
Research on Elliptic Curve Crypto System
with Bitcoin Curves – SECP256k1,

NIST256p, NIST521p and LLL

Mohammed Mujeer Ulla∗ and Deepak S. Sakkari

Department of Computer Science and Engineering, Presidency University,
Bangalore, India
E-mail: Mohammedmujeerulla@presidencyuniversity.in;
deepakssakkari@presidencyuniversity.in
∗Corresponding Author

Received 21 April 2022; Accepted 03 January 2023;
Publication 03 March 2023

Abstract

Very recent attacks like ladder leak demonstrated feasibility to recover private
key with side channel attacks using just one bit of secret nonce. ECDSA
nonce bias can be exploited in many ways. Some attacks on ECDSA involve
complicated Fourier analysis and lattice mathematics. In this paper will
enable cryptographers to identify efficient ways in which ECDSA can be
cracked on curves NIST256p, SECP256k1, NIST521p and weak nonce, kind
of attacks that can crack ECDSA and how to protect yourself. Initially
we begin with ECDSA signature to sign a message using private key and
validate the generated signature using the shared public key. Then we use a
nonce or a random value to randomize the generated signature. Every time
we sign, a new verifiable random nonce value is created and way in which
the intruder can discover the private key if the signer leaks any one of the
nonce value. Then we use Lenstra–Lenstra–Lovasz (LLL) method as a black

Journal of Cyber Security and Mobility, Vol. 12 1, 103–128.
doi: 10.13052/jcsm2245-1439.1215
© 2023 River Publishers

104 M. M. Ulla and D. S. Sakkari

box, we will try to attack signatures generated from bad nonce or bad random
number generator (RAG) on NIST256p, SECP256k1 curves. The analysis is
performed by considering all the three curves for implementation of Elliptic
Curve Digital Signature Algorithm (ECDSA).The comparative analysis for
each of the selected curves in terms of computational time is done with
leak of nonce and with Lenstra–Lenstra–Lovasz method to crack ECDSA.
The average computational costs to break ECDSA with curves NIST256p,
NIST521p and SECP256k1 are 0.016, 0.34, 0.46 respectively which is almost
to zero depicts the strength of algorithm. The average computational costs to
break ECDSA with curves SECP256K1 and NIST256p using LLL are 2.9
and 3.4 respectively.

Keywords: EdDSA – Edwards curve Digital Signature Algorithm, Nonce –
number only used once, RAG – Random number generator, NIST – National
Institute of Standards and Technology, ISO – International Organization for
Standardization, IEEE – Institute of Electrical and Electronics Engineers,
ECC – Elliptic curve cryptography, IoT – Internet of Things.

1 Introduction

Due to rapid technological advancements, there has been an excessive amount
of sensitive data exchanged in recent years in applications like direct online
banking (or third-party applications like Google Pay or Paytm), stock market
trading, and remote access to data in the healthcare, defence, automotive,
retail, and many other fields. Public-key cryptosystems are used by several
internet security protocols to achieve secrecy, integrity, and authentication.
Elliptic Curve Digital Signature Algorithm is a public-key protocol that is
frequently utilised on the internet (ECDSA). TLS, Open PGP, smart cards
and digital currency like Ripple, Ethereum, and Bitcoin are a few appli-
cation areas of ECDSA. ECDSA is a quick signing algorithm because of
its short key size and the difficulty of the discrete logarithm problem. It
is recommended by IEEE and NIST since 2000, ANSI since 1999, and
ISO since 1998 because of these features [1]. A useful tool in cryptanal-
ysis is lattice reduction. Many cryptosystems like knapsack and RSA are
broken using lattice reduction. In addition computations in ECDSA-discrete
logarithms and factoring composite numbers are possible using lattice reduc-
tion [2, 3]. A LLL algorithm is one of the most popular algorithms for
lattice reductions by Lenstra, Lenstra and Lovasz. Many of the lattice algo-
rithms used today are LLL variants. In this paper we focus on applying

Research on Elliptic Curve Crypto System with Bitcoin Curves 105

LLL algorithm to crack ECDSA on NIST and SECP recommended curves
like NIST 256p, SECP256k1 and NISP521p [2]. The paper is organized
as follows Section 2 provides an theoretical principle-Elliptic curve digi-
tal signature (ECDSA) and the LLL Algorithm. Section 3 is described in
three parts, A. ECDSA-Disclosing the private key, if nonce known using
NIST256p, SECP256k1, NIST5, B. ECDSA-Disclosing the private key
using Lenstra–Lenstra–Lovasz (LLL) method, if nonce known, C. ECDSA-
Disclosing the private key using Lenstra–Lenstra–Lovasz (LLL) method, if
nonce known with real-world ECDSA bugs. Section 4 demonstrates an anal-
ysis of our experimental results and Section 5 summarizes our conclusions
and discusses future work.

2 Theoretical Principle

2.1 Recent Trends in Elliptic Curve Cryptography

The majority of IoT services are going to be implemented as real-time
embedded systems that significantly rely on security procedures as a result
embedded IoT devices must be secure. This work outlines the security
issues that system designers must consider while creating safe embedded
systems. Implementing public key cryptography (PKC) in embedded system
is most challenging [4]. PKC, has reduced key sizes and is based on Elliptic
Curve Cryptography (ECC), is effective for both private and public activities.
ECC is helpful when you need to integrate security because of the IoT’s
proliferation of connected embedded devices. According to the comparative
study, real-time embedded systems in the Internet of Things with limited
resources are best suited for ECC [5, 6].

A growing number of electronic applications in today’s technology, such
as Internet of Things devices, require secure communication. A popular
and efficient public-key cryptosystem is the elliptic curve Diffie Hellman
(EC-DH) algorithm. The Diffie-Hellman Key agreement system is one
of many key exchange techniques that frequently employ elliptic curves.
ECC provides similar security with smaller key sizes as compared to tradi-
tional cryptosystems like RSA, which results in lower power consumption,
quicker calculations, as well as lesser memory and transmission capacity
(bandwidth) reserve [7, 8]. This is especially true and practical for appli-
cations like IoT devices, where CPU processing speed, power, and space are
frequently limited. The Elliptic Curve Diffie-Hellman (ECDH) Key agree-
ment algorithm, the RSA algorithm, and Diffie-Hellman are all implemented

106 M. M. Ulla and D. S. Sakkari

in this work includes software and hardware. Additionally, power, perfor-
mance, and area analyses and comparisons are part of the proposed effort.
The comparison is based on metrics collected after using the 90 nm UMC
Faraday library to implement the algorithms in Synopsys. In terms of power
and area, the ECDH algorithm is proven to be superior to others [9, 10].

