flow exporters that are publicly
available.

1. Tranalyzer2 is a lightweight flow generator and analyzer, which can work
with ultra-large traffic dumps [6]. Tranalyzer2 consists of a set of plug-ins,
which users can activate according to their needs. Packet-to-flow aggregation
provides better analysis of network operations [20]. Similar to TShark, Tran-
alyzer2 supports packet mode, but unlike TShark, Tranalyzer2 also includes
a unique numerical ID linking every packet to its flow [20]. In earlier work,
Haddadi et al. evaluated several flow exporter tools on benchmark datasets
and reported that Tranalyzer2 demonstrated the best performance [28]. Tran-
alyzer2 extracts 109 features for each network flow. Additionally, it provides
information about flow directions, i.e. labeling A and B flows (client to server
and server to client respectively). Overall, the functionalities of Tranalyzer2
include:

• Packet capture
• Packet-to-flow allocation
• Flow timeout handling
• Plug-in function invocation
• Flow/packet based output formats

2. Argus is a bi-directional network traffic flow monitoring system. It provides
information about network flow status and is generally used for Network
Intrusion Detection and Anomaly Detection projects [1]. Argus supports
many protocols such as TCP, ARP, ICMP, and ESP, using its binary format
for flow extraction. For this reason, it requires the use of RA tool to convert
the binary output into CSV. Argus extracts 125 features for each flow.

3. DoHlyzer is specifically designed to export and analyze DoH traffic
flows [3]. Developed in Python, DoHlyzer gets pcap files as input and extracts
statistical and time-series features which are output into CSV files. DoHlyzer
extracts 34 features for each flow. DoHlyzer consists of several modules that
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Table 2 Performance of C4.5 training model on flow statistical features via flow exporters
Flow Exporter # of Attributes Used P F R
Tranalyzer2 7 95.6 95.2 95.2

Argus 10 99.6 99.6 99.6
DoHlyzer 14 99.9 99.9 99.9

Table 3 Features chosen by Tranalyzer2
# Attribute Description
1 tcpSeqSntBytes TCP sent seq diff bytes
2 connSip Number of connections from source IP to different hosts
3 tcpSSASSAATrip (A) TCP Trip Time Syn, Syn-Ack;(B) TCP Trip Time Syn-Ack
4 tcpRTTAckTripJitAve TCP ACK trip jitter average
5 aveIAT Average inter-arrival time
6 bytps Sent bytes per second
7 stdIAT Standard inter-arrival time

assist data analysis of DoH flows. These include DoHMeter, Analyzer and
Visualizer. Functionalities of the DoHMeter model include:

• Capturing HTTPS packets from a network interface and parsing user-
specified pcap files;

• Grouping packets into flows by their source and destination IP addresses
as well as source and destination port numbers;

• Statistical and time-series feature extraction for traffic analysis.

To evaluate and compare these three flow exporters, first we employed
a C4.5 decision tree to classify attack versus normal behaviours using the
training dataset. In this set of experiments, we only used the statistical flow
features without augmenting them with the entropy, Table 2. The results
showed that while Argus and DoHlyzer achieve F-measure values around
99%, Tranalyzer2 achieves an F-measure of 95%. Since all of them have
high performances, we further analyzed the features that were selected by
the trained decision tree model from the set of all features given to the
classifier. To this end, we observe that the C4.5 classifier using information
gain selected 7 features to separate benign flows from attack ones when
Tranalyzer2 is used. It selected 10 features when Argus is used, and 14
features when DoHlyzer is used. It should be noted here that DoHlyzer
supports feature extraction based on only TCP flows, whereas Argus and
Tranalyzer2 support both TCP and UDP flows.

Given the low number of features selected when Tranalyzer2 is used (less
number of features potentially enables a simpler ML model and near real-
time execution) and the ease of using Tranalyzer2 (compared to DoHlyzer
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Table 4 Features chosen by Argus
# Attribute Description
1 DstLoad Destination bits per second
2 TcpRTT TCP connection setup round-trip time, the sum of ’synack’ and ’ackdat’
3 Cause Argus record cause code: Start, Status, Stop, Close, Error
4 Dur Record total duration
5 Dir Direction of transaction
6 sTtl Source to Destination TTL value
7 Rank Ordinal value of this output flow record i.e. sequence number
8 DstLoad Destination bits per second
9 Proto Transaction Protocol
10 dHops Estimate number of IP hops from dst to this point

Table 5 Features chosen by DoHlyzer
# Attribute Description
1 FlowBytesSent Number of flow bytes sent
2 PacketLengthMode Mode packet length
3 DestinationPort Destination port
4 PacketLengthMedian Median packet length
5 PacketTimeMedian Median packet time
6 PacketLengthSkewFromMedian Skew from median packet length
7 ResponseTimeTimeVariance Variance of request/response time difference
8 FlowReceivedRate Rate of flow bytes received
9 PacketTimeSkewFromMedian Skew from median packet time

10 PacketLengthVariance Variance of packet length
11 PacketLengthSkewFromMode Skew from mode packet length
12 Duration Duration
13 ResponseTimeTimeMode Mode request/response time difference
14 PacketLengthMode Mode packet length

and Argus) on all datasets employed, we selected to continue with Trana-
lyzer2 to extract features from flows for the first phase of our experiments.
However, we did compare Tranalyzer2-extracted features to Argus-extracted
flow features, given that both tools support TCP and UDP. These compar-
isons are included in Section 4, demonstrating the performance obtained by
Tranalyzer2-extracted features.