In the Internet of Things (IoT), establishing end-to-end authentication
between devices and apps is a difficult task. Existing authentication mech-
anisms are vulnerable to security threats and can halt the development of
the IoT and the realisation of Smart Cities, Smart Homes, and Smart Infras-
tructure, among other IoT goals, as a result of heterogeneity in terms of
the devices, topology, communication, and various security protocols used
in IoT [11, 12]. The current authentication schemes and security protocols
demand a two-factor authentication mechanism in order to provide end-to-
end authentication between IoT devices/applications. So, this paper, explores
whether one-time password (OTP)-based authentication is appropriate for the
Internet of Things and suggest a scalable, effective, and reliable OTP strategy.
The Lamport OTP algorithm and the lightweight Identity Based Elliptic
Curve Cryptography technique are the foundations of our suggested solution.
Also analyze and test the effectiveness of new scheme, despite having a
lower key size and fewer infrastructures, it performs well without sacrificing
security. This method is suitable for two-factor authentication between IoT
devices, apps, and communications and can be deployed in real-time IoT
networks [13].

2.2 Elliptic Curve Digital Signature (ECDSA)

The Elliptic curve digital signature algorithm, abbreviated as ECDSA, is a
public key cryptography encryption algorithm. ECDSA keys are orders of
magnitude smaller in size than keys generated by any other digital signing
algorithm [14]. For example to have 128 bit security using RSA requires 3072
bit key size while ECC requires 256 key sizes. To have a 256 bit security using
RSA requires 15360 bit key size while ECC requires 512 key sizes.

The steps in ECDSA are as follows:

Alice computations:

(1) Alice selects his private key = P
(2) Alice computes his public key = private key P ∗ G i.e. private key P

times G
(3) Alice finds (x, y) coordinates of point P ∗G i.e. (x, y) = k ∗G, where

k is a nonce or random value

Research on Elliptic Curve Crypto System with Bitcoin Curves 107

Figure 1 ECDSA.

(4) Alice finds value of r
r = xMod N (1)

(5) Alice generates the signature for the message M that has to be sent
for Bob

k−1(H(M) + r ∗ privatekey P) (2)

Bob computations:

(1) Once the Bob receives the signed message from Alice, he computes
u1 = H(M)s−1 and u2 = rs−1

(2) Bob computes (x, y) coordinates using u1, u2 i.e., (x, y) = u1G +
u2(privatekey P ∗G)

(3) Computations at Bob side

H(m) + r ∗ privatekey P ∗G
s

H(m) ∗G+ r ∗ privatekey P ∗G
k−1(H(m) + r ∗ privatekey P)

(H(m) + r ∗ privatekey P)G
(H(m) + r ∗ privatekey P)k−1

108 M. M. Ulla and D. S. Sakkari

Substituting further we get k ∗G which is same as what we had obtained
in step 1 in Alice computations [3].

2.3 The LLL Algorithm

The Lenstra, Lenstra, and Lovasz (LLL) algorithm is a powerful tool
for locating sufficiently orthogonal bases [15, 16]. The LLL algorithm is
conceptually divided into two parts:

• Subtracting multiples of the current basis vectors from a non-basis
vector (working vector).

• Choosing whether to make the working vector the next basis vector or
whether it should take the place of the basis vector right before it.

Based on whether the Lovasz criterion is satisfied, this choice will be
made. In general, the Lovasz requirement establishes whether the work-
ing vector is large enough to serve as the subsequent basis vector [17].
We monitor two groups of vectors:

• ~v1; . . . , an attempt to minimize the existing set of basis vectors to a
roughly orthogonal set.

• ~v∗1, ~v∗2,. . . , the collection of orthogonal basis vectors created by the
Gram-Schmidt reduction.

k, the number of the working basis vectors we are attempting to minimise,
is another important parameter to monitor. Assume our basis vectors are ~v∗1,
~v∗2, . . .~v

∗
k−1,~v

∗
k, . . . and we are attempting to reduce ~vk. We reduce this by

subtracting multiples of ~v1,~v2, . . .~vk−1. Now consider the vectors ~vk−1 and
~vk, we might need to subtract only if we have two vectors, some multiple
of new vector ~vk from old vector ~vk−1. This requires swapping ~vk−1 and
~vk. But since we have a new k − 1 vector we need to go through the whole
process again, this time with ~vk−1 with as new working vector. The decision
of whether to swap ~vk−1 with ~vk and make ~vk−1 the working vector is based
on whether the Lovasz condition is satisfied. In addition to basis vectors ~v∗1,
~v∗2,~v

∗
3, . . . found from the Gram-Schmidt reduction. Let ~vk be the working

vector and let

µk,k−1 =
~vk ∗ ~v∗k−1

~v∗k−1 ∗ ~v∗k−1

If ||~v∗k||2 = (34 −µ
2
k,k−1) then we are done with ~vk for now and can make

~v∗k+1 the next working vector, otherwise, swap ~vk−1 and ~vk and make ~vk−1

the working vector [18–20].