3.3 Network Flow Entropy and Statistical Features

Claude E. Shannon introduced the concept of entropy for information theory
in 1948 [25]. Entropy is a measure of a state of randomness, disorder or
uncertainty. The more random the string is, the higher the entropy value it has.
Entropy has been used in many fields from thermodynamics to physics and
has been of interest in network anomaly detection as well. Detection of online
worms, DDoS attacks, ransom malware – are just a few examples where
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Figure 3 Methodology for entropy calculation.

entropy can be used for attack identification purposes. To this end, researchers
have used entropy to capture important characteristics of a packet’s header
or payload distributions [16, 21, 32, 37] for detecting anomalous behaviours.
However, we are not aware of any work that provides a methodology to
leverage entropy over network flows. Thus, the research hypothesis is that
entropy characteristics of a network traffic flow could provide an accurate
metric to show the randomness and therefore could be used to indicate the
actual state of encryption in the flow analyzed. Campbell et al. has shown
that entropy values calculated over an encrypted packet payload could enable
identification of tunnelling behaviours in DNS traffic in [21]. In this paper,
we optimize and evaluate our proposed approach to study the use of entropy
over network traffic flows. To this end, the following is used to calculate the
entropy of a network flow:

H(X) = −
N∑
i=1

p(Xi) log2 p(Xi) (1)

where X is the string and Xi is a character in the string, and p(Xi) is a par-
ticular character’s probability of being present in the string [25, 26]. Figure 3
shows the approach we followed in network flow entropy calculation. The
pcap file is provided as an input to the T-Shark tool, which extracts 6-tuple
information from each packet: 〈source IP address, destination IP address,
source port, destination port, packet’s frame time, and protocol〉.

JSON file, generated by the T-Shark tool, contains 6-tuple information,
which MATLAB script uses to match each packet to a particular flow. After
all of the packets are matched to their flows, the entropy value of the merged
n packets is calculated.

In this work, we augment statistical flow features with the entropy of a
network flow. In this case, the decision tree employs 13 features in total,
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Table 6 Features chosen by Tranalyzer2 augmented with entropy
# Attribute Description
1 %dir Direction of the flow
2 numBytesSnt Number of bytes sent
3 minPktSz Minimum packet size
4 stdIAT Standard inter-arrival time
5 ipMindIPID IP minimum delta IP identification
6 ipMaxTTL IP maximum time to live
7 tcpPSeqCnt TCP packet sequence count
8 tcpInitWinSz TCP initial effective window size
9 tcpAveWinSz TCP average effective window size

10 tcpMSS TCP maximum segment length
11 tcpWS TCP window scale
12 tcpRTTAckTripMax TCP acknowledgment trip maximum
13 entropy Entropy value of a flow

where 12 of them are statistical features selected by the decision tree from
the set of features that Tranalyzer2 extracts. It should be noted that features
selected by the decision tree significantly differ from the features chosen
when no entropy is employed (see Table 6 and Table 7 versus the previous
tables). Once the statistical and entropy features are extracted and calculated,
a balanced training dataset with 6000 attack and 6000 benign flows is used
to create a training model. Moreover, the dataset is balanced in terms of
protocols as well: both benign and attack flows are represented with TCP
and UDP protocols. DoHBrw dataset consists of TCP flows, while ImpactGT
and CICIDS are made up of UDP flows.

As discussed earlier, the training model is evaluated under four different
scenarios: (i) Only statistical flow features are used without any entropy,
(ii) Flow features are augmented with the entropy that is calculated over all
the packets of a network flow, (iii) Flow features are augmented with the
entropy that is calculated over the first 96 bytes of a network flow [23], and
(iv) Flow features are augmented with the entropy that is calculated for the
first n-packets of a network flow. When scenario 2 outperformed scenarios
1 and 3, we explore the entropy concept of a network flow by using as few
packets (of a flow) as possible, hence scenario 4. The reason behind this is that
identifying all packets belonging to a flow, and calculating their entropy is
computationally expensive. To decrease this computational cost, we analyze
the number of packets per flow (following the work in [17]) in each dataset
used, Figure 4.

Thus, we train and evaluate the classifiers by calculating the entropy for
the first n = 6, n = 5 and n = 4 packets of a given flow. In this case, our
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Figure 4 Average number of packets per flow in training and testing deployments.

Table 7 Features chosen by Argus augmented with entropy
# Attribute Description
1 DstLoad Destination bits per second
2 Entropy Entropy value calculated over 4 packets
3 TotBytes Total transaction bytes
4 DstBytes Destination → Source transaction bytes
5 RunTime Total active flow run time
6 sTtl Source to destination TTL value
7 Rank ordinal value of this output flow record i.e. sequence number

objective is to find the minimum number of packets per flow that can provide
a reasonable indication of the entropy of a flow without decreasing the perfor-
mance of the classifier. The results of these evaluations show that calculating
flow entropy over the first four packets of a flow decreases the computational
cost (relative to all packets) without decreasing the F-measure of a classifier.
It should be noted here that when a flow has less than four packets, all packets
belonging to that flow are used for the entropy calculation.

3.4 Machine Learning Models Used

In this paper, five well-known machine learning models that are widely used
in the literature are employed: C4.5 Decision Tree, Random Forest, Logistic
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Regression, Support Vector Machine, and Naive Bayes. Detailed information
on these algorithms can be found in [11].

3.4.1 C4.5 Decision Tree (DT)
A C4.5 DT is a tree-structured model, where internal nodes represent con-
ditions applied to features. The leaf nodes represent the class labels, and the
paths from root to leaves represent the classification rules. C4.5 algorithm
is an extension to ID3 algorithm, which aims to find the small DTs, then
convert the trained DT into an If-Then rule set. DTs are constructed through
a process of deterministically splitting the training partition based on the
selection of the features, maximizing the normalized information gain. Each
branch of the DT partitions the training data into subsets, where the goal is to
identify subsets that have the same label. Recursive application of this process
incrementally constructs the DT until leaf nodes appear with sufficiently high
normalized information gain.

3.4.2 Random Forest (RF)
RF classifier is made by several random decision trees. Firstly, RF builds a
tree on a random sample of data. Then, for each tree, it selects a random
set of features to generate the best split. Then, by aggregating them, RF
predicts the new data sample. Building blocks of a RF model are DTs. In
addition, RF increases the diversity by choosing a random subset of features
and performing them on a random set of the training data, which is used to
provide a more robust resulting model.

3.4.3 Logistic Regression (LR)
LR model fits the data to the “Logistic Function” and returns the probability
of occurrence. LR is commonly used for multi-class classification tasks. LR
is a version of linear regression when the target is categorical. Prediction is
made by getting the maximum likelihood, which provides a constant output.
By maximizing the likelihood function, LR determines the parameters which
will most likely produce the actual target. LR uses a sigmoid function as the
logistic function and maps the value between 0 and 1.

3.4.4 Support Vector Machine (SVM)
SVM is a binary learning algorithm that can be used for classification and
rule regression. The goal of this classification algorithm is to build an N-
dimensional hyperplane that optimally separates the samples of data into
two classes with maximal margin. SVM classifier can easily be extended
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to k-class classification by constructing k binary classifiers. In order to use
an SVM to solve a classification problem on nonlinearly separable data, a
nonlinear mapping of the input data into a high-dimensional feature space is
required. Then, an optimal hyperplane for separating the high dimensional
features of input data can be constructed, which maximizes the separation
margin. Finally, a linear mapping from the feature space to the output space
is required.

3.4.5 Naive Bayes (NB)
A NB classifier is a simple probabilistic classifier based on the Bayes theo-
rem. Bayes theorem assumes that the presence of a feature in a given class is
independent of other features of the data. The classifier uses the maximum-
likelihood probability method for parameter estimation. Given a training set,
the NB classifier predicts the training dataset samples that belong to a given
class, having the highest posteriori.

3.5 TPOT for optimization

TPOT is considered as a data science assistant that enables researchers to find
the best possible pipeline for a classification task [29, 44]. It was one of the
very first AutoML methods and open-source software packages developed for
the data science community [7]. It is based on the Genetic Programming (GP)
principle to generate the optimized search space. GP employs the process of
natural selection where the fittest individuals are selected for reproduction in
order to produce offspring of the next generation [8] as the following:

• Selection phase chooses the fittest individuals and lets them pass their
genes to the next generation

• Crossover selects the fittest individuals from above and performs
crossover between them to generate a new population

• Mutation of individuals generated y crossover for further random mod-
ifications. It is repeated for a few steps or until the best generation is
achieved [8, 29]

Figure 5 shows an example ML pipeline of TPOT depicting the automa-
tion and optimization of feature selection, preprocessing, model construction,
parameter optimization and best model validation. During the training pro-
cess, TPOT tries one pipeline, assesses its performance and makes random
changes to the pipeline’s parameters in search of a better solution. The
process is repeated until TPOT finds the optimum solution. Once the training
process is complete, TPOT provides a Python code for the optimized pipeline,
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Figure 5 An example machine learning pipeline [29].

which can be exported by the user [12]. For example, for a 10,000-pipeline
configuration, TPOT will evaluate different models using 10-fold Cross-
Validation (CV score), and therefore resulting in 100,000 models being fit
and evaluated on the training data in one grid search. TPOT is implemented
with a number of configurations, working best for specific tasks. In this
work, we employed the default TPOT configuration. Moreover, to be able
to compare the TPOT results with a standard ML classifier, we used the same
training and testing datasets for our evaluations. It should be noted here that
the number of pipelines TPOT considers depends on the parameters set by
the user. In this work, we evaluated TPOT’s performance over 10, 50, 100
and 200 generations, processing 1100, 5100, 10100 and 20100 pipelines,
respectively. Lastly, the list of classifiers and preprocessors implemented
in TPOT is extensive. Table 8 shows the options implemented in the latest
version of TPOT [12]. However, if the user does not want to consider all
classifiers during training, they can limit the algorithms and parameters to be
considered.