Research on Elliptic Curve Crypto System with Bitcoin Curves 109

3 Methodology

3.1 ECDSA-Disclosing the Private Key, If Nonce Known Using
NIST256p, SECP256k1, NIST521

In this section let us use ECDSA, private key, nonce value and how we can
possibly derive the private key if we know the nonce value that is being used
to create the signature. Initially the communication between Alice and Bob
begins with Alice having her private key P and public key i.e., private key
P * G. The process of obtaining private key is as follows, with elliptic curve
cryptography we have curve with equation of form y2 = x3+ax+b Mod N.
All the points on the curve what we get are from 0 to N − 1 [21]. The curve
itself is defined by values of a, b and large prime number N. We initially
select a point on curve called as generator point G and we add M number of
times with itself until we get another point on elliptic curve which we call
it as private key i.e. G + G + G + · · · + G, the private key is a 256 bit
random value [22, 23]. The public key happens to be the (x, y) coordinates of
point M * G or simply M times G. Once Alice selects her private key P and

Table 1 ECDSA: Disclosure of the private key, if known nonce (NIST-256p recommended
parameters)
N=11579208921035624876269744694940757353008614341529031419553363130886709
7853951
a=-3
b=41058363725152142129326129780047268409114441015993725554835256314039467
401291
h=1
Order:11579208921035624876269744694940757352999695522413576034242225906106
8512044369
Gx=4843956129390645175905258525279791420276294952604174799584408071708240
4635286
Gy=3613425095674979579858512791958788195661110667298501507187719825356841
4405109
Message 1: Journal of Cyber Security and Mobility
Sig1(R,S): 2201289895723668970375451342341592085483988319755688102674768786
46081725150763247877540023260603423548920159641694186012633738974
915481139179691545342485
Private Key: 95496264190673951577435564680237507319016551826879163101576563
045934039929932
The private key is found: 954962641906739515774355646802375073190165518268791
63101576563045934039929932

110 M. M. Ulla and D. S. Sakkari

Table 2 ECDSA: Disclosing the private key, due to weak nonce (SEC-256K1 recommended
parameters)

N=1157920892373161954235709850086879078532
69984665640564039457584007908834671663

a=0
b=7
h=1

Order:115792089237316195423570985008687
90785283756427907490438260516314151861494337

Gx=550662630222773436695787188951685343
26250603453777594175500187360389116729240
Gy=32670510020758816978083085130507043

184471273380659243275938904335757337482424
Message 1: Hello

Sig1(R,S): 77734996471578690724819025301288
084923198521847496995004153811530244965726285

9741335896990329568840005866178508398860318725
7053615822443330142691718421644

Random value (k): 6307681115809236388661
7914846091290891

Private Key:
16122978565960941408252013174486341707774481479

068509615634681955105988655192
The private key is found:

16122978565960941408252013174486341707774481479
068509615634681955105988655192

48588618394399226405893001917337148111899544979674835399
706352006027182977592

computes the public key, she picks up a message that has to be signed with her
private key. Using ECDSA, R and S values are used to create a signature for
her message. Once the signed message is received by Bob he picks up R and
S values along with public key of Alice to determine whether the message is
signed by Alice or not.

3.2 ECDSA – Disclosing the Private Key Using
Lenstra–Lenstra–Lovasz (LLL) Method, If Nonce Known

In this section we search for private key used to sign a message with ECDSA.
In this method we will generate two signatures and find the private key
using Lenstra–Lenstra–Lovasz (LLL) method. Despite Alice keeps her nonce

Research on Elliptic Curve Crypto System with Bitcoin Curves 111

Table 3 ECDSA: Disclosing the private key, if nonce known (NIST-521P recommended
parameters)
N=6864797660130609714981900799081393217269435300143305409394463459185543
1833976560521225596406614545549772963113914808580371219879997166438125740
28291115057151
a=-3
b=1093849038073734274511112390766805569936207598951683748994586394495953
116150735016013708737573759623248592132296706313309438452531591012912142
327488478985984
h=1
Order:686479766013060971498190079908139321726943530014330540939446345918
554318339765539424505774333217197532963996371363321113864768612440380340
372808892707005449
Gx=266174080205021706322876871672336096072985916875697314770667136841880
2944996427808491545080627771902352094241225065558662157113545570916814161
637315895999846
Gy=375718002577002046354550722449118360359445513476976248669456777961554
4477440556316691234405012945595621444445372894285225856667291965808101243
44277578376784
Message 1: Hello
Sig1(R,S): 118912407987803730594927821196302530155934634170726309186953432
271081694067943402040651927711372576729242699318709436457201951428350265
909093262285263237426660261496652760999431458175285473075579506410784311
048885831700513533938669254933278708539386364780181671622028749249739407
95949272348183625732014938948 579325
Random value (k): 1345073822754761250886379837 21177218254
Private Key: 523066036768555751232848812191159862044743453985866517934019
4878686546186927608644279504288975234655566278162777217776403595523877155
872653821143293053140344
The private key is found: 52306603676855575123284881219115986204474345398586
651934019487868654618692760864427950428897523465556627816277721777640359
5523877155872653821143293053140344

secret, Eve can easily recover the secret key if Alice uses repeated nonce even
for different messages. Let us assume two signatures (r, s1) and (r, s2) derived
on messages msg1, msg2 respectively from same nonce k then r value will
remain same for both messages as the k value is same [24]. So Eve would
detect the private key as follows:

(1) Sig1 = k−1 (Hash(Msg1) + xr) and Sig2 = k−1 (Hash (Msg2) + xr)
(2) Sig1–Sig2 = k−1 (Hash (Msg1) –Hash (Msg2))

112 M. M. Ulla and D. S. Sakkari

(3) K (Sig1–Sig2) = Hash (Msg1)–Hash (Msg2)
(4) k = (Sig1–Sig2)−1 (Hash (Msg1)–Hash (Msg2)) [8]

Using above formula once we have recovered the nonce k then secret key
is recovered using previously described attack. If any nonce for the signature
is leaked, then private key can be cracked, and complete signature scheme
is broken. In addition to this if any of the nonce is repeated accidentally
then accidental repetition of nonce can be easily detected by Eve and can
recover the private key by breaking complete encryption scheme. Even leak-
ing fractional parts of nonce can damage signature abruptly. Work by N.A.
Howgrave-Graham, N.P. Smart showed the application of lattice attacks to
crack DSA from partial leakage of nonce [25]. Further to this Nguyen and
Shparlinski continued their work to obtain secret key from 160-bit DSA and
then from every 100 signatures in ECDSA secret key was obtained by just
knowing three bits of each nonce [26]. Further to the research Mulder et. al.
performed more attacks on partial nonce leakage using Fourier transform-
based attack and recovered secret keys from 384-bit ECDSA by knowing
only five bits from each nonce from 4,000 signatures. Most of us would
have heard Minerva attacks which involved several timing side channels were
leveraged to recover partial nonce leakage and these lattice attacks. Using
enough signatures they were able to obtain private key even if size of nonce
was leaked. The latest attack known as Ladder leak attack which is even
worse Fourier analysis attack in ECSDA one could obtain secret keys just
by having 1 bit of nonce is leaked [27].

Further to it, even if one manages to keep his nonce secret, never leak
any of the bits and never repeat a nonce. The work by Heninger and Breitner
proved that application of lattice attacks can potentially break the signature
scheme implemented using defective random number [28]. One’s signature
scheme is completely broken if one uses 256-bit ECDSA, if bias of 4 bits is
done using 256-bit ECDSA in your nonce, despite not knowing those biased
values. In our research we use LLL algorithm as a black box, we will try to
attack signatures generated from bad nonce or bad RNG. Such nonce will
have fixed prefix i.e. where many of the most significant bits (MSB) will
remain same. This attack also works even if most significant bits (MSB) are
not fixed bits. We begin with LLL algorithm with an input matrix and the
algorithm will generate the output new matrix values. In this input matrix
is constructed using a collection ECDSA signatures and the final output by
LLL matrix will enable us to obtain ECDSA private key this is the resultant of
LLL output matrix which will contain signatures of all nonce. Using obtained

Research on Elliptic Curve Crypto System with Bitcoin Curves 113

Figure 2 Lattice: linear code over real numbers with N × N generator matrix.

nonce we make use of basic attack described earlier to recover the private key.
A LLL basis reduction algorithm is used to approximate the shortest vector
in higher dimensional space in polynomial time. It also has applications in
cracking many cryptography algorithms, integer programming and number
theory because of its accuracy and performance [29, 30]. A lattice λ is an
additive subgroup of real numbers and is represented by a basis vector g1,
g2,. . . gn in N-dimensional space. A lattice point X is a linear combination
of integral basis vectors.: X=g1 b1 + g2 b2 + · · ·+ gn bn where the bi
are integers. Figure 2 depicts a two-dimensional lattice with two generator
vectors, g1 and g2. We arrange the generator vectors and columns so that a
lattice point X equals the generator matrix G times B, where B is an integer
vector and bnz is an integer vector. In Figure 3, we take B to be an integer
vector [0, 0], then X equals G times B, and thus the lattice point is 0. In
Figure 4 we take B is equal to integer vector [3,−1] then X is equals G
times B and therefore we get the lattice point as [3,0.5]. Basis reduction is
a technique for reducing the basis B of a given lattice L to a smaller basis
B0 without changing the lattice L. Figure 5 depicts a two-dimensional lattice
with two different bases. The basis determinant is shaded, and the right basis
is reduced and orthogonal [31, 32]. The following are the steps to change the
basis while keeping the same lattice.

(1) Firstly, swap the two vectors in the basis.
(2) We use −bi for a vector bi ∈ B
(3) We combine additional basis vectors linearly. to bi ∈ B vector.

114 M. M. Ulla and D. S. Sakkari

Figure 3 Example 1-Integers to lattice.

Figure 4 Example 2-Integers to lattice.

In the lattice L, any vector v is represented by

v =

m∑
i=0

zibi

We obtain a new basis vector after induction bj, where

bj = bj +
∑
i!=j

yibi, yiZ

Research on Elliptic Curve Crypto System with Bitcoin Curves 115

Figure 5 A two dimension lattice with two different basis.

A new basis for a lattice L is represented as

v =
∑
i!=j

zibi + zj

bj +
∑
i!=j

yibi


As a result, despite changing the basis lattice, the result is the same.
A Lenstra-Lenstra-Lovasz (LLL) algorithm estimates the shortest vector

problem; it runs in polynomial time and finds an approximation to the correct
answer within an exponential factor. It is a useful method for solving integer
linear programming, factoring polynomials over integers, and breaking cryp-
tosystems [33]. Let b1, b2,. . . , bn be a basis for a N-dimensional lattice L,
and b∗1, b∗2,. . .b∗n be the orthogonal basis and we have

ui,k =
b∗kbi
bi ∗ bi

(3)

The reduced basis of LLL is b1, b2, . . . , bn if following two conditions
are met:

(1) ∀i 6= k, ui, k
1
2 .

(2) for each i, ||b∗i+1 + ui,i+1b
∗
i ||2 ≥ 3

4 ||b
∗
i ||2

The constant values between 1
4 and 1, can ascertain that the algorithm will

terminate in polynomial time. The constant chosen here 3
4 is for simplicity of

paper. The second condition highlights the ordering of the basis. Given a basis
b1, b2, . . ., bn in N-dimension space.

116 M. M. Ulla and D. S. Sakkari

The LLL works to get the reduced basis as shown below:

Algorithm 1 LLL algorithm

Input: b1, b2, . . . , bn
Continue both the steps until LLL reduced basis is found

Step 1: Gram-Schmidt Orthogonalization
for i = 1 to n do

for k = i1 to 1 do
m← closest integer of uk,i

bi, bimbk
end for

end for
Step 2: Examine the II condition, if true then swap
for i = 1 to n1 do

if ‖bi+1 + ui,i+1bi‖2 ≥ 3
4
‖bi‖2 then

swap bi+1 and bi
go to step 1
end if

end for

To perform the attack we use ECDSA and LLL library in python. We
chose ECDSA library as it allows us to input our own nonce’s. There by
allowing us to input nonce’s from bad RNG’s to validate our attack. This
attack is performed on NIST P-256 elliptic curve. We begin by giving input as
two signatures obtained from 128-bit nonce’s. First signatures are generated
then we create the input matrix to LLL algorithm. In the above matrix N
is the order of NIST P-256, The upper bound limit set for our nonce’s is B
(both the nonce’s used in our research study are of same 128 bits size), m1

and m2 are two input messages and (r1, s1) and (r2, s2) are the generated
signatures for the input message. Once the matrix is ready it is given as
input to LLL algorithm, which will output the new matrix. The output matrix
will have one of the nonce utilized to obtain two signatures. As discussed
earlier the procedure to recover private key after obtaining nonce k. We
usually compute r−1(ks–H(m)). Every attacker has an access to public key
corresponding to this signature. Therefore one could easily ascertain whether
we have found the corresponding private key or not by just computing its
corresponding public key and compare it with public key already available.
A drawback with this method is there is a noticeable failure rate for this kind

Research on Elliptic Curve Crypto System with Bitcoin Curves 117

Table 4 ECDSA: Disclosing the private key using Lenstra–Lenstra–Lovász (LLL) method,
with bad nonce