4 Evaluations and Results

As discussed earlier, the goal of this work is to explore the use of entropy of a
network flow to augment statistical flow features and to optimize the proposed
model to identify attack DoH tunnels. Proposing an effective performance (in
terms of F1-measure) with a relatively reasonable computational cost solution
is a key focus throughout the research methodology. All the experiments
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Table 8 The current list of classifiers and preprocessors implemented in TPOT
# Classifier Preprocessor
1 Bernoulli Naive Bayes Binarizer
2 Gaussian Naive Bayes Fast ICA
2 Multinomial Naive Bayes Feature Agglomeration
3 Decision Tree Max Abs Scaler
4 Extra Trees Min Max Scaler
4 Random Forest (RF) Normalizer
5 Gradient Boosting (GB) Nystroem
6 K-Neighbors PCA
7 Linear SVC Polynomial Features
8 Logistic Regression (LR) RBF Sampler
9 Extreme Gradient Boosting (XGB) Robust Scaler

10 Stochastic Gradient Descent (SDG) Standard Scaler
11 Multi Layer Perceptron (MLP – Neural Network) Zero Count
12 One Hot Encoder

were run on a MacBook Pro with a 2.3GHz 8-core Intel Core i9. Thus, the
performance of the proposed approach is measured by the following metrics:

1. Precision is the ratio of correctly predicted attack (benign) flows to the
total number of attack (benign) flows.

P =
TP

TP + FP

2. Recall is the ratio of correctly predicted attack (benign) flows to all flows
in actual class.

R =
TP

TP + FN

3. F1-measure is a weighted average of the Precision and Recall.

F =
2RP

R+ P

4.1 Evaluating Different Entropy Approaches – Phase1

As a first phase in our study, a C4.5 decision tree classifier is trained on the
training dataset using different entropy approaches. Then, five testing datasets
are used for evaluating the trained models. To this end, WEKA,1 the open-
source ML software library is used for training and testing all classifiers

1WEKA – https://www.cs.waikato.ac.nz/ml/weka/

https://www.cs.waikato.ac.nz/ml/weka/
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Table 9 C4.5 classification results – entropy calculated over all packets of a flow
Scenario Datasets P R F
Training DoHBrw+ImpactGT+CICIDS 0.997 0.997 0.997
Testing DoHBrw benign and attack 0.921 0.906 0.906

ImpactGT attack 1.000 0.999 1.000
DoHBrw benign 1.000 0.991 0.995
CICIDS benign 1.000 0.990 0.995
DoHBrw attack 1.000 0.821 0.902

Table 10 C4.5 classification results – entropy calculated over the first 4 packets of a flow
Scenario Datasets P R F
Training DoHBrw+ImpactGT+CICIDS 0.997 0.997 0.997
Testing DoHBrw benign and attack 0.928 0.917 0.916

ImpactGT attack 1.000 0.999 1.000
DoHBrw benign 1.000 0.983 0.983
CICIDS benign 1.000 1.000 1.000
DoHBrw attack 1.000 0.828 0.906

using default parameters. Table 9 shows the results of the C4.5 decision tree
classifier on training and testing datasets, using flow features augmented with
the entropy calculated over all packets of a flow. As it can be seen from the
results, the performance of this trained model is still over 90% for the first
four test datasets that were not seen during the training. The only exception
is the last test dataset containing 9000 attack flows from DoHBrw.

On the other hand, when no entropy is used to augment flow features,
the performance of the classifier drops for all datasets, except the last one,
Table 11. Specifically, Recall values decline on almost all test datasets,
specifically for CICIDS benign and DoHBrw attack datasets. These results
indicate the effectiveness of the entropy for augmenting flow statistical fea-
tures. Moreover, Table 10 shows the results of the C4.5 decision tree classifier
on training and testing datasets, using flow features augmented with entropy
calculated over the first four packets of a flow. These results demonstrate that
only the first four packets of a flow seem to be enough to calculate the entropy.
This not only augments flow statistical features well without decreasing the
F-measure, Precision and Recall metrics but also it is computationally less
expensive relative to calculating entropy over all packets of a flow when
the flow includes more than four packets. It is noticeable that this approach
improves the performance of the C4.5 model. Thus, we employ this model in
the following evaluations as well.
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Table 11 C4.5 classification results – no entropy
Scenario Datasets P R F
Training DoHBrw+ImpactGT+ CICIDS 0.956 0.952 0.952
Testing DoHBrw benign and attack 0.919 0.916 0.916

ImpactGT attack 1.000 0.985 0.992
DoHBrw benign 1.000 0.928 0.963
CICIDS benign 1.000 0.708 0.829
DoHBrw attack 1.000 0.907 0.951

Table 12 RF, SVM, LR, and NB classification results – entropy calculated over the first 4
packets of a flow

ML Classifiers Random Forest SVM Logistic Regression Naive Bayes
P R F P R F P R F P R F

Training: DoHBrw+
ImpactGT+ CICIDS

1.000 1.000 1.000 0.893 0.870 0.868 0.963 0.962 0.962 0.861 0.818 0.813

Test: DoHBrw benign
and attack

0.926 0.917 0.917 0.813 0.750 0.737 0.951 0.951 0.951 0.786 0.730 0.717

Test: ImpactGT attack 1.000 1.000 1.000 1.000 0.983 0.992 1.000 0.999 0.999 1.000 0.984 0.992
Test: DoHBrw benign 1.000 0.989 0.995 1.000 0.785 0.880 1.000 0.890 0.942 1.000 0.543 0.704
Test: CICIDS benign 1.000 1.000 1.000 1.000 0.865 0.928 1.000 0.844 1.000 1.000 0.672 0.804
Test: DoHBrw attack 1.000 0.844 0.915 1.000 0.985 0.992 1.000 0.953 0.976 1.000 0.977 0.988

4.2 Evaluating Different ML Classifiers – Phase2

Table 12 presents a comparison of the proposed model using the C4.5 deci-
sion tree classifier against Random Forest (RF), Logistic Regression (LR),
Support Vector Machine (SVM) and Naive Bayes (NB) classifiers. These
ML classifiers are chosen for further evaluations since they were used in the
previous works as discussed in Section 2.

In this phase, different ML classifiers are evaluated using the same train-
ing and testing datasets as well as the same feature set, i.e. flow statistical
features augmented with the flow entropy feature calculated over the first
four packets of a flow. The results show that the RF classifier demonstrates a
similar performance as the C4.5 classifier. It is interesting to see that LR,
SVM and NB perform well in detecting attack flows, too. However, they
misclassify the majority of benign flows in testing datasets. The NB classifier,
for example, managed to classify only around 54% of benign flows in the
DoHBrw benign dataset. This seems to support the argument Singh et al.
made in [49] regarding the lagging feature of the NB classifier.

Table 13 shows the performance of the RF classifier as we increase the
number of trees during training (the same feature set and the same training
dataset as before) using the numIterations parameter. The results show that
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Table 13 RF classification results as number of trees increases – entropy calculated over the
first 4 packets of a flow

Training Testing

#Trees
DoHBrw+ImpactGT

+CICIDS
DoHBrw benign

and attack
ImpactGT

attack
DoHBrw
benign

CICIDS
benign

DoHBrw
attack

P R F P R F P R F P R F P R F P R F
100 1.000 1.000 1.000 0.926 0.917 0.917 1.000 1.000 1.000 1.000 0.989 0.995 1.000 1.000 1.000 1.000 0.844 0.915
500 1.000 1.000 1.000 0.940 0.935 0.935 1.000 1.000 1.000 1.000 0.990 0.995 1.000 1.000 1.000 1.000 0.880 0.936
1000 1.000 1.000 1.000 0.941 0.935 0.935 1.000 1.000 1.000 1.000 0.990 0.995 1.000 1.000 1.000 1.000 0.881 0.937
1500 1.000 1.000 1.000 0.938 0.932 0.932 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.878 0.935
2000 1.000 1.000 1.000 0.938 0.932 0.932 1.000 1.000 1.000 1.000 0.990 0.995 1.000 1.000 1.000 1.000 0.877 0.935

Table 14 Depth of RF per tree as the number of trees increase – Trained on
DoHBrw+ImpactGT+CICIDS

#Trees Depth/Tree
100 24
500

1000
1500 26
2000

as the number of trees increases from 100 to 2000, the performance seems to
stay pretty much consistent.

Table 14 presents the depth of RF trees as we increase the number of trees
during training. This indicates that RF trees are deep and therefore resulting
in a rather complex RF classifier, with the depth of the tree starting from 24
(x100) and going up as the number of trees increases. On the other hand,
the C4.5 decision tree classifier’s trained model is less complex (depth=10),
Figure 6. This also demonstrates that Decision Tree trained model uses the
entropy attribute throughout the tree to classify a flow as benign or attack.
Based on these results obtained, using the proposed Decision Tree solution
as a predictive model will enable to label the new/unseen flows by providing
13 statistical features augmented with the entropy feature (over the first four
packets of a flow).

4.3 Optimization Using TPOT – Phase3

In this phase of our evaluations, we employed TPOT toolset to optimize the
proposed approach for DoH tunneling detection. To this end, we used the
same 13 features for the TPOT optimization process as well. Again, TPOT’s
performance is represented using the same metrics employed in the previous
phases of the evaluations. It should be noted here that the more pipelines
TPOT evaluates, the more time it requires for the training process.
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Figure 6 Visualization of the C4.5 Decision Tree trained model – entropy calculated over
the first 4 packets of a flow.