N=11579208921035624876269744694940757353008
6143415290314195533631308867097853951

a=3
b=41058363725152142129326129780047268409114

441015993725554835256314039467401291
h=1

Order:1157920892103562487626974469494075735
29996955224135760342422259061068512044369

Gx=48439561293906451759052585252797914202762
949526041747995844080717082404635286

Gy=36134250956749795798585127919587881956611
106672985015071877198253568414405109

Message 1: Hello
Message 2: Goodbye

Sig1(R,S):68436999161162135666328315750279166809195
5282104486815888855608746060663819716449795428110690697
8594318856699527613005888505797620296329843674872597395

472
Sig 2(R,S):59396660104252040522208448410403058790061

3823476751598956301265405727959456868242611144523578459
4931644729721272619637798181864020014855718322746480394

7630
Random value (k1): 544079690520661127105791673855

32488796
Random value (k2): 139494728666289118543915002337

593135844
Private Key:

48588618394399226405893001917337148111899544979674835399
706352006027182977592
The private key is found:

48588618394399226405893001917337148111899544979674835399
706352006027182977592

of attack; the failure rate can be decreased if we perform the same attack
with more and more signatures. Table 4 – shows ECDSA: Disclosing the
private key if nonce is known on NIST-256P recommended parameters using
LENSTRA–LENSTRA–LOVASZ (LLL) method.

118 M. M. Ulla and D. S. Sakkari

3.3 ECDSA – Disclosing the Private Key Using
Lenstra–Lenstra–Lovasz (LLL) Method, If Nonce Known with
Real-world ECDSA Bugs

A recent real-time problem affects Yubi keys’ randomness generation, where
poor randomness causes the same value to be fixed to almost 80 bits of nonce.
These real-world issues are much easier to attack than the ones used in the
preceding section. While in section A we are unsure of the fixed 80-bit values,
we are aware that the fixed 128-bit values were all set to zeros. In this method,
we assume that every collection of received signatures has a nonce with an
exact length of 80 bits. Additionally, we believe that the 80 fixed bits are
the most important bits. (Even if they are not the most significant bits, the
attack may still be carried out by simply performing a left shift on one bit
at a time, which is equivalent to multiplying the signature by two.) The 80
most significant bits of the differences between any two nonces in this case
will all be zeros because we don’t know what these 80 bits are. The same
lattice attack as described in section B is used, with the exception that our
signature values are subtracted. We will construct the matrix below using a
set of n signatures and messages, which will then be used as input by the
LLL algorithm to produce a new output matrix. The variance between the
nonces for signatures 1 and n is the LLL algorithm’s output matrix, which is
designated as k1–kn. Instead of having an entire row filled with nonces, we
really have a row with the difference between each nonce and the nth nonce
in this case since we distinguished the nth value from each element in the
matrix.

[N] 0 . . . 0 0 0

0 [N] . . . 0 0 0

.

0 0 . . . [N] 0 0

[r1s
−1
1 − rns

−1
n] [r2s

−1
2 − rns

−1
n] . . . [rn−1s

−1
n−1 − rns

−1
n] [B/N] 0

[m1s
−1
1 −mns

−1
n] [m2s

−1
2 −mns

−1
n] . . . [mn−1s

−1
n−1 −mns

−1
n] 0 [B]


LLL Input Matrix with unknown Nonce Bias

If generated signatures are made from nonces with 80 fixed bits, the secret
key can be easily extracted from only five signatures. We constructed the
aforementioned matrix with n = 6 to lower the mistake rate. The 80 fixed
bits used for generation are scarce in the real world. When used with 256
bit elliptic curves, this type of attack is far more resilient and still effective

Research on Elliptic Curve Crypto System with Bitcoin Curves 119

even when 4 bits of the nonce are fixed. The implementation does not become
difficult; rather, the attacker merely needs to increase the size of the lattice,
or the value of n, and repeat the attack. This method will lengthen the
algorithm’s execution time without increasing its complexity. The value of N
in our experiments represents the total number of signatures needed to recover
the secret key, and it was calculated experimentally by trying to launch an
attack using a different number of signatures on a different number of fixed
bits. The value of N = 2 when the nonce’s first 128 bits were fixed to 0, and
the value of N = 3 when the first 128 bits are fixed but we are unsure of their
fixed values. N = 5 when the nonce had 80 fixed bits chosen at random.

One can recover the secret key using below formulations:

(1) Sig1 = k−1
1 (Msg1 + xr1) and Sign = k−1

n (Msgn + xrn)

(2) Sig1k1 = Msg1 + xr1 and Signkn = Msgn + xrn

(3) k1 = Sig−1
1 (Msg1 + xr1) and kn = Sig−1

n (Msgn + xrn)

(4) k1 − kn = Sig−1
1 (Msg1 + xr1)− Sig−1

n (Msgn + xrn)

(5) Sig1Sign(k1 − kn) = Sign(Msg1 + xr1)− Sig1(Msgn + xrn)

(6) Sig1Sign(k1 − kn) = xSignr1 − xSig1rn + SignMsg1 − Sig1Msgn

(7) x(Sig1rn − Signr1) = SignMsg1 − Sig1Msgn − Sig1Sign(k1 − kn)
(8) Secret key x = (rnSig1 − r1Sign)−1(SignMsg1 − Sig1Msg1Sig1Sign

(k1 − kn))

4 Performance Analysis

In this section, the experimental analysis of running time of algorithm to
crack ECDSA using selected NIST and SECP curves are presented. Table 6
shows time to crack ECDSA algorithm with leak of nonce and ECDSA with
LLL algorithm. Each algorithm is executed on five different intervals of time
with different curves and average execution times to crack the algorithm are
recorded. Among all the three curves NIST256p require less time to crack and
ECDSA with LLL among SECP256k1 and NIST256p, SECP256k1 require

Table 5 Features of nodes used in our research
Type of Node Processor CPU Type CPU Speed RAM Operating System
HP LAPTOP Intel Core i3 64 bits 1.99 GHz 4GB Windows 10
Raspberry pi ARM CPU 64 bits 1.2 GHz 1GB Rasbian 5.10

120 M. M. Ulla and D. S. Sakkari

Table 6 Elliptic curves average execution time in seconds to crack ECDSA
Average Execution Time (Seconds)

ECDSA With Curves T1 T2 T3 T4 T5 Avg
NIST256p 0.004 0.005 0.060 0.004 0.007 0.016
NIST521p 0.020 0.033 0.017 0.024 0.076 0.034
SECP256k1 0.060 0.016 0.017 0.073 0.068 0.046
LLL with SECP256k1 2.80 3.00 3.17 2.68 2.98 2.926
LLL with NIST256p 3.20 3.64 3.13 3.70 3.39 3.412

Figure 6 Average execution time to crack ECDSA (seconds).

less time to crack. Figure 6 demonstrates average execution time to crack
ECDSA.