Table 15 Results of running TPOT (11 classifiers) for optimizing the proposed approach
# of Generations 10 50 100 200
Classifier chosen Random Forest Gradient Boosting Gradient Boosting Gradient Boosting
Training CV score(avg) 0.997 0.998 0.998 0.998
Testing datasets P R F P R F P R F P R F
DoHBrw benign and attack 1.00 0.92 0.96 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
ImpactGT attack 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CICIDS benign 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DoHBrw benign 1.00 0.98 0.99 1.00 0.99 0.99 1.00 0.98 0.99 1.00 0.99 0.99
DoHBrw attack 1.00 0.92 0.96 1.00 0.98 0.99 1.00 0.99 1.00 1.00 0.99 1.00

Firstly, we configured TPOT to use all 11 classifiers in search of the best
solution, without limiting its choice. Table 15 presents the results of running
one training and five testing datasets through these pipelines. It is interesting
to see that for the smallest number of generations (n = 10), TPOT chose
RF classifier, achieving almost 100% training CV score. However, as the
number of generations increases, the top performing classifier shifts to GB
classifier, reaching a similar performance for longer generations. Following
this, we configured TPOT to use a Neural Network classifier only, looking
at how performance will change as the number of generations increase (see
Table 16). In this case, MLP classifier demonstrated 88% CV score for n = 10
and 90% CV score for n = 200. However, the performance of the trained
model on testing datasets was much lower.

Furthermore, we compared the performance of the Random Forest classi-
fier both on Weka and TPOT tools. As discussed earlier, the RF classifier was
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Table 16 Results of running TPOT – Neural Network classifiers only
# of Generations 10 50 100 200
Classifier chosen MLP MLP MLP MLP
Training CV score(avg) 0.877 0.873 0.878 0.893
Testing datasets P R F P R F P R F P R F
DoHBrw benign and attack 0.69 0.68 0.67 0.44 0.49 0.36 0.69 0.66 0.65 0.73 0.71 0.71
ImpactGT attack 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CICIDS benign 1.00 0.85 0.92 1.00 0.72 0.84 1.00 0.85 0.92 1.00 0.86 0.92
DoHBrw benign 1.00 0.58 0.73 1.00 0.94 0.97 1.00 0.43 0.60 1.00 0.56 0.72
DoHBrw attack 1.00 0.84 0.91 1.00 0.04 0.08 1.00 0.87 0.93 1.00 0.88 0.94

Table 17 RF classifier optimization via TPOT
Weka TPOT

Tools P R F P R F
Training 1.00 1.00 1.00 0.997
Test:DoHBrw benign and attack 0.926 0.917 0.917 1.00 0.92 0.96
Test:ImpactGT attack 1.00 1.00 1.00 1.00 1.00 1.00
Test:CICIDS benign 1.00 1.00 1.00 1.00 1.00 1.00
Test:DoHBrw benign 1.00 0.989 0.995 1.00 0.98 0.99
Test:DoHBrw attack 1.00 0.844 0.915 1.00 0.92 0.96

Figure 7 Computational cost (hrs) of TPOT during training as the number of generations
increase where TPOT employs 11 classifiers.

set with default parameters in Weka, while TPOT was set to optimize using a
tailored pipeline for the RF classifier. Although training results were almost
identical, testing datasets illustrated some differences (Table 17). Precision
value of DoHBrw benign and attack dataset in Weka was lagging behind
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Figure 8 Computational cost (hrs) of TPOT during training as the number of generations
increase where TPOT employs only the Neural Network classifiers.

TPOT’s performance by almost 7%, as for DoHBrw attack dataset, TPOT
outperformed Weka by 7% in Recall and 4% in F-1 score. These results
indicate that the optimization approach using TPOT improves not only the
proposed approach but also the specific classifier’s in terms of parameter
optimization and sensitivity.

5 Conclusion and Future Work

In the last five year, DNS has seen pressure for change. In particular, two
aspects are of relevance: DoT (DNS over TLS) and DoH (DNS over HTTPS).
In DoT, the objective is to secure the communications between the DNS
resolver residing on the end user’s system and their chosen recursive resolver
over the TLS. On the other hand, DoH achieves this by embedding the DNS
query into a secure HTTP request/response. This potentially implies that
more and more activities (benign or malicious) are tunnelled through DNS
traffic. These will not only change the connection management layer, but also
the nature of the traffic and application behaviours. Thus new approaches
to monitoring DNS queries, such as DoH, are necessary for traffic moni-
toring and security management purposes. Researching this area has been
a challenging task due to several limitations. First of all, finding publicly
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available data built on new DoH protocol was the first obstacle we encoun-
tered. Limited tools used for feature extraction from network flows were the
second challenge on our path. While some works employed DoHlyzer tool to
analyze DoH traffic, others employed network packet entropy to address the
aforementioned challenges.