5 Conclusions

In this paper, curves recommended by various standards are selected and
examined. Each curve applied on ECDSA algorithm is cracked in two ways
if nonce is leaked and another way is by performing lattice attacks using
Lenstra-Lenstra-Lovasz (LLL) algorithm if random number generator gener-
ates bad nonce. The comparative table shows the computation time taken by
each curve when these two algorithms are used. From this analysis it is clear
the computation times of curves increases when field size increases. There-
fore ECDSA is fragile and we recommend use of EdDSA where nonce’s are

Research on Elliptic Curve Crypto System with Bitcoin Curves 121

generated safely without use of RNG. Further NIST has standardized use of
EdDSA with Curve25519 to overcome side channel attacks. Use of ECDSA
should be done with caution such as nonce used for ECDSA signatures
are never repeated, never revealed (even partially), and generated safely.
Finally we come to a conclusion that elliptic curve cryptography using the
NIST256p, SECP256k1, NIST521p curves and weak nonce are not safe for
the transactions that are confidential and are to be kept secured down the line.

Appendix

LLL is used on the basis of (201, 37) and (1648, 297). We choose one of these
as our initial basis vector before reducing the second vector to a candidate
basis vector.

LLL Example: Applying LLL to the basis spanned by (201, 37) and (1648,
297). We begin by choosing one of these as our first basis vector, then using
it to reduce the second vector to a candidate basis vector.

Step 1: Let us consider our first lattice basis vector ~v1 as first Gram-Schmidt
vector ~v∗1

~v1 = (201, 37). ~v2 = (1648, 297) and ~v∗1 = (201, 37)

Applying Gram-Schmidt reduction to reduce vector ~v2:

~v2 = (1648, 297)− (1648, 297) · (201, 37)
(201, 37) · (201, 37)

(201, 37) ≈ (1.133,−6.155)

We have

~v1 = (201, 37), ~v2 = (1648, 297),
~v∗1 = (201, 37) and ~v∗2 = (1.133,−6.155)

We have: ~v1 = (40, 1), ~v2 = (201, 37), ~v∗1 = (40, 1) and ~v∗2 = (−0.799,
31.956).

Using ~v1 to reduce ~v2

~v2 = (201, 37)−
⌊
(201, 37) · (40, 1)
(40, 1) · (401, 1)

⌉
(40, 1) = (1, 32)

We have: ~v1 = (40, 1), ~v2 = (1, 32), ~v∗1 = (40, 1) and ~v∗2 = (−0.799,
31.956).

122 M. M. Ulla and D. S. Sakkari

Next, we find the magnitude of Gram-Schmidt basis vector ‖~v∗12‖ and
‖~v∗22‖ and check the Lavasz condition. ‖~v∗12‖ = 1601, ‖~v∗22‖ = 1021.76

µ2,1 =

(
(1, 32) · (40, 1)
(40, 1) · (40, 1)

= 0.193

)
(
3

4
− µ22,1 ≈ 0.748

)
So, ‖~v∗2‖2 � (34 − µ

2
2,1)‖~v∗1‖2 and we should swap, making ~v1 = (1, 32)

and ~v2 = (40, 1).

Step 3:
We have:

~v1 = (1, 32). ~v2 = (40, 1) and ~v∗1 = (1, 32).

Now apply the Gram-Schmidt reduction, using ~v∗1 = ~v1

~v2 = (40, 1)− (40, 1) · (1, 32)
(1, 32) · (1, 32)

(1, 32) ≈ (39.93,−1.25)

We have:

~v1 = (1, 32), ~v2 = (40, 1), ~v∗1 = (1, 32) and ~v∗2 = (39.93,−1.25).

Using ~v1 to reduce ~v2

~v2 = (40, 1)−
⌊
(40, 1) · (1, 32)
(1, 32) · (1, 32)

⌉
(1, 32)

~v2 = (40, 1)− 0(1, 32)
~v2 = (40, 1)

Next, we find the magnitude of Gram-Schmidt basis vector ‖~v∗12‖ and
‖~v∗22‖ and check the Lavasz condition. ‖~v∗12‖ = 1025, ‖~v∗22‖ = 1595.94

µ2,1 =

(
(40, 1) · (1, 32)
(1, 32) · (1, 32)

= 0.070

)
(
3

4
− µ22,1 ≈ 0.745

)
So, ‖~v∗2‖2 ≥ (34 − µ22,1)‖~v∗1‖2 and we can move on to the next basis

vector. ~v1 = (1, 32) and ~v2 = (40, 1) correspond to reasonably orthogonal
set of basis vectors.

Research on Elliptic Curve Crypto System with Bitcoin Curves 123

Acknowledgement

The authors would like to acknowledge the support provided by Presidency
University – Bengaluru, India.

References

[1] Chintan Patel, Nishant Doshi, “Secure Light Weight Key Exchange
Using ECC For User Gateway Paradigm” 2021 IEEE Transactions on
Computer DOI: 10.1109/TC.2020.3026027 Access Pages: 1–1.

[2] Dimitrios Poulakis “New lattice attacks on DSA schemes Journal of
Mathematical Cryptology 2016 IEEE Open Access Pages: 70025–70034
DOI: 10.1515/jmc-2014-0027 Volume 10 Issue 2”.

[3] Badis Hammi, Achraf Fayad, Rida Khatoun, Sherali Zeadally and
Youcef Begriche 2020 “A Lightweight ECC-Based Authentication
Scheme for Internet of Things (IoT)” February 2020 IEEE Systems
Journal 2020 Pages: 3440–3450 DOI: 10.1109/JSYST.2020.2970167
Volume: 14.

[4] Xiaoqiang Zhang And Xuesong Wang “Digital Image Encryption Algo-
rithm Based on Elliptic Curve Public Cryptosystem IEEE November
2018 Access Pages: 70025–70034 ISSN: 2169-3536 Volume: 6”.

[5] Mohammad Ayoub Khan, Mohammed Tabrez Quasim, Norah Saleh
Alghamdi, Mohammad Yahiya Khan “A Secure Framework for Authen-
tication and Encryption Using Improved ECC for IoT-Based Medical
Sensor Data” IEEE Access Pages: 52018–52027 ISSN: 2169-3536
Volume: 8.

[6] Debiao He and Sherali Zeadally, “An Analysis of RFID Authentica-
tion Schemes for Internet of Things in Healthcare Environment Using
Elliptic Curve Cryptography”, September 2014 IEEE internet of things
journal, Electronic ISSN: 2327-4662 DOI: 10.1109/JIOT.2014.2360121
vol. 2, no. 1.

[7] Sahil Garg, Kuljeet Kaur, Georges Kaddoum, and Kim-Kwang Ray-
mond Choo, “Toward Secure and Provable Authentication for Internet
of Things: Realizing Industry 4.0”, September 2019 IEEE internet of
things journal, Electronic ISSN: 2327-4662 DOI: 10.1109/JIOT.2019.
2942271.

[8] Maxim Chernyshev, Zubair Baig, Oladayo Bello, and Sherali Zeadally
“Internet of Things (IoT): Research, Simulators, and Testbeds”, Decem-
ber 2017 IEEE Internet of Things Journal, Vol. 5, No. 3, June 2018
Electronic ISSN: 2327-4662 DOI: 10.1109/JIOT.2017.2786639.

10.1109/TC.2020.3026027
10.1515/jmc-2014-0027
10.1109/JSYST.2020.2970167
10.1109/JIOT.2014.2360121
10.1109/JIOT.2019.2942271
10.1109/JIOT.2019.2942271
10.1109/JIOT.2017.2786639

124 M. M. Ulla and D. S. Sakkari

[9] Xiaoqiang Zhang And Xuesong Wang “Digital Image Encryption Algo-
rithm Based on Elliptic Curve Public Cryptosystem” 09 November 2018
IEEE Open access Electronic ISSN: 2169-3536 DOI: 10.1109/ACCESS
.2018.2879844.

[10] Anum Sajjad, Mehreen Afzal, Mian Muhammad Waseem Iqbal, Haider
Abbas, Rabia Latif, and Rana Aamir Raza “Kleptographic Attack on
Elliptic Curve Based Cryptographic Protocols” 29 July 2020 IEEE
Open access Electronic ISSN: 2169-3536 DOI: 10.1109/ACCESS.2
020.3012823.

[11] Patrick Longa; Ali Miri “Fast and Flexible Elliptic Curve Point
Arithmetic over Prime Fields” IEEE Transactions on Computers, Vol-
ume: 57, Issue: 3, March 2008 Print ISSN: 0018-9340 DOI: 10.1109/
TC.2007.70815.

[12] P. K. Gupta, B. T. Maharaj, and R. Malekian, “A novel and secure
IoT based cloud centric architecture to perform predictive analysis of
user’s activities in sustainable health centres,” Multimedia Tools Appl.,
vol. 76, no. 18, pp. 18489–18512, Sep. 2017 doi.org/10.1007/s11042-0
16-4050-6.

[13] G. Rathee, A. Sharma, H. Saini, R. Kumar, and R. Iqbal, “A hybrid
framework for multimedia data processing in IoT-healthcare using
blockchain technology,” Multimedia Tools Appl., 2019. Electronic ISSN
1573-7721 https://doi.org/10.1007/s11042-019-07835-3.

[14] A. H. El Zouka and M. M. Hosni, “Secure IoT communications for smart
healthcare monitoring system,” in Internet of Things. Amsterdam, The
Netherlands: Elsevier, 2019. doi.org/10.1016/j.iot.2019.01.003.

[15] Kendall Ananyi, Hamad Alrimeih, and Daler Rakhmatov “Flexible
Hardware Processor for Elliptic Curve Cryptography Over NIST Prime
Fields” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems Volume: 17, Issue: 8, August 2009 Print ISSN: 1063-8210 DOI:
10.1109/TVLSI.2009.2019415.

[16] Bijan Ansari and M. Anwar HasanHigh-Performance Architecture of
Elliptic Curve Scalar Multiplication IEEE Transactions on Computers
(Volume: 57, Issue: 11, November 2008, DOI: 10.1109/TC.2008.133
Print ISSN: 0018-9340.

[17] Nizar Ouni and Ridha Bouallegue “Performance And Complexity Anal-
ysis of Reduced Iterations LLL Algorithm” International Journal of
Computer Networks Communications (IJCNC) May 2016 Vol. 8”.

10.1109/ACCESS.2018.2879844
10.1109/ACCESS.2018.2879844
10.1109/ACCESS.2020.3012823
10.1109/ACCESS.2020.3012823
10.1109/TC.2007.70815
10.1109/TC.2007.70815
doi.org/10.1007/s11042-016-4050-6
doi.org/10.1007/s11042-016-4050-6
https://doi.org/10.1007/s11042-019-07835-3
doi.org/10.1016/j.iot.2019.01.003
10.1109/TVLSI.2009.2019415
10.1109/TC.2008.133

Research on Elliptic Curve Crypto System with Bitcoin Curves 125

[18] Yunju Park and Jaehyen “Analysis of the upper bound on the complexity
of LLL Algorithm”, Journal of the Korean Society for Industrial and
Applied Mathematics 2016 Vol. 20, No. 2, 107–121.

[19] Michael Brengel and Christian Rossow “Identifying Key Leakage of
Bitcoin Users International Symposium on Research in Attacks, Intru-
sions, and Defenses 2018 Open Access LNSC”, ISBN: 978-3-030-
00470-5 volume 11050.

[20] Dan Boneh Ramarathnam Venkatesan “Hardness of Computing the
Most Significant Bits of Secret Keys in Diffie-Hellman and Related
Schemes” Lecture Notes in Computer Science- Annual International
Cryptology Conference 2001, volume 1109, pp. 129–142.