In this research, exploring a solution for these challenges without per-
forming deep packet inspection, payload or metadata analysis was an impor-
tant goal set at the beginning. To this end, we studied the use of the concept
of “entropy of a flow” to augment flow statistical features for identifying
attack DoH tunnels. To achieve this, a thorough investigation of the use
of different flow exporters was performed. The flow exporters that were
analyzed include Argus, DoHlyzer and Tranalyzer2. Results showed the
limitation of the DoHlyzer tool in terms of protocols it could support, TCP,
but not UDP, and hence making feature extraction for UDP flows impossible.
Taking into account these limitations present in the DoHlyzer tool for flow
feature extraction, it was decided to consider Tranalyzer2 and Argus tools
more closely to select the most suitable statistical flow features for the task.
These features were then augmented with flow entropy. To this end, three
different ways of calculating the entropy of a flow (over all packets of a flow,
over the first 96 bytes of a flow and over the first 4/5/6 packets of a flow) using
ML classifiers over different datasets were evaluated. The evaluations showed
that flow statistical features obtained by Tranalyzer2 when augmented with
the entropy feature of a flow calculated over the first 4 packets provides the
best performance for detecting attack tunnels in DoH traffic.

Moreover, the research demonstrated the effectiveness of the TPOT-
AutoML system for optimizing the proposed model to detect attack DoH
flows. Employing TPOT with flow statistical features augmented with
entropy calculated over the first four packets enabled us to look at different
pipeline configurations at 10, 50, 100 and 200 generations. It should be
noted here that with an increase in the number of generations, the training
time of TPOT also increases. However, this cost seems to be reasonable to
obtain the optimization of the proposed model. Thus, it is concluded that
for a lower number of generations allocated for training, Random Forest
outperforms other classifiers implemented in TPOT. If the user is interested
in the best performance, then setting a generation number to 100 or 200 is
recommended. This proposed model not only achieved high performance
on all datasets employed but also outperformed the model that did not
use the entropy feature. Furthermore, heterogeneous aspects of the datasets
employed, from different protocols to different packet sizes to different flow
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characteristics and different behaviours indicating the generalizability of the
proposed model over different real-world scenarios.

Future research will explore the proposed system’s behaviour against
evasive and adversarial attacks to improve its robustness [39]. Moreover, eval-
uating the proposed system on real world datasets as well as other machine
learning algorithms will also be of interest. Additionally, the proposed model
will be evaluated as a predictor on new/unseen data to investigate its gener-
alization under concept shifts and drifts [33]. Last but not the least, further
research into the analysis of DoH and DoT protocols is necessary against the
rising privacy and security concerns of our digital world.
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feature distributions. In R. Guérin, R. Govindan, and G. Minshall,
editors, Proceedings of the ACM SIGCOMM 2005 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Com-
munications, Philadelphia, Pennsylvania, USA, August 22-26, 2005,
pages 217–228. ACM, 2005.

[38] D. Lambion, M. Josten, F. G. Olumofin, and M. De Cock. Malicious
DNS tunneling detection in real-traffic DNS data. In X. Wu, Ch. Jer-
maine, L. Xiong, X. Hu, O. Kotevska, S. Lu, W. Xu, S. Aluru, C. Zhai,
E. Al-Masri, Zh. Chen, and J. Saltz, editors, 2020 IEEE International
Conference on Big Data (IEEE BigData 2020), Atlanta, GA, USA,
December 10–13, 2020, pages 5736–5738. IEEE, 2020.

[39] Duc C. Le and N. Zincir-Heywood. A frontier: Dependable, reliable and
secure machine learning for network/system management. J. Netw. Syst.
Manag., 28(4):827–849, 2020.

[40] Duc C. Le, N. Zincir-Heywood, and M. I. Heywood. Data analytics
on network traffic flows for botnet behaviour detection. In 2016 IEEE



Can We Detect Malicious Behaviours in Encrypted DNS Tunnels 493

Symposium Series on Computational Intelligence, SSCI 2016, Athens,
Greece, December 6–9, 2016, pages 1–7. IEEE, 2016.

[41] Ch. Lu, B. Liu, Zh. Li, Sh. Hao, H. Duan, M. Zhang, Ch. Leng, Y. Liu,
Z. Zhang, and J. Wu. An end-to-end, large-scale measurement of dns-
over-encryption: How far have we come? In Proceedings of the Internet
Measurement Conference, IMC 2019, Amsterdam, The Netherlands,
October 21–23, 2019, pages 22–35. ACM, 2019.

[42] M. Nidhal Mejri and J. Ben-Othman. Entropy as a new metric for
denial of service attack detection in vehicular ad-hoc networks. In Ravi
Prakash, Azzedine Boukerche, Cheng Li, and Falko Dressler, editors,
17th ACM International Conference on Modeling, Analysis and Sim-
ulation of Wireless and Mobile Systems, MSWiM’14, Montreal, QC,
Canada, September 21–26, 2014, pages 73–79. ACM, 2014.