[21] Joachim Breitner and Nadia Heninger “Biased Nonce Sense: Lattice
Attacks against Weak ECDSA Signatures in Cryptocurrencies” Lecture
Notes in Computer Science 2019 Springer International Publishing –
Financial Cryptography and Data Security.

[22] Jack Doerner, Yashvanth Kondi, Eysa Lee and abhi shelat “Thresh-
old ECDSA from ECDSA Assumptions:The Multiparty Case” May
2019 IEEE Symposium on Security and Privacy DOI: 10.1109/SP37
863.2019.

[23] S. Tyagi, A. Agarwal, and P. Maheshwari, “A conceptual framework for
IoT-based healthcare system using cloud computing,” in Proc. 6th Int.
Conf.-Cloud Syst. Big Data Eng. (Conuence), Noida, India, Jan. 2016,
pp. 503–507. Electronic ISBN: 978-1-4673-8203-8 DOI: 10.1109/CO
NFLUENCE.2016.7508172.

[24] M. Wen, J. Lei, J. Li, Y. Wang, and K. Chen, “Efficient user access con-
trol mechanism for wireless multimedia sensor networks,” J. Comput.
Inf. Syst., vol. 7, no. 9, pp. 3325–3332, 2011.

[25] Javed R. Shaikh, Maria Nenova, Georgi Iliev and Zlatka Valkova-
Jarvis “Analysis of Standard Elliptic Curves for the Implementation
of Elliptic Curve Cryptography in Resource-Constrained E-commerce
Applications” 2017 IEEE-COMCAS ISBN: 978-1-5386-3169-0.

[26] Shen Guicheng, Yu Zhen “Application of Elliptic Curve Cryptography in
Node Authentication of Internet of Things IEEE-IIHMSP” ISBN: 978-
0-7695-5120-3 DOI: 10.1109/IIH-MSP.2013.118.

[27] Ravi Kishore Kodali and Ashwitha Naikoti “ECDH based Security
Model for IoT using ESP 8266” 2016 IEEE- ICCICCT DOI: 10.110
9/ICCICCT.2016.7988026.

[28] Deepak S. Sakkari Mohammed Mujeer Ulla “Review on Insight into
Elliptic Curve Cryptography” 2022 Modern Approaches in Machine

10.1109/SP37863.2019
10.1109/SP37863.2019
10.1109/CONFLUENCE.2016.7508172
10.1109/CONFLUENCE.2016.7508172
10.1109/IIH-MSP.2013.118
10.1109/ICCICCT.2016.7988026
10.1109/ICCICCT.2016.7988026

126 M. M. Ulla and D. S. Sakkari

Learning Cognitive Science: A Walkthrough DOI: 10.1007/978-3-03
0-96634-88.

[29] Deepak S. Sakkari Mohammed Mujeer Ulla “Design and Implemen-
tation of Identifying Points on Elliptic Curve Efficiently Using Java”
2022 Modern Approaches in Machine Learning Cognitive Science: A
Walkthrough DOI: 10.1007/978-3-030-96634-88.

[30] Deepak S. Sakkari Mohammed Mujeer ulla “Design and Implemen-
tation of Elliptic Curve Digital Signature Using Bit Coin Curves
Secp256K1 and Secp384R1 for Base10 and Base16 Using Java” 2022
Innovation in Electrical Power Engineering, Communication, and Com-
puting Technology DOI: 10.1007/978-981-16-7076-328.

[31] Nissa Mehibel, M’hamed Hamadouche “A new approach of elliptic
curve Diffie-Hellman key exchange” 2017 5th International Conference
on Electrical Engineering - Boumerdes (ICEE-B) Electronic ISBN:
978-1-5386-0686-5 DOI: 10.1109/ICEE-B.2017.8192159.

[32] Amit Dua, Akash Dutta, “A Study of Applications Based on Elliptic
Curve Cryptography”, Proceedings of the Third International Confer-
ence on Trends in Electronics and Informatics (ICOEI 2019) IEEE
Xplore Electronic ISBN: 978-1-5386-9439-8 DOI: 10.1109/ICOEI.20
19.8862708.

[33] Leonidas Deligiannidis, “Elliptic curve cryptography in Java” 2015
IEEE International Conference on Intelligence and Security Informatics
(ISI) Electronic ISBN: 978-1-4799-9889-0 DOI: 10.1109/ISI.2015.716
5975.

10.1007/978-3-030- 96634-88
10.1007/978-3-030- 96634-88
10.1007/978-3-030-96634-88
10.1007/978-981-16-7076-328
10.1109/ICEE-B.2017.8192159
10.1109/ICOEI.2019.8862708
10.1109/ICOEI.2019.8862708
10.1109/ISI.2015.7165975
10.1109/ISI.2015.7165975

Research on Elliptic Curve Crypto System with Bitcoin Curves 127

Biographies

Mohammed Mujeer Ulla, currently working as Assistant Professor in
Department of computer science and engineering since 2017 and is pursuing
his Ph.D. from presidency University. He is an alumni of R.V college of
engineering – Bangalore in his UG and PG. He has many papers to his
credit in reputed international and national conferences journals. His areas
of expertise include internet of Things, Wireless sensor network.

Deepak. S. Sakkari, currently working as Assistant Professor in the Depart-
ment of Computer Science and Engineering, Presidency University, Banga-
lore. He received his B.E in Instrumentation and Electronics from Siddganga
Institute of Technology, Bangalore University, M.Tech in Information Tech-
nology from AAIDU, Allahabad and PhD in Computer Science Engineering
from JNTUH, Hyderabad. He published many paper in Scopus indexed and
SCI journals with Google scholar 9 citations. His research area includes
Wireless Sensor Networks.

	Introduction
	Theoretical Principle
	Recent Trends in Elliptic Curve Cryptography
	Elliptic Curve Digital Signature (ECDSA)
	The LLL Algorithm

	Methodology
	 ECDSA-Disclosing the Private Key, If Nonce Known Using NIST256p, SECP256k1, NIST521
	ECDSA – Disclosing the Private Key Using Lenstra–Lenstra–Lovasz (LLL) Method, If Nonce Known
	ECDSA – Disclosing the Private Key Using Lenstra–Lenstra–Lovasz (LLL) Method, If Nonce Known with Real-world ECDSA Bugs

	Performance Analysis
	Conclusions