[43] M.MontazeriShatoori, L. Davidson, G. Kaur, and A. Habibi Lashkari.
Detection of doh tunnels using time-series classification of encrypted
traffic. In IEEE Intl Conf on Dependable, Autonomic and Secure
Computing, Intl Conf on Pervasive Intelligence and Computing, Intl
Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science
and Technology Congress, DASC/PiCom/CBDCom/CyberSciTech 2020,
Calgary, AB, Canada, August 17-22, 2020, pages 63–70. IEEE, 2020.

[44] R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore. Evaluation
of a tree-based pipeline optimization tool for automating data science.
In Tobias Friedrich, Frank Neumann, and Andrew M. Sutton, editors,
Proceedings of the 2016 on Genetic and Evolutionary Computation
Conference, Denver, CO, USA, July 20–24, 2016, pages 485–492. ACM,
2016.

[45] F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, and J. Aguilar.
Towards the deployment of machine learning solutions in network traffic
classification: A systematic survey. IEEE Commun. Surv. Tutorials,
21(2):1988–2014, 2019.

[46] R. Raghav, Pratheesh, K. Shedbalkar, Minal Moharir, N Deepamala,
P Ramakanth Kumar, and MGP Tanmayananda. Analysis and detection
of malicious activity on doh traffic. In 2021 2nd Global Conference for
Advancement in Technology (GCAT), pages 1–5, 2021.

[47] M. Seufert, R. Schatz, N. Wehner, B. Gardlo, and P. Casas. Is QUIC
becoming the new tcp? on the potential impact of a new protocol on
networked multimedia qoe. In 11th International Conference on Quality
of Multimedia Experience QoMEX 2019, Berlin, Germany, June 5–7,
2019, pages 1–6. IEEE, 2019.



494 Y. Khodjaeva et al.

[48] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani. Toward gen-
erating a new intrusion detection dataset and intrusion traffic charac-
terization. In Paolo Mori, Steven Furnell, and Olivier Camp, editors,
Proceedings of the 4th International Conference on Information Sys-
tems Security and Privacy, ICISSP 2018, Funchal, Madeira – Portugal,
January 22–24, 2018, pages 108–116. SciTePress, 2018.

[49] S.K. Singh and P.D. Roy. Detecting malicious dns over https traffic using
machine learning. In 2020 International Conference on Innovation and
Intelligence for Informatics, Computing and Technologies (3ICT), pages
1–6, 2020.

[50] Georgia Tech. GT Malware Passive DNS Data Daily Feed. http://dx.doi
.org/10.23721/102/1354027. Accessed: 6-Mar-2021.

[51] M. Zhou, Sh. Zhang, Y. Qiu, H. Luo, and Zh. Wu. Entropy-based
spammer detection. In Proceedings of the 10th International Conference
on Internet Multimedia Computing and Service, Nanjing, China, August
17–19, 2018, pages 43:1–43:6. ACM, 2018.

Biographies

Yulduz Khodjaeva has recently received her Master of Computer Science
degree from Dalhousie University, Canada. During her studies, she carried
out research in the cybersecurity area, particularly the detection of malicious
behaviours in DNS tunnels. She published her conference paper at ARES
2021: the 16th International Conference on Availability, Reliability and Secu-
rity. Currently, Yulduz is working as a Software Developer at EY Canada.

http://dx.doi.org/10.23721/102/1354027
http://dx.doi.org/10.23721/102/1354027


Can We Detect Malicious Behaviours in Encrypted DNS Tunnels 495

Nur Zincir-Heywood is a University Research Professor of Computer
Science at Dalhousie University. Her research interests include machine
learning for cyber security, and network/service operations and management.
She serves as an Associate Editor of the IEEE Transactions on Network and
Service Management and Wiley International Journal of Network Manage-
ment. She also promotes information communication technologies to wider
audiences as a tech columnist for CBC Information Morning and a Board
Member on CS-Can/INFO-Can.

Ibrahim Zincir is an Assistant Professor in the Department of Software
Engineering at Izmir University of Economics. Dr. Zincir received his Ph.D.
in Computer Engineering from Plymouth University with a focus on data
mining for secure mobile networks. He is a member of the IEEE and regularly
promotes software engineering to a wider audience through several media
outlets. His research interests include data mining, machine learning, mobile
networks and web centric business applications.




	Introduction
	Literature Review
	DNS Traffic Analysis
	Using Entropy for DNS Traffic Analysis
	Optimization Using TPOT-AutoML

	Methodology
	Datasets
	Network Flow Extraction Tools
	Network Flow Entropy and Statistical Features
	Machine Learning Models Used
	C4.5 Decision Tree (DT)
	Random Forest (RF)
	Logistic Regression (LR)
	Support Vector Machine (SVM)
	Naive Bayes (NB)

	TPOT for optimization

	Evaluations and Results
	Evaluating Different Entropy Approaches – Phase1
	Evaluating Different ML Classifiers – Phase2
	Optimization Using TPOT – Phase3

	Conclusion and Future Work

